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Elastic backbone phase transition in the Ising model
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The two-dimensional (zero magnetic field) Ising model is known to undergo a second-order paraferromagnetic
phase transition, which is accompanied by a correlated percolation transition for the Fortuin-Kasteleyn (FK)
clusters. In this paper we uncover that there exists also a second temperature Teb < Tc at which the elastic
backbone of FK clusters undergoes a second-order phase transition to a dense phase. The corresponding
universality class, which is characterized by determining various percolation exponents, is shown to be
completely different from directed percolation, which leads us to propose a new anisotropic universality class
with β = 0.54 ± 0.02, ν|| = 1.86 ± 0.01, ν⊥ = 1.21 ± 0.04, and df = 1.53 ± 0.03. All tested hyperscaling
relations are shown to be valid.
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I. INTRODUCTION

The geometrical approach to thermal systems has proved
to be very fruitful, especially in the vicinity of critical points.
The effectiveness of the correspondence between local and
global properties has led to the study of various geometrical
quantities in thermal systems, like the q-state Potts model
[1,2], the two-dimensional electron gas [3], and the spin glass
[4] and the modified Ising models [5,6]. Backbone and elastic
backbone (EB, the set of shortest paths) of the geometrical
and the Fortuin-Kasteleyn (FK) clusters are examples of such
extended objects, whose fractal structure can be found in op-
timal paths [7] and interfaces [8], which can be processed via
Schramm-Loewner evolution (SLE) [9]. Actually the critical-
ity of the original model induces fractality of these extended
objects. More precisely when the thermal model experiences a
second-order phase transition, it can be equivalently described
as a percolation transition of FK clusters, which are fractal
[10]. The EB will serve here as a geometrical object that can
be employed to lighten some aspects of geometrical and also
FK clusters.

The EB in disordered systems is the subset of the backbone
that would give the first contribution to a restoring force, when
the system is elongated. The EB determines the resistance of
the system under tension, whose characterization involves the
determination of its fractal dimension, optimal path traces,
etc. [7]. A new type of transition in classical percolation for
the EB was discovered in Ref. [11]. It was observed that the
EBs of the percolation model on the tilted square lattice and
on the triangular lattices undergo a second-order phase tran-
sition at some peb > pc, above which the EBs become dense.
Various new exponents were calculated. Shortly thereafter it
was shown that the set of the shortest paths in an ordinary
percolation system behaves just like the backbone of directed
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percolation (DP) [12]. A question rises here whether such a
transition is also seen in thermal systems, e.g., the Ising model
as the simplest one.

The fact that many binary systems can be mapped to the
Ising model, makes such a study worthwhile. Examples are
the oxygen configuration in YBCO planes [5,13], protein
folding [14], position configuration of metallic nanoparticles
in random media [15], the position of nonpermeable rocks
in reservoirs [16], etc. It may be seen as a way of making a
percolation system correlated [17].

This paper is devoted to investigating the geometrical prop-
erties of the EBs of the FK clusters of the Ising model in terms
of temperature. To this end we define the Ising model on the
tilted square lattice and extract its various critical exponents.
Interestingly we observe a threshold temperature Teb < Tc

below which the EBs become dense. We show that all tested
hyperscaling relations hold, and the anisotropic universality
class is clearly different from the DP universality class.

The paper has been organized as follows: In the next sec-
tion we briefly introduce the FK representation of the q-state
Potts model. Section III has been devoted to the numerical
details and results. We close the paper with a conclusion.

