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We investigate the dynamics of a two-dimensional biaxial next-nearest-neighbor Ising model follow-
ing a quench to zero temperature. The Hamiltonian is given by H = −J0

∑L
i, j=1[(Si, jSi+1, j + Si, jSi, j+1) −

κ (Si, jSi+2, j + Si, jSi, j+2)]. For κ < 1, the system does not reach the equilibrium ground state and keeps evolving
in active states forever. For κ � 1, though, the system reaches a final state, but it does not reach the ground state
always and freezes to a striped state with a finite probability like a two-dimensional ferromagnetic Ising model
and an axial next-nearest-neighbor Ising (ANNNI) model. The overall dynamical behavior for κ > 1 and κ = 1
is quite different. The residual energy decays in a power law for both κ > 1 and κ = 1 from which the dynamical
exponent z has been estimated. The persistence probability shows algebraic decay for κ > 1 with an exponent
θ = 0.22 ± 0.002 while the dynamical exponent for ordering z = 2.33 ± 0.01. For κ = 1, the system belongs
to a completely different dynamical class with θ = 0.332 ± 0.002 and z = 2.47 ± 0.04. We have computed the
freezing probability for different values of κ . We have also studied the decay of autocorrelation function with
time for a different regime of κ values. The results have been compared with those of the two-dimensional
ANNNI model.

DOI: 10.1103/PhysRevE.100.042129

I. INTRODUCTION

When a system is close to the critical point, anomalies
can occur in a large variety of dynamical properties, and
models having identical static critical behavior may display
different behavior when dynamic critical phenomena are con-
sidered [1]. Some of the dynamical phenomena which have at-
tracted a lot of attention are critical dynamics, quenching and
coarsening, reaction diffusion systems, random walks, etc.
Recently, considerable interest has been developed for study-
ing the dynamics of Ising spin systems which has emerged
as a rich field of present-day research [2,3]. The fate and the
behavior of Ising spin systems following a deep quench below
the critical temperature have been one of the central topics of
interest in the study of the nonequilibrium dynamics for the
last two decades. In a quenching process, the system has a
disordered initial configuration which corresponds to a very
high temperature (T → ∞) and its temperature is suddenly
dropped. Systems quenched from a disordered phase into an
ordered phase do not order instantaneously. Instead, the length
scale of ordered regions grows with time as the different
broken symmetry phases compete with each other to select
the equilibrium state [4].

In a quenching process, the initial configuration of the
system is a configuration of uncorrelated spins, which evolve
by zero-temperature Glauber dynamics [5], corresponding
to a quench from T → ∞ to T = 0. This involves picking
up a spin at random and computing the change of energy
�E which is essentially Eflipped − Epresent. If �E < 0 (>0),
the spin will (will not) flip and for �E = 0, the spin flip
will happen with probability 1/2. After each update, time is

updated by 1/Ld , such that on average, each spin undergoes
one update attempt in a single time unit.

A zero-temperature quench of one-dimensional Ising
model with nearest-neighbor interaction ultimately leads to
the equilibrium configuration, i.e., all spins point up (or
down). The system evolves according to the Glauber dynam-
ics resulting in quite a few interesting phenomena like domain
growth [4,6], persistence [7–11], etc. The average domain size
D increases in time t as D(t ) ∼ t1/z, where z is the dynamical
exponent associated with the growth. Apart from the domain
growth phenomenon, another important dynamical behavior
which has been commonly studied is persistence, the tendency
of a spin to remain in its original state following a quench to
zero temperature [7,8]. In a zero-temperature quench of Ising
model, persistence shows a power law behavior, i.e., P(t ) ∼
t−θ . θ is called the persistence exponent and is unrelated to
any other known static or dynamic exponents [7,9]. In two
or higher dimensions, however, following a quench to zero
temperature the system does not always reach the ground
state [11], although these scaling relations still hold good.

Dynamical behavior of Ising spin systems changes drasti-
cally in the presence of competing interactions. To study the
effect of the competing interaction on the dynamical behav-
ior, the simple Ising model with a competing next-nearest-
neighbor interaction has been studied earlier in both one and
two dimensions [12–15]. Competing interactions could also
be present in the system if spins have random long range
interactions which are quenched in nature [16,17].

In one dimension, the simplest example of Ising spin
system with competing interaction is the ANNNI (axial next-
nearest-neighbor Ising) model with L spins which can be
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described by the Hamiltonian

H = −J
L∑

i=1

(SiSi+1 − κSiSi+2).

