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Motion of a Brownian particle in the presence of reactive boundaries
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We study the one-dimensional motion of a Brownian particle inside a confinement described by two reactive
boundaries which can partially reflect or absorb the particle. Understanding the effects of such boundaries is
important in physics, chemistry, and biology. We compute the probability density of the particle displacement
exactly, from which we derive expressions for the survival probability and the mean absorption time as a function
of the reactive coefficients. Furthermore, using the Feynman-Kac formalism, we investigate the local time profile,
which is the fluctuating time spent by the particle at a given location, both till a fixed observation time and till
the absorption time. Our analytical results are compared to numerical simulations, showing perfect agreement.
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I. INTRODUCTION

Brownian motion is a paradigm of stochastic processes
which has been studied quite extensively [1]. This simple
process often successfully provides a basic description of
various phenomena ranging from simple chemical reactions
to complex biomolecular processes occurring at cellular and
subcellular levels [2,3]. For instance, the motion of a protein
molecule inside a living cell can be considered as a simple
Brownian motion [2–4]. The protein molecules perform ever-
lasting motions due to their thermal energy, and, as a result,
the trajectory of the protein molecule is erratic and the density
of the molecules slowly spreads throughout the medium.
While diffusion can predict motion of protein molecules
well inside the cellular domain under dilute conditions, the
behavior gets affected by the nature of the boundaries [2–4].
This could be due to the structure of the cell membrane that
protects and organizes cells by regulating not only what enters
or exits the cell but also by how much [5,6]. Such gate-
keeping functionalities of the boundaries (semipermeable or
resistive in nature) are important to optimally control the flow
of essential chemical species across the cellular membrane
[7,8]. In this paper we address this issue in the context of
noninteracting Brownian motion in the presence of reactive
boundaries.

The simplest types of boundary conditions can be formu-
lated in terms of either vanishing flux through the boundary
(usually called reflecting or impermeable boundary) or van-
ishing density at the boundary (called the absorbing boundary)
[9–21]. In the first case, a diffusing molecule is reflected
whenever it hits the boundary, while in the second type of

boundary condition a diffusing molecule is removed from
the system whenever it hits the boundary, which can be
interpreted as the molecule being absorbed at the boundary.
However, more realistic boundary conditions can be real-
ized in terms of a partially absorbing boundary (also termed
Robin, radiative, or mixed boundary conditions [3]), which
means that a molecule may be absorbed (or reflected) with
some probability [22–31]. From a biochemical point of view,
this absorption probability depends on the reactivity of the
boundary (e.g., on the rate constant of the adsorbing chemical
reaction and on the number of available receptors) and on
the details of the model. The reactivity constant can also be
measured experimentally from the chemical properties of the
boundary (see, e.g., Ref. [8] and references therein).

The interaction of a diffusive particle with a reactive
boundary is also of practical importance, since they offer plen-
tiful industrial applications in surface or colloid science and
materials research [32]. A few examples worth mentioning are
fluid or mass transport in porous media [33], electric transport
in electrolytic cells [34], nuclear magnetic resonance (diffu-
sion of spins in confining porous media), and applications to
foam relaxation and surfactants [35]. Other examples can be
found in physiology where oxygen molecules can penetrate
across alveolar membranes for further adsorption in blood or
are bounced back and continue the motion. The proportion
of adsorbed and reflected oxygen molecules can be character-
ized by permeability varying from zero (perfectly reflecting
boundary) to infinity (perfectly adsorbing boundary) [36–38].
A similar description can be useful to explain heterogeneous
catalysis frequently observed in petrochemistry, e.g., chemical
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vapor decomposition or plasma etching [20]. The reactive
molecules are injected into a solvent, and then they diffuse
towards a catalyst. Hitting the catalytic surface, they can be
either transformed into other molecules (with a finite reaction
rate) or are bounced back for further diffusion in the bulk
[39–41].