II. THE FORTUIN-KASTELEYN (FK) REPRESENTATION
OF THE ISING MODEL

The FK formulation provides a geometrical description
of the q-state Potts model. The determination of these ge-
ometrical properties is of special importance in the context
of critical phenomena. The FK clusters of the q-state Potts
model describe the critical behavior. The q-state Potts model
is defined by the following Hamiltonian:

H = −K
∑

〈i, j〉

(
δσi,σ j − 1

) − h′ ∑

i

δσi,1, σi = 1, 2, . . . , q,

(1)
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where K is the coupling constant, σi and σ j are the spins
at the sites i and j, respectively (taking q states), h′ is the
magnetic field, and 〈i, j〉 shows that the sites i and j are
nearest neighbors. The celebrated FK representation of q-state
Potts model is expressed via the following partition function
(for the zero magnetic field):

ZFK =
∑

�

pb(1 − p)B−bqNc (2)

in which p = 1 − e−K , Nc is the number of clusters, and
{�} denotes the set of bond configurations specified by b
occupied bonds and b̄ ≡ B − b broken bonds, where B is the
total number of bonds in the configuration �. For q � 4,
where the q-state Potts model undergoes a continuous phase
transition, these clusters percolate at the critical temperature.
At the technical level, the FK clusters are also useful to reduce
the critical slowing down, which is known as the Swendsen-
Wang algorithm [18]. In this approach FK clusters are used
as the objects to be updated at each Monte Carlo step. If
we take τ and σ as two independent exponents, defined by
P(n) ∼ n−τ exp [−θn] in which P(n) is the cluster distribution
giving the average number density of clusters of n sites and
θ ∼ (T − Tc)1/σ , then the standard geometrical exponents of
the percolation theory are given by

α = 2 − τ − 1

σ
, β = τ − 2

σ
, γ = 3 − τ

σ
,

η = 2 + d
τ − 3

τ − 1
, ν = τ − 1

dσ
, d f = d

τ − 1
,

(3)

in which α is the exponent of the density of clusters (deter-
mined by the divergence of its third derivative with respect to
temperature), β is the exponent of the number density of the
percolating cluster, γ is the exponent of density fluctuations,
η is the Fisher exponent (anomalous dimension in the Green
function), ν is the exponent of correlation length, and d f is
the cluster fractal dimension. Therefore some hyperscaling
relations relate these exponents, the most important ones be-
ing α = 2 − νd , d f = 1

2 (d + 2 − η) = d − β/ν, 2β + γ =
dν. The latter hyperscaling relation is violated for the EB
transition of the percolation model [11].

The Ising model is given (q = 2 Potts model) by (up to an
additive constant)

H = −J
∑

〈i, j〉
sis j − h

∑

i

si, si = ±1, (4)

in which J = 1
2 K , and h = 1

2 h′. J > 0 corresponds to pos-
itively correlated nearest neighbors, whereas J < 0 is for
negatively correlated ones. The temperature T controls the
disorder in the system. The FK clusters are simply obtained
by bond diluting the geometric spin cluster, i.e., the connected
cluster comprised by the same spins. In this bond dilution,
one removes the bonds between nearest neighbors with the
probability p = 1 − e−2J .

For h = 0 the model is well known to exhibit a nonzero
spontaneous magnetization per site M = limh→0 〈σi〉 at tem-
peratures below the critical temperature Tc. In fact, there are
two transitions in the Ising model: the magnetic (paramag-
netic to ferromagnetic) transition (mentioned above) and the
percolation transition (in which the FK cluster percolate and
become fractal). For the 2D regular Ising model at h = 0
these two transitions occur simultaneously [17], although it
is not the case for all versions of the Ising model, e.g., for the
site-diluted Ising model [6].

III. RESULTS

As a spanning object, the elastic backbone (EB) is a geo-
metrical subset of the spanning cluster that contains important
information about the geometry of the cluster, since it is the
set of points which react first to an external tension. It defines
a new type of transition in ordinary percolation [11].

In this section we present the geometrical properties of
the EB of the FK clusters of the Ising model. Let us de-
fine the Ising model on the L × L tilted square lattice. We
impose open (periodic) boundary conditions along verti-
cal (horizontal) directions, respectively. Then using Monte
Carlo simulations of the Ising model at h = 0, we generated
105 Ising configurations at temperatures T � Tc for L =
362, 512, 724, 1024, 1448, and 2048. After identifying the FK
clusters, the backbones and the EBs are extracted using the
burning algorithm [19]. The statistics of the density of these
clusters as well as the loops in the backbone are calculated.