In this model it was found that for κ < 1, under a zero-
temperature quench with single spin flip Glauber dynamics,
the system does not reach its true ground state. (The ground
state is ferromagnetic for κ < 0.5, antiphase for κ > 0.5, and
highly degenerate at κ = 0.5 [18].) On the other hand, after
some initial short time, the number of domain walls does
not decay but remain mobile at all times. That makes the
persistence probability go to zero in a stretched exponential
manner. However, for κ > 1, although the system reaches the
ground state after long time, the dynamical exponent and the
persistence exponent are both different from that of the Ising
model with nearest-neighbor interactions only [13].

In two or higher dimensions, zero-temperature quenching
dynamics of Ising model with the nearest-neighbor interac-
tion is also interesting. The system does not always reach
the ground state and frozen-in striped states appear [11].
In three dimensions, the system never reaches the ground
state [19]. Different interesting dynamical behaviors inspired
the study of zero-temperature Glauber dynamics for the two-
dimensional ANNNI model in which a competing interaction
is present along one (horizontal) direction. The Hamiltonian
of the model on the L × L lattice is given by

H = −J0

L∑

i, j=1

Si, jSi+1, j − J1

∑

i, j=1

[Si, jSi, j+1 − κSi, jSi, j+2]. (1)

For κ < 1, this system does not reach the equilibrium ground
state (the ground state is ferromagnetic for κ < 0.5, and for
κ > 0.5 antiphase order exists only in the horizontal direction;
on the other hand, the vertical direction is always ferromag-
netic), but slowly evolves to a metastable state. For κ � 1,
both the persistence probability and the number of domain
walls show algebraic decay. For κ > 1, the system shows a
behavior similar to the two-dimensional ferromagnetic Ising
model in the sense that it freezes to a striped state with a
finite probability. However, for κ = 1, the system belongs to
a completely different dynamical class and it always evolves
to the true ground state with the persistence and dynamical
exponent having unique values [15].

These above observations indicate that the two-
dimensional Ising model with the competing interactions
in both the vertical and horizontal directions may show
rich dynamical behavior. In this work we have studied
the dynamics of two-dimensional BNNNI (biaxial
next-nearest-neighbor Ising) model where in addition to
the ferromagnetic nearest-neighbor interaction, we have
antiferromagnetic next-nearest-neighbor interaction in both
x and y directions. The description of the model and the
equilibrium properties has been discussed in detail in the next
section. We indeed found three dynamical regions depending
on the values of κ , the ratio between the antiferromagnetic
and ferromagnetic interactions. For κ < 1, the system never
reaches the ground state and remains active forever. For
κ � 1, the system reaches the ground state with some

FIG. 1. The antiphase ground state (temperature T = 0) struc-
tures for κ > 0.5. First picture shows the “chessboard” type and the
second one is “staircase” type. + and − signs stand for the up and
down spin, respectively.

probability less than one, and the probability of reaching the
ground state is different for κ > 1 and κ = 1.

The paper is organized as follows: In Sec. II, we have
described the model and its known properties. In Sec. III,
we have given a list of the quantities we have computed
for studying the dynamical evaluation. In Sec. IV, we have
discussed the dynamic behavior in detail. The discussions and
conclusions are made in the last section.

II. MODEL

The most generalized Hamiltonian for the two-dimensional
BNNNI model could be given by

H = −J0

L∑

i, j=1

[(Si, jSi+1, j + Si, jSi, j+1)

−κ (Si, jSi+2, j + Si, jSi, j+2)], (2)

where κ is the ratio of the next-nearest-neighbor antiferro-
magnetic interaction and the nearest-neighbor ferromagnetic
interaction, which is same for both the x and y directions. The
thermal phase diagram for two-dimensional BNNNI model is
not exactly known, but the ground state structures are known
and quite interesting. The ground state is completely ferro-
magnetic for κ < 0.5 and there exists antiphase order in both
the vertical and horizontal directions for κ > 0.5. However,
the ground state for κ > 0.5 can have two possible structures
which contain the antiphase order in both the directions.
These structures which have been illustrated in Fig. 1 are
known as “chessboard” [Fig. 1(a)] and “staircase” [Fig. 1(b)]
configurations [20].