In this paper we investigate the motion of noninteracting
diffusing molecules inside a reactive domain. If left alone
the molecules may eventually get adsorbed at the boundary
of the confining domain after some time. This is called the
lifetime when the molecule gets adsorbed. Clearly, this time
is a random quantity whose cumulative probability, called
the survival probability, simply measures the chance for the
species to remain inside a confining domain up to a fixed
time t without being absorbed. In the literature, computing
this distribution is known as the first passage time problem,
and it has been a subject of interest to scientists for many
decades [42–46]. First passage time problems have ubiquitous
applications in physical, biological, and chemical processes,
ranging from finance to animal foraging theory. More con-
cretely, some examples are survival time of a bacteria to
remain alive while searching for food, average lifetime of a
messenger RNA which is translated into protein by the joint
action of transfer RNA (tRNA) and the ribosome, binding
time of a protein to an enzyme, and search time of animals for
food resources, to name just a few. [42–46]. Motivated by this
backdrop, we investigate the survival properties of diffusive
particles inside a reactive domain [47,48]. In addition, we
are also interested in the extreme displacements made by the
diffusing particle and time spent per unit length around a
spatial point in the presence of reactive boundaries. This time
density is usually referred to as the local time density or the
reaction time. These quantities are important in characterizing
the motion of the molecule. Indeed, the extreme displacement
describes the geometrical properties of the trajectories of the
molecule, while the local time captures the temporal distri-
bution of the trajectories over space and, as such, provides
the time spent by a molecule near a reactive agent placed at
a specific region of the space, upon which the reaction takes
place.

In the present paper, we have organized our results into
three parts. In Sec. II we obtain exact analytical results for the
propagator, survival probability, and mean adsorption time.
In Sec. III we compute the distribution of the maximum
displacement of the molecule by the method of counting
paths. In Sec. IV we study the statistical properties of the local
time using the Feynman-Kac method of Brownian functionals
in two cases: (1) when the observation time is fixed and
(2) when the observation time is random. In all cases, we
have verified our results by contrasting them to numerical
simulations, which are explained in Sec. V. The conclusions
and outlooks of our work are presented in Sec. VI. Finally, for
sake of clarity, some of the derivations have been detailed to
the appendices.

II. PROPAGATOR, SURVIVAL PROBABILITY, AND
ABSORPTION PROBABILITY

We consider a Brownian molecule moving in one di-
mension inside a domain x ∈ [0, L] with partially absorbing

boundaries. The motion of the molecule is described by a
propagator GL(x, x0, t ), which simply represents the proba-
bility density for the molecule to be found at x at time t given
that it started at x0 at an initial time t0 = 0. It can be shown
that the propagator satisfies the diffusion equation subject to
the reactive boundary conditions at x = 0 and x = L:

∂

∂t
GL(x, x0, t ) = D

∂2

∂x2
GL(x, x0, t ), (1)

∂

∂x
GL(0, x0, t ) = α0GL(0, x0, t ), (2)

∂

∂x
GL(L, x0, t ) = −αLGL(L, x0, t ), (3)

where D is the diffusion constant. For clarity, we will consider
deterministic initial conditions: GL(x, x0, 0) = δ(x − x0). The
parameter α0 � 0 (resp. αL � 0), often known as the reactive
constant, controls how often a molecule hitting the boundary
at x = 0 (resp. x = L) will be either reflected or absorbed.
This can be easily seen from Eq. (2). For α0 = 0 Eq. (2)
becomes (∂GL/∂x)x=0 = 0, which is the boundary condition
for a reflective wall. On the other hand, if α0 → ∞ then one
gets GL(x = 0, x0, t ) = 0 from Eq. (2), which is the boundary
condition for an absorbing wall. Thus by tuning these values
one can go from a perfectly reflecting boundary (α0 = 0) to
a perfectly absorbing boundary (αL = ∞). For a finite value
of α0 the particle, upon hitting the wall, may not always
get absorbed. The probability for which it gets absorbed (or
reflected) depends on α0 [see Eq. (56) in Sec. V]. A similar
interpretation holds also for Eq. (3). Further details on this
physical interpretation can be found in Ref. [12].

The problem of finding the propagator has been considered
earlier in several contexts, for example, with a step initial
condition for the concentration [49], in target search problems
[50], or in diffusion-controlled recombinations [51]. It has
been shown that solving the diffusion equation in a bounded
domain with reactive boundary conditions is equivalent to
solving the diffusion equation in an unbounded domain with
“sink” terms [44,49].

For convenience and completeness we here rederive the
propagator by solving Eq. (1) inside the domain x ∈ [0, L]
satisfying the reactive boundary conditions (2) and (3) and the
deterministic initial condition GL(x, x0, t = 0) = δ(x − x0).
Applying the method of separation of variables in Eq. (1), it is
easy to show that one can write the propagator in the following
form [52]:

GL(x, x0, t ) =
∑

k∈Rk (L)

e−Dk2t k cos(kx) + α0 sin(kx)

α2
0 + k2

× k cos(kx0) + α0 sin(kx0)

L + α0

α2
0+k2 + αL

α2
L+k2

. (4)