FIG. 1. Images of the EB for (a) T = Tc > Teb (dilute phase) (b) T = Teb (critical value), and (c) T = 1.7 < Teb (dense phase) on the tilted
square lattice with L = 256. The white (red) sites are majority (minority) spins that do not belong to the EBs, and the blue sites belong to the
EBs (FK clusters are not shown).
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(a) (b)

FIG. 2. (a) The density of the EB mL in terms of temperature T for various lattice sizes L. Inset: Lβeb/νeb mL (T ) in terms of T showing that
Teb = 1.845 ± 0.003 and βeb

νeb
= 0.48 ± 0.03. (b) Binder’s cumulant in terms of temperature T . Teb(L) is obtained as the point in which two

successive graphs (for subsequent sizes) cross. This analysis shows that (lower inset) Teb = 1.846 ± 0.003. In the upper inset we show the
point at which BL attains its maximum, which extrapolates to Teb.

Various fractal dimensions of EBs as functions of temperature
are obtained.

Our main observation is that there is a temperature, namely,
Teb < Tc, at which the EBs undergo a phase transition from the
dilute phase to the dense one. Below this temperature the EBs
are dense. At this temperature, the density of the EB exhibits
strong large fluctuations, which signals a second-order phase
transition. Based on these observations we propose that there
are three regimes in the zero magnetic field Ising model: for
T > Tc there is no spanning cluster, whereas for Teb < T < Tc

we are in percolation regime with dilute EBs, and for T � Teb

the EBs become dense. At T = Teb the system shows critical
behavior with some critical exponents which are extracted
analyzing the scaling relations.

In Fig. 1 we show samples of EBs (blue) in the tilted square
lattice for three cases: at T = Tc (dilute phase) [Fig. 1(a)],
at T = Teb (critical value) [Fig. 1(b)], and at T = 1.70 < Teb

(dense phase) [Fig. 1(c)]. The blue traces are simply the short-
est paths from top to bottom. Periodic boundary conditions
have been imposed in the horizontal direction.

The first quantity to be investigated is mL(T ) ≡ L−2〈M〉 in
which M is the number of sites contained in the EB, and 〈〉 is
the ensemble average. We consider it as the order parameter in
this problem. Figure 2(a) shows mL in terms of T for various
sizes L, exhibiting a clear transition at some temperature,
below which the EBs become dense. By tracking the behavior
of mL in terms of T and L, one can extract the critical
temperature Teb, as done in the inset. From this analysis we
observe that Teb = 1.847 ± 0.001. Also one can obtain the
exponent βeb/νeb, which is obtained to be 0.48 ± 0.03 through
the scaling relation

mL(ε) = L−βeb/νeb Gm(εL1/νeb ), (5)

in which Gm(x) is a scaling function with Gm(x)|x→∞ ∝ xβeb

and is analytic and finite as x → 0 (or equivalently T →
Teb), and ε ≡ Teb−T

Teb
. We note here that since the system is

anisotropic, one should calculate ν|| (the exponent parallel
to the time direction) and ν⊥ (perpendicular exponent) sep-
arately. The relation between these anisotropic exponent and
νeb will be studied at the end of this section.

To extract Teb, one may need a more precise method. We
have used the Binder’s cumulant:

BL = 1 −
〈
m4

L

〉

3
〈
m2

L

〉2 , (6)

which becomes L-independent at T = Teb. In fact, the cross-
ing point of two successive sizes L′s may change as L
increases; i.e., the crossing points are L-dependent. In this
case one can extrapolate the Teb(L) to find the correct value,
Teb(∞), which is done in the lower inset of Fig. 2(b). This
analysis confirms the finding of Fig. 2(a); i.e., it reveals that
Teb = 1.846 ± 0.003.