Again, the ground state is infinitely degenerate at the fully
frustrated point κ = 0.5

III. QUANTITIES COMPUTED

To study and analyze the dynamical properties of the sys-
tem following a zero-temperature quench, we have computed
the following quantities in this work:

(1) Residual energy ε(t ). For studying the dynamics of
this model, the measurements of the domain walls are not very
significant. As the ground state has the antiphase order in both
the directions (off course for κ > 0.5), the number of domain
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walls of the final state is the same as that of the average
number of domain walls of the initial state and the number
of domain walls does not decay with time. Although the
number of domain walls remains almost constant, the energy
of the system changes with time (for any value of κ) and the
system self-organizes to find out its minimum energy state.
Hence, instead of the number of domain walls, the appropriate
measure for studying this ordering dynamics is the residual
energy per spin ε = E − E0, where E0 = −4J0(1 − κ ) (for
κ < 0.5) and E0 = −4J0κ (for κ > 0.5) are the known ground
state energy per spin and E is the energy of the dynamically
evolving state.

The presence of domain walls in regular lattices causes
an energy cost [16]. It has been shown before for the two-
dimensional Ising model that the residual energy has the same
scaling as that of the number or fraction of domain walls
Dw [17,21]:

ε ∼ t−1/z.

Hence, computing the residual energy one can determine the
value of the dynamical exponent z. Here, we will call z as
ordering exponent instead of the domain growth exponent.

(2) Persistence probability P(t ). As mentioned earlier in
the Introduction, it is the probability that a spin does not flip
until time t . If persistence probability decays in a power law
with time, that is P(t ) ∼ t−θ , the scaling form which can be
used for finite size scaling is as follows [22,23]:

P(t, L) ∼ t−θ f (L/t1/z ). (3)

For x � 1 the scaling function f (x) ∼ x−α with α = zθ .
For large x, f (x) is a constant. Hence, it is clear that for
finite systems, the persistence probability saturates and the
saturation value Psat ∼ L−α at large times (t → ∞). The value
of the exponent z obtained from the scaling of the residual
energy should satisfy the scaling relation given by Eq. (3).

It has been previously shown that the exponent α is related
to the fractal dimension of the fractal formed by the persistent
spins [22]. The fractal dimension d f = d − α, where d is the
dimension of the system. Here, we have obtained an estimate
of α and hence d f using the above scaling form of Eq. (3).

(3) Autocorrelation A(t ). The autocorrelation function
measures the correlation of the state of a single spin at time
t with its state at a previous time. The functional form of it is
defined as

A(t ) = 〈Si(t )Si(t0)〉i − 〈Si(t )〉i〈Si(t0)〉i

σi(t )σi(t0)
, (4)

where Si(t ) and Si(t0) are the states of the spin i at time t and
t0, respectively. 〈. . . 〉i is the average over i index; and σi(. . .)
is the standard deviation over i index. We have studied the
decay of autocorrelation for the system with the initial time
only. That is, t0 = 0 for Eq. (4).

For the nearest-neighbor Ising model the autocorrelation
function scales as [24]

A(t ) ∼ t−λ/z, (5)

where λ is the autocorrelation exponent and z is the ordering
exponent same as that of given by the scaling of residual
energy and Eq. (3). We have studied the decay of the auto-

correlation function not only for the BNNNI model, but also
for ANNNI spin system [Eq. (1)] for different values of κ .

(4) Probability that the system will not reach the ground
state Pstr and the probability that the system will remain in
the active state after very long time Pact. These quantities
have been computed by computing the percentage of the con-
figurations which have not reached the ground state starting
from an initial random state Pstr and the percentage of the
configurations which remained active after a very long time
Pact.

We have taken lattices of size L × L with L = 40, 80, 132,
and 200 to study the dynamical behavior of the system.
The behavior of different quantities which decays with time
(residual energy, persistence, and autocorrelation) has been
averaged over at least 500 configurations for each lattice size.
For estimating Pstr and Pact, we have averaged over a much
larger number of initial configurations (of the order of 4000).
Periodic boundary condition has been used in both x and y
directions. J0 = 1 has been used in the numerical simulations.

IV. DYNAMICAL BEHAVIOR IN DETAIL

Before discussing the dynamical behavior in detail, let us
first discuss the stability of simple spin configurations which
will help us to realize that the dynamical behavior of the
system is strongly dependent on κ .

A. Stability of simple spin structures

It is more or less well understood that the zero-temperature
dynamics of Ising spin system is mostly determined by the
stability of spin configurations locally. Hence, the system can
freeze with such spin configurations which do not correspond
to global minimum of energy, but still can be stable dynam-
ically. The well known example of this is the presence of
striped state for two- or higher-dimensional Ising model with
nearest-neighbor interaction and ANNNI model [for κ > 1,
Eq. (1)]. Although these configurations are stable, they do not
correspond to the global minimum of energy.