Here Rk (L) is the set of eigenvalues obtained by solving the
following transcendental equation for a fixed value of L [52]:

e2ikL = (k + iα0)(k + iαL )

(k − iα0)(k − iαL )
. (5)

Various limits can be immediately examined from Eq. (4).
For example, in the case of a semi-infinite domain (where the
boundary at x = L is taken to infinity) the propagator takes the
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FIG. 1. Probability distribution of a Brownian molecule inside
the interval [0, L] with reactive boundaries at x = 0 and x = L till
an observation time t = 5. (a) The comparison between the theory
given by Eq. (4) (solid blue line) and Monte Carlo simulations (red
circles) for the probability distribution of the molecule displacement
when it diffuses strictly inside the box. (b) Similarly, the semi-infinite
domain obtained by taking the boundary at L to be at infinity and
comparing the results for the probability distribution of its displace-
ment between Monte Carlo simulations (red circles) and the exact
formula (solid blue line) given by Eq. (6).

following form (see Appendix A for details):

Gsi(x, x0, t ) = 1

4α0
eDα2

0 tDxDx0

× [φ(x − x0, t ) − φ(x + x0, t )], (6)

where Dy = ( ∂
∂y + α0), and the function φ is defined as

φ(z, t ) = eα0zerfc

[
2Dα0t + z√

4Dt

]

+ e−α0zerfc

[
2Dα0t − z√

4Dt

]
. (7)

In Fig. 1 we have compared our analytical results to Monte
Carlo simulations, which were performed according to the
method explained in Sec. V. The top panel corresponds to
taking a finite-size interval, while the bottom panel is the
result of considering a semi-infinite domain. In both cases
the agreement between theory and Monte Carlo simulations
is excellent.

Due to the presence of the reactive boundaries, the prob-
ability current leaks out through them, and, as a result, the
survival probability that a molecule has not been absorbed till
the observation time t decreases with time. This probability
can be obtained from the propagator GL(x, x0, t ) as

SL(x0, t ) =
∫ L

0
dxGL(x, x0, t ). (8)

A simple interpretation of Eq. (8) comes from a path-counting
argument and works as follows. The propagator contains the
contributions from all the statistical paths that start at time
t0 = 0 at position x0 and end at time t at position x without
being absorbed at either boundaries. There are four types of
such paths: those which have never reached either boundaries
at x = 0 and x = L in time t , those which may have hit one of
the boundaries but got reflected, and those which may have
hit both boundaries and, again, got reflected. The survival
probability then gets a contribution from all such paths which
reach any final point x ∈ (0, L). Integrating the final position
x from 0 to L in the expression of the propagator GL(x, x0, t ),
we get

SL(x0, t ) =
∑

k∈Rk (L)

e−Dk2t α0[1 − cos(kL)] + k sin(kL)

k
(
α2

0 + k2
)

× k cos(kx0) + α0 sin(kx0)

L + α0

α2
0+k2 + αL

α2
L+k2

. (9)

In the limit of L → ∞, the survival probability at the bound-
ary 0 till an observation time t can be obtained either from
Eq. (9) or by integrating out the final position x in Gsi(x, x0, t )
from zero to infinity. Either way, the final result is

S(x0, t ) = eDα2
0 t+α0x0 erfc

[
x0 + 2Dα0t√

4Dt

]

+ erf

[
x0√
4Dt

]
, (10)

which, as shown in Fig. 2, agrees with estimates obtained by
Monte Carlo simulations. It is easy to verify from Eq. (10)
that when the boundary is completely reflective (α0 → 0) the
process always survives, that is, S(x0, t ) = 1. On the other
hand, for a completely absorbing boundary condition (α0 →
∞) we readily recover the well-known result S(x0, t ) =
erf[x0/

√
4Dt] [44]. Note also that at large time, S(x0, t ) ∼

1/
√

t as expected and shown in the inset of Fig. 2.
Next, we focus on the time at which the particle gets

absorbed at the boundaries. Clearly this time is a stochastic
quantity, similar to the concept of the first passage time
[42–46], and we are interested in its statistical properties. In
our case, however, as the particle may not get absorbed when it
hits the boundary for the first time due to the mixed boundary
conditions, we look instead at the time ta when the particle
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FIG. 2. Comparison of the expression Eq. (10) of the survival
on the semi-infinite line with a reactive boundary at the origin with
an estimate obtained from numerical simulations. We have used the
following parameters for the simulation: α0 = 5, D = 1, and x0 = 2.
The simulation data (red circles) is in excellent agreement with the
analytical result (solid blue line). Inset: The survival probability
in the log-log scale, which shows an excellent match with 1/