An important test is to examine whether the scaling relation
Eq. (5) holds or not, which is necessary for a second-order
transitions. We plot Gm(x ≡ |ε|L1/νeb ) = Lβeb/νeb for T > Teb

and T � Teb to extract the exponents. This analysis has been
done in Fig. 3 in which the upper branch is for T � Teb,
and the lower branch for T > Teb. It is seen that for large
enough x′s (for which we expect G(x) ∝ xβeb ), the slope is
βeb = 0.54 ± 0.02, and νeb is 1.20 ± 0.03. This implies that
βeb/νeb = 0.47 ± 0.03, which is compatible with the value
found above.

FIG. 3. The data collapse for mL . The upper branch is for T <

Teb, and the lower branch is for T > Teb, showing that β = 0.54 ±
0.02.
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FIG. 4. The log-log plot of Meb in terms of L. The square sym-
bols are for the mass of the EBs, whereas circles are for the number of
loops inside the EBs, and the inverse triangles represent the number
of loops inside the backbones. Inset: df in terms of temperature T ,
showing that df is within numerical accuracy 2 for T < Teb, and 1
for T > Teb.

The total mass of the EBs is expected to behave like Meb =
L2meb = Ld f Gm(εL1/νeb ) in which d f = 2 − βeb/νeb, and Gm

is the same function as Eq. (5). d f is therefore obtained by
a log-log plot of Meb in terms of L, which has been done
for T = Teb in Fig. 4. We have additionally plotted the same
graphs for the number of loops inside the EB (circles) and
backbones (inverse triangles). In the burning algorithm a loop
is identified each time when a site is simultaneously burned
from two sites and the number of loops involving i and j is
n − 1 when there are n distinct paths from i to j [19,20]. The
resulting fractal dimensions are d (1)

f = 1.53 ± 0.03 and d (2)
f =

1.99 ± 0.01 respectively. We see that interestingly the fractal
dimension for the number of loops inside the EBs is the same
as d f , and the number of loops inside the backbone grows
extensively, showing that the backbone is in the dense phase.
Actually we expect this for all T < Tc, since the backbones
behave like the total FK clusters, which are in dense phase in
this regime. The analysis of the fractal dimension for the other
temperatures shows that d f ≈ 2.0 for T < Teb (dense phase)
and d f ≈ 1.0 for T > Teb (dilute phase); see the inset of Fig. 4.

This confirms that the clusters are space filling for the first
case and effectively one-dimensional in the dilute phase.

Given the above data, the question arises concerning the
presumable singular behavior of the fluctuations of the order
parameter, mL, as for any second-order phase transition. Let us
define the fluctuation of the order parameter χ ≡ L2(〈M2

eb〉 −
〈Meb〉2), which is expected to diverge at the transition point of
any continuous transition. It is additionally expected to fulfill
the scaling behavior:

χL(ε) = L−γeb/νeb Gχ (εL1/νeb ), (7)

in which again Gχ (x) is a scaling function with Gχ (x)|x→∞ ∝
xγeb and is analytic and finite as x → 0. The analysis of
this function is presented in Fig. 5. This scaling hypothesis
predicts that the maximum value of χ , i.e., at the transition
point behaves like χmax ∝ Lγeb/νeb , and also χL(ε) ∝ |ε|−γeb for
small enough |ε|. Figure 5(a) suggests that γeb/νeb = 1.00 ±
0.01. If we use the above-obtained νeb (1.20 ± 0.03), we
find that γeb = 1.20 ± 0.03. Summarizing we have presented
the data collapse analysis in Fig. 5(b), which confirms that
γeb = 1.2 ± 0.1. The inset is also consistent with this result.

Here it is worthwhile to comment on the hyperscaling
relations. As mentioned in Sec. II the exponents are not
independent, and there are some hyperscaling relations be-
tween them. For example, d f = 2 − β/ν, and 2β + γ = dν

(d = 2 here). The latter has been shown to be violated for
the EB transition in percolation [11]. Here we note that βeb +
1
2γeb = 1.15 ± 0.07, which agrees within the error bar with
νeb = 1.2 ± 0.1. Therefore, we conclude that the hyperscaling
relation is restored in the FK clusters of the Ising model.