For the dynamics of the BNNNI model, the fate of a
randomly selected spin is determined by the state of its eight
neighbors which could be in any one of the 28 = 256 possible
configurations. Although, for many of these configurations
the dynamical behavior of the central spin is similar for any
given value of κ . For example, if among the four nearest
neighbors, two of them are up and the other two are down
or vice versa, the state of central spin will be determined by
the configurations (which could be any one of the 24 × 6 = 96
configurations) of the next-nearest neighbors. For the similar
configurations of the next-nearest neighbors, the dynamics
will be determined by the orientations of the nearest neighbors
only. Except for these cases, for most of the configurations the
fate of a randomly selected spin will depend on the values of
κ and we will see that one can expect the similar dynamical
behavior for a range of κ values. We should also remember
that for having a stable configuration locally, not only the
randomly selected spin, but also its eight neighbors have to
be stable.

First, let us consider the simplest configuration of a single
up spin in a sea of down spins [Fig. 2(a)] or vice versa.
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FIG. 2. Schematic diagram of the spin configurations for the
analysis of stability of simple structures: the conditions for the sta-
bility of the central spin (which have been circled) and its neighbors
have been discussed in the text.

The central spin will be stable for κ > 1 and is unstable for
κ < 1. For κ = 1, the spin will flip with probability 1/2, hence
making the dynamics stochastic. However, all its four nearest
neighbors are stable only for κ < 0.5. On the other hand, four
next-nearest neighbors of the central spin are stable when
κ < 2. Now, for a domain of two up spins in a sea of down
spins [as shown in Fig. 2(b)], both the up spins will be stable
for κ > 0.5. But, the down spins at their nearest neighbors
(like the three nearest neighbors of the circled spin which are
at the down state) will be stable when κ < 0.5. On the other
hand, for the four next-nearest neighbors, three of them will
be stable as long as κ < 2 and one of them will be stable for
κ < 1.

Next, we would like to consider the configuration of a
domain of five up spins in a sea of down spins [Fig. 2(c)].
The spin at the corner of the domain of up spins (it has been
circled) will be stable for κ > 1 only. The up spin at the right
nearest neighbor of this circled spin will be always stable for
any value of κ > 0. But, the down spin at the left nearest
neighbor will be stable only for κ < 1. The other two down
spins at the nearest neighbor of the circled spin will be stable
as long as κ < 0.5. Among the next-nearest neighbors of the
circled spin, the up spin will be stable for any value of κ > 0,
but all the down spins will be stable whenever κ < 2.

One can consider more complicated structures, but the
analysis of these simple structures indicates that there could
be different dynamical behavior in the region κ < 1, κ = 1,
κ > 1, κ = 2, and κ > 2. However, as far as the dynamical
behavior of the system (that means the behavior of all the
quantities we have computed including residual energy, per-
sistence, autocorrelation function, etc.) is concerned, we find
that there exist only three regions with different dynamical
behavior: κ < 1, κ = 1, and κ > 1.
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FIG. 3. Decay of the residual energy ε(t ) with time for κ = 0.6.
Fraction of domain walls as a function of time for the same value of
κ has been plotted in the inset.

We have also studied the decay of the autocorrelation func-
tion for the ANNNI model [Hamiltonian is given by Eq. (1)],
which has been discussed and compared with BNNNI in the
last subsection of this section.

B. Dynamics in the region 0 < κ < 1

Although from the analysis of the simple spin structures
one can guess that the dynamical behavior could be different
for κ < 0.5 and κ > 0.5, we find that the system has identical
dynamical behavior for all κ , in the region 0 < κ < 1. At this
parameter regime, the system does not go to its equilibrium
ground state at all making Pstr to be one for all the values of
κ . At the beginning of the dynamics, domains of size one will
vanish rapidly. After that, for the above mentioned reasons,
the dynamics will be bit complex and slow, but will continue
for a long time.

The fraction of domain walls Dw(t ) decays very little in
both the directions at the initial time and then remains constant
for the rest of the dynamics (inset of Fig. 3). The residual
energy also stops decaying after some time but the dynamics

FIG. 4. Snapshot of 40 × 40 lattice at time t = 10 for 0 < κ < 1.
+ and − signs stand for the up and down spin, respectively.
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FIG. 5. Snapshot of 40 × 40 lattice at time t = 50 for 0 < κ < 1.
+ and − signs stand for the up and down spin, respectively.

continues. It is prominent from Fig. 3 that finite size effects
do not exist for the decay of residual energy and the fraction
of domain walls.