√
t

behavior in the large time as predicted from the theoretical analysis.

gets absorbed at either boundary. Its probability density func-
tion, denoted by fL(x0, t ), is related to the survival probability
as fL(x0, t ) = − dSL (x0,t )

dt , which immediately implies that the
mean absorption time is given by

TL(x0) =
∫ ∞

0
dtt fL(x0, t ) =

∫ ∞

0
dtSL(x0, t ). (11)

Using the explicit form of SL(x0, t ) in Eq. (9) in the above
equation we get

TL(x0) =
∑

k∈Rk (L)

α0[1 − cos(kL)] + k sin(kL)

Dk3(α2
0 + k2)

× k cos(kx0) + α0 sin(kx0)

L + α0

α2
0+k2 + αL

α2
L+k2

. (12)

In the presence of two completely absorbing boundaries at 0
and at L (that is, by taking the limits α0 → ∞ and αL → ∞),
the expression of the mean absorption time becomes simpler:

T abs
L (x0) = 2L2

Dπ3

∞∑
n=1

1 − (−1)n

n3
sin

(nπx0

L

)

= L2

2D
z(1 − z), (13)

where z = x0/L, and we recover this previously obtained
result [44,53]. On the other hand, by taking the semi-infinite
limit (L → ∞) with finite α0, the mean absorption time
diverges, as expected [44].

III. DISTRIBUTION OF MAXIMUM DISPLACEMENT

Inside a cellular domain, protein molecules perform short
excursions before they either react to substrates or get ab-
sorbed at the boundaries. The nature of these paths depends
on several factors such as cell concentration or local density
of the surrounding molecules. In this biological scenario, very
long trajectories may be detrimental for chemical reactions
at the boundaries to occur but can be useful when a longer
lifetime of a molecule (i.e., with small absorption probability
at the boundaries) is favored. Moreover, often the amount of
space visited by a diffusing chemical reagent inside a cell
becomes quite important as it might control the yield of a
reaction. One of the simplest measures of such excursions in
one dimension is the maximum displacement realized by the
molecule.

A. Maximum displacement till a fixed time t

Let M be the maximum displacement made by the
molecule till time t . The cumulative probability that M is less
than L, denoted by H (L, t |x0) = Prob[M � L, t |x0], can be
expressed as the following ratio:

H (L, t |x0) = SL(x0, t )

S∞(x0, t )
, (14)

where SL(x0, t ) = ∫ L
0 GL(x, x0, t ) is the survival probability

of the molecule in the presence of a completely absorbing
boundary at L in addition to a reactive boundary at x = 0.
Here GL(x, x0, t ) is the propagator which describes such a
system. Therefore, GL(x, x0, t ) = lim

αL→∞GL(x, x0, t ) and con-

sequently S∞(x0, t ) = lim
L→∞

SL(x0, t ). Again the expression in

Eq. (14) can be understood from a very simple path-counting
argument. The cumulative probability H (L, t |x0) gets a con-
tribution from all the paths which start from x0 and reach
somewhere within x ∈ (0, L) (while staying below x = L
throughout) along with the condition that they survived the
reactive boundary at x = 0 till time t . Hence this probability
is exactly the fraction of paths of duration t that starting from
x0 never hit x = L among those paths which survive till time t
from the reactive boundary at x = 0.

Taking the αL → ∞ limit in Eq. (4), we get the corre-
sponding propagator inside a box 0 � x � L of size L with
an completely absorbing boundary at x = L and a partially
reflecting boundary at x = 0:

GL(x, x0, t ) = lim
αL→∞ GL(x, x0, t )

=
∑

k

e−Dk2t [k cos(kx) + α0 sin(kx)]

L
(
α2

0 + k2
) + α0

× [k cos(kx0) + α0 sin(kx0)], (15)

with

e2ikL = − (k + iα0)

(k − iα0)
. (16)

Integrating the final position x of this propagator from 0 to
L, we get the associated survival probability SL(x0, t ) of the
particle:

SL(x0, t ) =
∫ L

0
dx GL(x, x0, t ). (17)
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Once we know SL(x0, t ), we can use Eq. (14) to obtain
an expression for H (L, t |x0). Clearly, in the limits L → ∞
and t → ∞, while keeping � = L√