The set of all shortest paths leaving one point can be seen
as an anisotropic object, and the corresponding critical point
(the transition point) should be described by an anisotropic
universality class. Recently it was suggested by Deng et al.
[12] that the transition point of the EBs defined in the percola-
tion system is in the universality class of DP. To this end, they
calculated two fractal dimensions for both the EB of percola-
tion and the backbone of DP: first, the number of occupied
sites along the center line Nb ≡ 〈Ny=L/2〉 (which represents
the behavior of the bulk) and the number of occupied sites at
the top and bottom edges Ne ≡ 1

2 〈Ny=1 + Ny=L〉 (representing
the behavior of boundaries) in terms of system size L, and,

(a) (b)

FIG. 5. (a) χ (T, L) in terms of T around Teb for various system sizes L. Inset χmax [the maximum value of χ that occurs at Teb(L)]. (b) The
data collapse for χ showing that γeb = 1.2 ± 0.1. Inset: Log-log plot of χ (T ) in terms of |ε| ≡ |(T − Teb)/Teb| for the largest L value, i.e.,
L = 2048, giving the exponent γeb = 1.2 ± 0.1, confirming the data collapse analysis.
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(a) (b)

FIG. 6. (a) Log-log plot of Nb and Ne in terms of system size L giving exponents de = 1.71 ± 0.01 and db = 1.52 ± 0.01. (b) The fractal
dimension corresponding to the shortest path dmin = 1.090 ± 0.004.

second, the chemical distance (shortest path) exponent dmin

defined by 〈ls〉 ∼ Ldmin . From the similarities between the ob-
tained fractal dimensions and the exponents of the DP [dDP =
2 − β

ν||
characterizing the full DP, and dB,DP = 2 − β

ν||
− δ

characterizing the bulk of the DP, in which the exponent δ

is defined by the survival probability P(t ) ∝ t−δ], Deng et al.
concluded that they are in the same universality classes. Note
that Ne and Nb are expected to scale like Lde−1 and Ldb−1

(the subtraction of exponents by one is due to the fact that
we are taking one-dimensional cuts through the clusters).
The above described procedure still requires some consistent
derivation; e.g., anisotropic scaling should be tested. However,
we do the same analysis here to calculate de and db as in
Ref. [12].

Such an analysis at T = Teb shows that the universal-
ity class is very different from DP and belongs to another
anisotropic universality class. From Figs. 6(a) and 6(b) we
conclude that de = 1.71 ± 0.01 and db = 1.52 ± 0.01. There-
fore β

ν||
= 0.29 ± 0.01, resulting in ν|| = 1.86 ± 0.01. Addi-

tionally, if the reasoning of equations of the DP exponents is
applicable here, then the exponent of the survival probability
will be δ = 0.19 ± 0.01. There are some proposals concern-
ing the relation between d f and ν|| and ν⊥ for DP [32]. If
one uses the most accepted one, d f = 2 − β/ν⊥ [32], then
it results in ν⊥ = ν = 1.21 ± 0.04, which is compatible with
the general expectation that the ratio of correlation lengths

vanishes in the thermodynamic limit, i.e., ζ⊥/ζ|| → 0 when
L → ∞.

All exponents are presented in Table I. For comparison, the
same exponents are shown for p = pc and p = peb. Although
the β exponent for Ising model and percolation (p = peb)
are close to each other, the other exponents are drastically
different. The other exponent that is relevant in characterizing
the geometrical properties of the model at T = Tc is the fractal
dimension of the shortest path (dmin). This dependence is
shown in Fig. 6(b), from which we see that dmin = 1.090 ±
0.004. This exponent has perviously been conjectured by
Deng et al. to be 1.09375 [33] and numerically calculated
by Hou et al. where the value 1.0940(3) was reported [34].
This value should also be compared with dpercolation

min (p = pc),
which is 1.13077(2) [7,35–37]; i.e., the shortest paths are less
tortuous for the FK clusters of the Ising model.