Figures 4–7 are the snapshots of the system at differ-
ent times which shows the evolution of the typical lattice
structures at this parameter regime after a quench to zero
temperature.

From a very early time, diagonal stripelike structures will
appear in the lattice which will remain forever. These diagonal
stripes become more prominent in the lattice with time as
the dynamics continues even after the residual energy stops
decaying.

After some initial time (for t > 300, Fig. 3), spin flips do
not reduce the energy of the system and, hence, the residual
energy stops decaying. Although the energy of the system
does not decay anymore, a few of these spins remain active
for a very long time, even at t → ∞ making Pact = 1 for any
values of κ < 1. Some of those spins have been highlighted in
the red color box in Figs. 6 and 7.

The active sites (the sites at which the spins keep flipping)
move throughout the lattice along the edge of the poorly
formed diagonal stripes, killing the persistence of all the sites
of the lattice. Persistence probability for κ < 1 shows a slow
decay with time and goes to zero at long time. The functional
form for the decay is different at the beginning and at the end
of the dynamics. At the beginning of the dynamics, the decay
is slower than that of the later time and the functional form
can be approximated as g(x) ∼ t−c × ln(bt ) for an appreciable
range of time. We have numerically found that the function
g(x) fits well at the beginning of the dynamics with b � 2.266
and c � 0.515 (Fig. 8). However, at late time, it is not possible
to characterize the decay of the persistence probability by
some simple mathematical function of time. The decay of the
persistence probability does not have any effect on the finite
system sizes (Figure. 8).

FIG. 6. Snapshot of 40 × 40 lattice at time t = 500 for 0 < κ <

1. + and − signs stand for the up and down spin, respectively.

We have also studied the decay of the autocorrelation
function with time for this parameter region. The results for
that have been presented in the last subsection of this section.

C. Dynamics for κ > 1

It had been previously observed for axially next-nearest-
neighbor Ising model with the competing interactions (that
is ANNNI model) that the dynamical behavior changes dras-
tically at κ = 1 in both one and two dimensions. For the
two-dimensional BNNNI model, the presence of competing
interaction in both the directions has an effect on the dynamics
in a large extent. As mentioned before, like the ANNNI

FIG. 7. Snapshot of 40 × 40 lattice after a very long time that is
at t → ∞ (at t = 500 000) for 0 < κ < 1. + and − signs stand for
the up and down spin, respectively.
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FIG. 8. Decay of the persistence probability with time for κ <

1. The fitting of the approximated functional form [the form of the
function g(x) is given in the text] has been shown at the beginning of
the dynamics for an appreciable range of time.

model, the dynamical behavior of the BNNNI model is also
different for κ = 1 and κ > 1. In this section we will discuss
the dynamical behavior of the model for κ > 1.

The number of domain walls does not much change with
time and quickly saturates at a value 0.5 for the fraction of the
domain walls, in both the horizontal and vertical directions.
Although the domain walls saturate very early, residual energy
decays in a power law in time, with a decay exponent ∼0.43
(Fig. 9). This yields the ordering exponent z � 2.33 as ε ∼
t−1/z. In the inset of Fig. 9, we have also shown the decay of
the residual energy for the two-dimensional nearest-neighbor
Ising model.

It is clear from the saturation of the residual energy that
some kind of striped states exist in the system in this param-
eter regime. Just before the saturation, residual energy shows
an exponential decay for some small time. This is due to the
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FIG. 9. Decay of the residual energy with time for κ > 1. The
amber color line has a slope 0.43 in the main plot. Inset shows the
decay of the residual energy with time for two-dimensional nearest-
neighbor Ising model. The amber color line has a slope 0.5 at the
inset.
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FIG. 10. The collapse of scaled persistence data versus scaled
time using θ = 0.22 and z = 2.33 is shown for different system
sizes for κ > 1. Inset shows the unscaled data for the decay of the
persistence probability with time.

exponential decay of ε for those configurations which go to
the ground state instead of getting freezed in one of the striped
states. Saturation of residual energy (and an exponential decay
of it just before the saturation) for two-dimensional nearest-
neighbor Ising model (inset of Fig. 9) is also due to the
presence of the striped state in the lattice [11].

Persistence probability decays in a power law in time
and the persistence exponent θ � 0.22. One can expect z �
2.33 from the finite size scaling analysis, if the ordering
exponent z is similar to that of the previously known domain
growth exponent. We indeed found θ = 0.22 ± 0.002 and
z = 2.33 ± 0.01 performing the finite size scaling analysis
following Eq. (3) and we have checked this for different values
of κ (κ = 1.3, 1.6, 2.0, 2.5, and 20). So, we conclude that
these exponents are independent of κ for κ > 1 and also
the ordering exponent z is similar to the dynamical exponent
which is previously known as the domain growth exponent. A
typical behavior of the raw persistence data as well as the data
collapse for the finite size scaling is shown in Fig. 10.