Dt
constant, the survival

probability SL(x0, t ) can be written in terms of the scaled
variable z0 = x0√

Dt
such that SL(x0, t ) = s�(z0, t ). After per-

forming some algebraic manipulations one finds

s�(z0, t ) � 2α0

√
Dt �2

∞∑
n=1

[1 − (−1)n]
[

nπ
�

cos
( nπz0

�

) + √
Dtα0 sin

( nπz0
�

)]
nπ

[
n2π2 + Dt α2

0 �2 + √
Dt α0 �

] e− n2π2

�2 . (18)

To arrive at the above expression we have replaced kL = p�
in Eq. (15) to obtain the transcendental equation

p

tan(p�)
= −α0

√
Dt . (19)

For large t , the solution of this equation is given approxi-
mately by p ≈ nπ

�
with n = 1, 2, 3, . . .. Hence by taking a

derivative in Eq. (14), we obtain the following scaling form
for the distribution Px0 (M, t ) of the maximum:

Px0 (M, t ) = 1√
Dt

fx0/
√

Dt

(
M√
Dt

, t

)
, (20)

where

fz0 (m, t ) = 1

lim
�→∞

s�(z0, t )

[
∂s�(z0, t )

∂�

]
�=m

(21)

is the scaling function with the scaled maximum displacement
m = M/

√
Dt . In Fig. 3(a) we have compared the expression

of
√

DtPx0 (M, t ), given by Eq. (20), with the corresponding
estimate obtained by Monte Carlo simulations. As can be
appreciated in Eq. (20), when plotted in this way we observe
nice agreement with the numerical data (disks) with the theo-
retical curve (solid line) from Eq. (21) for x0 = 2, D = 1, and
t = 100. Note that the solutions p = nπ/�, n = 1, 2, . . . of
the transcendental equation in (19) are valid for � � O(1) with√

Dt 	 α−1
0 . Hence the “scaling” form of the distribution

of the maximum given in terms of the scaling variable � =
M/

√
Dt in Eqs. (20) and (21) is valid at times t 	 (Dα0)−2

for M �
√

Dt . Following a similar procedure it can be shown
that for fixed t the distribution Px0 (M, t ) decays at the right tail
(M → ∞) as ∼1/M2.

For a completely absorbing boundary at x = 0(α0 → ∞),
the root equation in Eq. (15) becomes tan(p�) = 0. This gives
us the solutions p = nπ

�
for n = 1, 2, 3, . . ., from which we

derive the following form of the scaled survival probability:

s�(z0, t ) = 2

π

∞∑
n=1

1 − (−1)n

n
sin

(nπz0

�

)
e− n2π2

�2 , (22)

which matches with previously derived results [53].

B. Distribution of maximum displacement till the first
absorption time

It is also important to know up to what extent the molecule
has explored a region before it got absorbed at the reactive
boundary. This can be quantified by the maximum displace-
ment M made by the molecule till the absorption time. The
cumulative distribution Qa(L|x0) = Prob.[M � L|x0] of this

maximum M can be obtained from

Qa(L|x0) = D
∫ ∞

0
dt

(
∂GL

∂x

)
x=0

, (23)

which can be understood by looking at the exit problem for
the particle from the box x ∈ [0, L] with a partially absorbing
boundary at x = 0 (α0 finite) and a perfectly absorbing bound-
ary at x = L (αL → ∞). Note that this perfectly absorbing
boundary makes sure that the maximum displacement M
till some time t is less than L, of course, conditioned on
survival. Since we want the distribution of the maximum till
the absorption at the partially absorbing wall at x = 0, we
should look only at those trajectories in which the particle
starting from x0 never touches the right boundary at x = L
till it gets absorbed at (or exits the box through) the boundary
at x = 0. Hence, we have Qa(L|x0) = Fa(L|x0 )

Ha (x0 ) , where Fa(L|x0)
is the probability that the particle escapes through the left
boundary at 0 and Ha(x0) = lim

L→∞
Fa(L|x0). Even in the L →

∞ limit, the particle will eventually get absorbed at x = 0
in one dimension, which means in Ha(x0) = 1. This simply
gives Qa(L|x0) = Fa(L|x0). On the other hand, by definition
we have

Fa(L|x0) =
∫ ∞

0
dt fa(t |x0, L), (24)

where fa(t |x0, L) is the first passage time density, which
accounts for the probability that the particle gets absorbed
at x = 0 at time t without hitting the other boundary at L.
This time density fa(t |x0, L) represents the contribution to the
decay of the survival probability SL(t ) of the particle coming
from the (probability) current leakage through the boundary
at x = 0. The rate at which this leakage happens is given by
fa(t |x0, L) = D ∂GL