One may be interested in calculating σ and τ . We obtain
τ = (2dν − β )/(dν − β ) = 2.29 ± 0.02, and σ = 1/(dν −
β ) = 0.53 ± 0.02. Since our model is anisotropic, it will not
be conformally invariant [38], and a Loewner transformation
would map its paths to anomalous diffusion [39].

IV. DISCUSSION AND CONCLUSION

The elastic backbone (EB) of the Ising model (in the
zero magnetic field limit) has numerically been considered in

TABLE I. The exponents for the Ising model at T = Teb (rows 2, 3, and 4), for the ordinary percolation (OP) model at p = peb (row 5)
[11], for OP at p = pc (row 6, in which the exact results can be found in Refs. [21–28], and are numerically confirmed in Refs. [29–31]), and
finally for the DP model at p = pc [32]. For OPpeb and DPpc , although the sole values of β and ν are different, β/ν (which is equal to β/ν⊥)
is the same. The exponents for the Ising model are considerably different from the exponents of DP and therefore define a new anisotropic
universality class. Two hyperscaling relations (df = 2 − β/ν and 2β + γ = 2ν) are also reported, which are shown to be valid for the Ising
model, whereas the latter is violated for OPpeb .

Exponent β ν = ν⊥ ν|| γ 2 − β/ν df de db dmin
β

ν
+ γ

2ν

Figs. 2(a), 4, 6 – – – – 1.52(3) 1.53(2) 1.71(1) 1.52(1) 1.090(4) –

Fig. 3 0.54(2) 1.20(3) – – 1.53(3) – – – – –

Figs. 5(a), 6(a) – 1.21(4) 1.86(1) 1.20(3) – – – – – 0.95(3)

OP (p = peb) 0.50(2) 2.00(2) – 1.97(5) 1.750(3) 1.750(3) 1.84054(4) 1.68102(15) – 0.74(1)

OP (p = pc) 5
36 ≈ 0.14 4

3 ≈ 1.33 – 43
18 ≈ 2.39 df

91
48 ≈ 1.896 – – 1.13077(2) [7,35–37] 1

DP (p = pc) 0.277(2) 1.0969(3) 1.7339(3) – 1.747(3) 1.765(1) – – – –

042132-5



NAJAFI, CHERAGHALIZADEH, AND HERRMANN PHYSICAL REVIEW E 100, 042132 (2019)

this work. The geometrical properties of the critical models
are coded in the FK clusters, which are obtained simply by
dilution of the geometrical clusters of the same spin. Based
on our numerical evidences we proposed that the EB of the
FK clusters undergoes a continuous transition at some tem-
perature Teb < Tc. mL ≡ L−2ML (being the average number
of sites of the EB of the spanning FK clusters in a system
of linear size L) has been considered as the order param-
eter for this transition. Using Binder’s cumulant we found
Teb = 1.846 ± 0.003. We have obtained β and ν exponents
using various methods, which yield consistent values. The
exponents are different from both critical percolation and
the percolation at p = peb, 2 − βeb/νeb = 1.52 ± 0.03. The

determination of other exponents (for example, γ obtained
from the density fluctuations, d f , de, db, and dmin) reveals
that the universality class of this transition is considerably
different from ordinary percolation at p = pc and p = peb

and also the Ising model at T = Tc. We have characterized
comprehensively exponents which seem to be in a new univer-
sality class for anisotropic systems. The parallel correlation
length exponent ν|| and dmin were found to be 1.86 ± 0.01
and 1.090 ± 0.004, respectively, which are different from
the ones for DP [1.7339(3) and 1.13077(2), respectively].
Importantly we have shown that two relevant hyperscaling
relations hold here, one of which is violated for percolation
at p = peb.
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