Next, we asked what is the probability Pstr that the system
will not reach the ground state and will freeze in one of
the striped states. This has been calculated by computing the
fraction of the initial configurations which could not reach the
ground state (those states have nonzero residual energy) at all
after a very long time.

We found that little more than 80% of the configurations
freeze to some striped states before reaching the ground state.
The freezing probability Pstr initially increases with system
sizes and then saturates for larger systems (Fig. 11). We did
not find any significant differences in the values of Pstr for
larger sizes for κ > 1. It may appear from Fig. 11 that the
freezing probability has different saturation values (the values
for large enough system sizes) for 1 < κ < 2 and κ � 2, but
the difference between these two values is insignificant (Pstr �
81.5% when 1 < κ < 2 and Pstr � 81% for κ � 2). We also
found that for the configurations which reach the ground state,
half of them reach the checkerboard configuration and the
other half reach the staircase configuration.
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FIG. 11. Freezing probability Pstr is plotted with the system size
for a different range of κ values.

Pact, the probability of being in the active state after a very
long time, is equal to zero for any values of κ for κ > 1. That
means all the configurations either go to the striped state (with
no active state or site in it) or to one of the ground states at
t → ∞.

It is not straightforward to imagine the structure of the
striped states appearing in the lattice after it reaches the steady
state at the end of the dynamics. We found that the checker-
board configuration and the staircase configuration stay to-
gether in the lattice. The energy cost at the interface of these
two configurations is more than the energy of the ground
state, although these interfaces are stable for κ > 1. A typical
snapshot of this type of striped state which appears for κ > 1
has been shown in Fig. 12.

FIG. 12. A typical snapshot of the striped state for κ > 1 after
the system reaches the steady state configuration.
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FIG. 13. Decay of the residual energy with time for κ = 1. The
amber color line has a slope 0.405.

Also, for this parameter region, we have studied the decay
of the autocorrelation function with time. However, the results
for that have been presented in the last subsection of this
section.

D. Dynamics for κ = 1

Residual energy decays in a power law with time and from
the decay we found that the ordering exponent z to be close to
2.47 (Fig. 13) which is significantly different from the value of
z for κ > 1. Saturation value of the residual energy indicates
that also for κ = 1, the striped state exists in the system after it
reaches the steady state. This phenomenon is contrary to what
happens in the two-dimensional ANNNI model [15] for κ = 1
where the system reaches the ground state with probability
one.

Persistence probability decays in a power law with the
exponent θ = 0.332 ± 0.002. The finite size scaling suggests
the ordering exponent z = 2.47 ± 0.04 and the value is con-
sistent with what we get from the decay of residual energy.
A typical behavior of the raw persistence data as well as the
data collapse using the finite size scaling analysis is shown
in Fig. 14. The quality of the data collapse is not as good as
that of κ > 1, which gives a higher error bar on the ordering
exponent z.

We found that less than 1% of the configurations remain
active after a very long time for the higher sizes making Pact

to be very low. The probability for a configuration to be in
an active state is almost zero for the lower system sizes. Just
like κ > 1, here also we asked about the probability (Pstr)
that a system will not reach the ground state. In this case,
either it will freeze in one of the striped states or it will end
up in one of the rare active states. We found that little more
than 50% configurations fail to reach the ground state even
after a very long time (Fig. 15). The configurations which
reach the ground state, surprisingly almost 80% (being precise
79% according to the numerical estimate we obtained) of
them reach the checkerboard configuration and little more
20% configurations reach the staircase configuration (inset of
Fig. 11).
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FIG. 14. The collapse of scaled persistence data versus scaled
time using θ = 0.332 and z = 2.48 is shown for different system
sizes for κ = 1. Inset shows the unscaled data for the decay of the
persistence probability with time.

As we have mentioned earlier, in case of large system
sizes very few configurations can remain active even after a
very long time. These long lived configurations are actually
diagonal stripe configurations which had been previously
observed to appear in the two-dimensional Ising model [11].
But, the dynamics for these configurations is much more
complicated than that of the two-dimensional Ising model.
These configurations will eventually go to the ground state.
But, it is not simple to argue as to how much time is required
for this configuration to reach the ground state.