∂x |x=0 [44] where GL [see Eq. (15)] repre-
sents the propagator of the particle moving inside this box.
Substituting this relation in Eq. (24), we arrive at Eq. (23).
After using the explicit expression of GL from Eq. (15) and
performing some manipulations we get

Qa(L|x0) = α0

∑
k

[k cos(kx0) + α0 sin(kx0)]

k
[
α0 + L

(
α2

0 + k2
)] , (25)

with

e2ikL = (k + iα0)

(k − iα0)
. (26)

Hence, the distribution of the maximum Pa(M, x0) till absorp-
tion time is obtained from

Pfa (M, x0) =
[
∂Qa(L|x0)

∂L

]
L=M

(27)
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FIG. 3. (a) The probability distribution fz0 (m, t ) function given
in Eq. (21) of the scaled maximum displacement m. The red disks are
the results from Monte Carlo simulations for x0 = 2, t = 100 with
α0 = 5 and D = 1. The solid line represents the theoretical curve
given by Eq. (20). An excellent agreement between the theoretical
curve and numerical data is observed. (b) The probability distribution
of the maximum excursion Pfa (M, x0 ) performed by the molecule
before it is absorbed by the reactive boundary at the origin. The
red disks are obtained from simulations and plotted along with
the theoretical result (solid line) in Eq. (27). Inset: The large M
asymptotic as ∼ 1

M2 (dashed line) in the log-log scale along with
its numerical verification (disks). The parameters for panel (b) are
D = 1, α0 = 5, observation time t = 100, and x0 = 1.

We have plotted Eq. (27) against numerical simulations in
Fig. 3(b), and we observe an excellent agreement between
them. In this case, it is also easy to show from Eqs. (25)–(27)
that, for large M, the distribution of the maximum decays
as ∼1/M2. To show this we use the fact that at large L the
solutions of the Eq. (26) are given by k ≈ (2n+1)π

L with n =
0, 1, 2, . . .. Substituting these solutions in Eq. (25) and con-
verting the sum to integrals for large L one finds Qa(L|x0) =
C1 − C2

L , where C1,2 are constants depending on D, x0 and α0.
Taking the derivative with respect to L that appears in Eq. (27),

we immediately see Pfa (M, x0) ∼ C2/M2. This power-law tail
is verified numerically in the inset of Fig. 3(b).

As done previously, in the case of maximum distribution
till absorption as well, it is important to check the various
limits which have been studied earlier. For example, in the
case when the boundary at x = 0 becomes fully absorbing
(α0 → ∞), one can show that the scaled cumulative distri-
bution is given by

Qa(z0, �) = 2
∞∑

n=1

sin
( nπx0

L

)
nπ

= 1 − x0

L
, (28)

which reproduces the result derived in Ref. [53].

IV. LOCAL TIME SPENT AT y0 TILL A FIXED TIME t

In this section we look at the local time density Lt (y0, x0),
defined as

Lt (y0, x0) =
∫ t

0
dt ′δ[x(t ′) − y0|x0], (29)

which measures the amount of time the Brownian molecule
spends at a given coordinate y0 over an interval 0 �
t ′ � t , given that it had started from x0. By construction,
this is a functional of the trajectory and normalized as∫

dy0 Lt (y0, x0) = t . This quantity is important in various
situations. For example, in the kinetics of an enzymatic re-
action mechanism, an enzyme binds to a substrate to form a
complex, which in turn releases a product, regenerating the
original enzyme. The reaction or binding time of such process
is very relevant in biochemistry since prior knowledge could
help improve the efficiency of a chemical reaction through
catalysis or by facilitating metabolic pathways.

Statistical properties of Lt has been studied in the con-
text of Brownian motion in bounded geometry with either
completely absorbing or reflecting boundaries [43,54–58].
In the context of a generic Markov process the local time
density is known as the empirical density (when appropriately
rescaled by the observation time) [59,60]. In this section we
study the local time density in presence of partially absorbing
boundaries.

In order to compute the statistical properties of Lt , we
introduce the generating function

Qp(y0, x0, t ) = 〈e−pLt (y0,x0 )〉, (30)

where the average is performed with respect to the probability
density P(Lt |x0, y0, t ) of the local time. This average can
be written explicitly after taking into account the exact path
measure

Qp(y0, x0, t ) = 1

SL(x0, t )

∫ L

0
dx

∫ x(t )=x

x(0)=x0

D[x(τ )]

× e− ∫ t
0 dτ { 1

4D [ dx(τ )
dτ

]2+pδ(x(τ )−y0 )}, (31)

where the survival probability SL(x0, t ) weighs the surviving
paths [see Eq. (9)]. Following the Feynman-Kac method and
after introducing an appropriate Hamiltonian Hp, one can map
the original problem of evaluating the above path integral into
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the computation of an imaginary time quantum propagator:

Qp(y0, x0, t ) = Qp(y0, x0, t )

SL(x0, t )
, (32)

where

Qp(y0, x0, t ) =
∫ L

0
dx〈x|e−t Ĥp |x0〉, (33)

with Ĥp(y0) = −D d2

dx2 + p δ(x − y0), and SL(x0, t ) = ∫ L
0

dx 〈x|e−t Ĥ0 |x0〉. Using the backward Kolmogorov approach,
one can show that Qp(y0, x0, t ) obeys the following Fokker-
Planck equation:

∂Qp

∂t
= D

∂2Qp

∂x2
0

− pδ(x0 − y0)Qp, (34)

with Qp(y0, x0, 0) = 1, and boundary conditions[
∂Qp

∂x0
− α0Qp

]
x0=0

= 0,

[
∂Qp

∂x0
+ αLQp

]
x0=L

= 0. (35)

The usual trick is then to write Eq. (34) in Laplace space with
Q̃p(y0, x0, s) = ∫ ∞

0 dt e−st Qp(y0, x0, t ) such that

D
d2Q̃p

dx2
0

− [s + pδ(x0 − y0)]Q̃p = −1. (36)

The boundary conditions given by Eq. (35) are automatically
translated into [

∂Q̃p

∂x0
− α0Q̃p

]
x0=0

= 0,

[
∂Q̃p

∂x0
+ αLQ̃p

]
x0=L

= 0. (37)

In general, although it is possible to solve Eq. (36) with
the corresponding boundary conditions (37), performing the
inverse Laplace transform is, more often than not, rather cum-
bersome. We can nevertheless obtain some results in the large
time limit for some special choices of the reactive constants
α0, αL and the position y0 where the local time is measured.
In Appendix B we provide details of the computation of the
first and second moments. In Fig. 4 we plot the mean local
time 〈Lt (y0, t )〉 and the variance 〈Lt (y0)2〉 − 〈Lt (y0)〉2 as a
function of time t measured at y0 = 0 for αL = 0, α0 = 2.0,
and L = 2. We notice that both these quantities grow linearly
with time at large times (see Appendix B for further details)
and observe nice agreement with the Monte Carlo simulations.

While only a few moments can be computed exactly in
certain limits in the case of the finite box, it is, however,
possible to push further the analytical results in the case of the
semi-infinite domain. In this case we compute the distribution
P(Lt |x0, y0, t ) of the local time density at y0 = 0 and y0 = x0.

Let us start with the case y0 = 0. Here the boundary
conditions become rather simple,[

∂Q̃p

∂x0
− α0Q̃p

]
x0=0

= 0, Q̃p|x0→∞ = 1, (38)

FIG. 4. Numerical verification of the growths of the mean (a) and
the variance (b) of the local time Lt measured at the starting point
x0 = y0 = 0 inside a box of length 2. The left side of the box is at
the origin and is partially reflecting with parameter α0 = 2, whereas
the right boundary is perfectly reflecting, αL = 0. The solid lines
are obtained using Eqs. (B12)–(B23). Other parameters used in the
simulation are D = 1 and 	 = 10 000 (see Sec. V).

and, as a result, so does the the differential equation in
Eq. (36). After writing its solution explicitly and then per-
forming the inverse Laplace transforms we get for large t that
(see Appendix B 1 for details)

P(Lt |x0, 0, t ) = 1

S(x0, t )

[
2erf

(
x0√
4Dt

)
δ(Lt )

+
√

D

πt
e−α0Lt De− (x0+Lt D)2

4Dt

]
, (39)

and where

S(x0, t ) = eDα2
0 t+α0x0 erfc

(
2Dα0t + x0√

4Dt

)

+ erf

(
x0√
4Dt

)
. (40)

The δ(Lt ) term in Eq. (38) arises from those paths which are
absorbed at the reactive boundary upon their first passage.
The factor erf(x0/

√
4Dt )/S(x0, t ) represents the fraction of

those paths, which starting at x0 survived being absorbed
by the reactive boundary and, moreover, did not make any
visit to the boundary till time t . Note that this is the term
that survives in the α0 → ∞ limit, i.e., when the boundary
becomes completely absorbing.
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FIG. 5. Numerical distribution of local time Lt till the observa-
tion time t , starting from x0. We measure the local time around
its initial coordinate, y0 = x0, here. The point markers (circles and
diamonds) represent simulation data obtained for time (t = 50 and
100, respectively). The solid line is obtained from the theoretical
result in Eq. (41). Since Eq. (41) does not depend on t , we see all
the data fall in the same line. The parameters for this figure are
D = 1, y0 = x0 = 0.5, and α0 = 5.0.