Although it is not trivial to detect these rare configurations,
we have shown a typical snapshot of this kind of active
configuration in Fig. 16. Usually, all the neighbors of the
active lattice sites (circled in red color in Fig. 16) are stable
except one. If the active site flip (it will flip will probability
1/2 as the energy for that site is zero), the unstable neighbor
becomes stable and one stable neighbor becomes unstable
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FIG. 15. Freezing probability Pstr is plotted with the system size
for κ = 1. Variation of Pchk, the probability for a system to reach the
checkerboard configuration if it reaches the ground state, has been
plotted against the system size L at the inset.

FIG. 16. A typical snapshot of an active configuration after a
very long time for κ = 1. Few of the active sites have been circled in
red color.

(shown in blue square in Fig. 16). This is how the active sites
move in the lattice in a pair unless a local configuration for
the definite flip has formed in the lattice. The mechanism
makes the dynamics very slow at this point of time. Time
taken by the system to reach the ground from this kind of
active configuration is an order of magnitude higher than other
configurations and computing the time is beyond the available
computational power.

E. Decay of autocorrelation function

In this section we present the results for the decay of
autocorrelation function with time for different values of κ .
To compare the results we have studied the time decay of
the function also for the ANNNI model [given by Eq. (1)], as
that has not been studied before in [15]. For two-dimensional
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FIG. 17. Decay of autocorrelation function with time for κ < 1.
Inset shows the same for the ANNNI model.
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FIG. 18. Decay of the autocorrelation function with time has
been plotted for κ = 1 in the main plot. The slope of the red line
at the beginning is 0.52 and the slope of the blue line in the same
plot is 0.68. Inset shows the decay for κ > 1, where the slope of the
yellow line is 0.558.

nearest-neighbor Ising model (which corresponds to κ = 0),
the value of the autocorrelation exponent λ � 1.25 [25] has
been verified from our numerics.

For κ < 1, the autocorrelation function does not decay in
a power law fashion for both the BNNNI and ANNNI models
(Fig. 17). For the BNNNI model, the autocorrelation function
slowly decays to zero, though it is almost impossible to write
any simple mathematical form for the decay of the function
with time. For the ANNNI model the autocorrelation function
also shows a slow decay with time, however, that can be
approximated by 1/log(t ) for an appreciable range of time.
At larger time, it saturates at a finite value unlike the BNNNI
model.

For κ � 1, the autocorrelation function shows a power law
decay with time, with different decay exponent for κ = 1 and
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FIG. 19. Decay of the autocorrelation function with time for
different sizes has been plotted for κ > 1 in the case of the ANNNI
model. Inset shows that the decay exponent is the same for any value
of κ � 1 for ANNNI. The slope of the amber colored line is 0.602
for both the main plot and inset.

κ > 1. For κ > 1, it decays as t−η with η = 0.558 ± 0.002
after some initial time (inset of Fig. 18). This yields the
autocorrelation exponent λ = 1.3 ± 0.01 as η = λ/z [Eq. (5)]
as z = 2.33 ± 0.01 (Sec. IV C). However, for κ = 1, the decay
exponent appears to be different for some initial time and at
the large time. At the beginning, it decays as t−η with η =
0.521 ± 0.002 giving λ = 1.29 ± 0.025 as z = 2.47 ± 0.04
(Sec. IV D). At long time the decay exponent η = 0.68 ±
0.002, which corresponds to the autocorrelation exponent λ =
1.68 ± 0.03.

On the other hand, in case of the ANNNI model for κ � 1
the autocorrelation function has a power law decay with same
decay exponent η for both κ = 1 and κ > 1. However, as
the value of z is different for κ = 1 and κ > 1 [15], the
autocorrelation exponent will be different. We found A(t ) ∼
t−η with η = 0.602 ± 0.002 for κ � 1 (Fig. 19). That con-
cludes λ = 1.11 ± 0.01 for κ = 1 (as z = 1.84 ± 0.01 [15])
and λ = 1.25 ± 0.01 for κ > 1 (as z = 2.08 ± 0.01 [15]) for
the ANNNI model.

V. DISCUSSIONS AND CONCLUSIONS

We have studied the dynamical features of the BNNNI
model in two dimensions following a quench to zero tempera-
ture. We have seen that the dynamics is very much dependent
on the value of κ , the ratio of the antiferromagnetic to the
ferromagnetic interaction in both the directions. Depending
on the dynamical features we can distinguish three different
regimes κ < 1, κ = 1, and κ > 1 just like the ANNNI model
in two dimensions. Although the intrinsic dynamical behavior
of the model is a bit different from that of ANNNI. Presence
of the competing interaction in both the vertical and horizontal
directions (which make the model symmetric unlike ANNNI)
can affect the dynamics substantially. For example, unlike the
ANNNI model, here the system remains in the active state
forever when κ < 1.

For studying the dynamics of ordering after a quench to
zero temperature, we have studied the decay of the residual
energy, as domain walls do not decay with time. When
residual energy has power law decay (that is for κ � 1), we
claim that the decay exponent is similar to that of the domain
growth exponent z. We have obtained the data collapse of
persistence data for κ � 1 successfully, using the value of the
dynamical exponent z acquired from the power law decay of
residual energy. As the system organizes itself to find out its
minimum energy state despite of the fact that the traditional
domain growth phenomena does not happen, we have called
the exponent z as ordering exponent.

For κ > 1, we found the persistence exponent θ to be the
same as that of the two-dimensional nearest-neighbor Ising
model (corresponding to κ = 0), though the value of the
ordering exponent z is a bit different. This makes the exponent
α = zθ to be very different for κ = 0 and κ > 1. For κ = 0,
α � 0.44 while for κ > 1, α = 0.512 ± 0.005. This tells us
that the spatial correlations of the persistent spins are quite
different for the two and not only the dynamical class for
κ = 0 and κ > 1 are different (which is already evident from
the difference in the value of z), also the persistence behavior
is not the same. κ = 1 appears to be a special point where the
dynamic behavior changes radically with a different value of
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θ and z than that of κ = 0 and κ > 1. Here, we obtained the
value of α to be 0.82 ± 0.018. The error bar is higher as an
effect of having a higher error bar on z for κ = 1.

Next, we would like to comment on the behavior of the
autocorrelation function. We have studied the decay of the
function with time from which we have obtained the values of
the autocorrelation exponent λ (for κ � 1, when the function
has a power law decay), using the value of z. We have
studied this not only for BNNNI, but also for the ANNNI
model, which is anisotropic by nature. For BNNNI model,
when κ > 1, the value of λ is close but different from that
of κ = 0. However, for ANNNI, the value of λ obtained
from our numerics is similar to the two-dimensional nearest-
neighbor Ising model. For κ = 1, the autocorrelation exponent
λ appears to be different at the beginning and at the end of the
dynamics. At the beginning, λ is almost the same as that of
κ > 1, though at late time the value of λ is very different and
higher than that. On the other hand, in case of the ANNNI
model for κ = 1, the value of λ is lower than that of κ > 1
and κ = 0.

It is important to note that the system always reaches an
absorbing state for κ > 1 and remains in the active state
when κ < 1. For κ = 1, most of the configurations go to the
absorbing state except a very few long lived configurations.
These rare configurations reach the absorbing state taking
a very long time, which is an order of magnitude higher
than the time taken by other configurations. This indicates
that there may exist an active to absorbing phase transition
around κ = 1. This type of behavior for zero-temperature
single spin flip dynamics has been observed before for the
one-dimensional ANNNI model (which is also isotropic by
nature), where the system remains in the active state for κ < 1
and reaches the absorbing state for κ � 1. Hence, if an active
to absorbing phase transition exists, that can be checked and
studied in detail as a separate problem in future. Also, for κ =
1, estimating the time taken by the long lived configurations

to reach the absorbing state can be the part of the problem of
future study.

The single spin flip dynamics for the BNNNI and ANNNI
models can also be studied in three and higher dimensions.
The dynamical structure of the three-dimensional nearest-
neighbor Ising model after a quenching to zero temperature is
already complex and a bit interesting [19]. Hence, one can ex-
pect novel dynamical behavior for three-dimensional BNNNI
and ANNNI models too. Also following the hypothesis which
has been noted in the previous paragraph, there should not
exist any plausible active to absorbing phase transition in three
dimensions for these models as both models do not remain
isotropic in the higher dimension.

In this paper, we have studied the dynamical behavior of
the two-dimensional BNNNI model under a zero-temperature
quench. The dynamics at finite temperature can be quite
different. As the spin flipping probabilities are stochastic at
finite temperatures, and the dynamical frustration for which
the system freezes before reaching its ground state can be
overcome by the thermal fluctuations. We would also like
to note that, given the definition of persistence being a bit
different at finite temperatures [26], it is not simple to guess
the persistence behavior (for any spatial dimension) just from
the results of the zero-temperature quenching dynamics. The
single spin flip dynamics of the BNNNI model after a quench
to the finite temperature indeed remains as an open problem
which could be addressed in the future.
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