A similar analysis for the case y0 = x0 reveals that the the
asymptotic behavior for large t is given by (see Appendix B)

P(Lt |x0, x0, t )|t→∞ � Dα0

1 + x0α0
e− α0D

1+x0α0
Lt . (41)

Note that the distribution of the local time becomes inde-
pendent of time in the asymptotic limit of large t . In Fig. 5
we have compared the analytical expression of P(Lt |x0, x0, t )
given by Eq. (41) to the density obtained from the direct
simulation of the Langevin equation. We see a nice agreement
between them, and, moreover, we indeed observe that the
densities are independent of t , as predicted from Eq. (41). On
the other hand, for short times one obtains instead

P(Lt |x0, x0, t )|t→0 �
√

D

πt
e− L2

t D
4t . (42)

Note that the above expression is independent of the reactive
constant α0, since, for short times, the system is yet to see the
boundaries and would behave like a free diffusion [54].

Local time density spent till the absorption time ta

In the preceding section, we have studied the local time
density spent by a Brownian molecule for a specific location
over a fixed duration t . It may, however, occur that the
molecule is absorbed before the reaction takes place (with
zero contribution to the local time profile) or the reaction
occurs with an immediate absorption. This motivates us to
study the local time profile till the adsorption event. Since the
absorption time is a functional of the trajectory, the local time
density gets random contributions from two stochastic terms:
the noise and the random absorption time.

Let us define the local time (density) La(y0, x0) till the
absorption event as

La(y0, x0) =
∫ ta

0
δ[x(t ) − y0|x0] dt, (43)

where ta is the time when the molecule is absorbed at the
boundary 0 and the initial condition is set as x(0) = x0. As
mentioned in Sec. II, the time ta is a stochastic quantity, and
this kind of functional is often known as the first passage time
functionals in the literature [43]. It will prove convenient to
rewrite the local time La(y0, x0) in the following way:

La(y0, x0) = lim
ν→0

Wν (y0, x0)

2ν
, (44)

where

Wν (y0, x0) =
∫ ta

0
V [x(t )] dt, (45)

with

V (x) = �[y0 + ν − x]�[x − y0 + ν]. (46)

The function �[x] is the Heaviside step function. Notice that
the limit ν → 0, the function V (x) corresponds to represent-
ing the Dirac delta δ(x − y0) by a box of height 1/2ν and
width 2ν. Hence taking ν → 0 justifies our construction in
Eq. (44) along with Eq. (45).

As done in the previous section, we start once again with
the generating function Qν (p, y0, x0) of Wν (y0, x0), which is
defined as

Qν (p, y0, x0) = 〈e−pWν (y0,x0 )〉 = 〈e−p
∫ ta

0 V (x(t ))dt 〉. (47)

The generating function Tp(y0, x0) associated to La is equiva-
lently defined as

Tp(y0, x0) = 〈e−pLa (y0,x0 )〉x0 = 〈e−p
∫ ta

0 δ[x(t )−y0|x0]dt 〉. (48)

Both generating functions are related to each other by

Tp(y0, x0) = lim
ν→0

Qν (p/2ν, y0, x0). (49)

Using the Markov property one can show [43] that
Qν (p, y0, x0) satisfies the following differential equation:

D
d2Qν

dx2
0

− p V (x0) Qν = 0, (50)

which is accompanied by the following boundary conditions:
as x0 → ∞, the time ta to get absorbed also tends to infinity,
which implies that Qν (p, y0, x0) cannot diverge and, second,
at x = 0, we have a reactive boundary, which implies that

[
dQν

dx0
− α0 Qν (p, y0, x0)

]
x0=0

= −α0. (51)

After some lengthy algebra,whose details can be found in
Appendix C, one is able to obtain the following expression

042128-8



MOTION OF A BROWNIAN PARTICLE IN THE PRESENCE … PHYSICAL REVIEW E 100, 042128 (2019)

for P(La, y0, x0):

P(La, y0, x0) =
⎧⎨
⎩

2α0(y0−x0 )
1+α0y0

δ(La) + α0D 1+α0x0
(1+α0y0 )2 e− α0D

1+α0y0
La , if 0 � x0 � y0,

α0D
(1+α0y0 ) e

− α0D
1+α0y0

La , if x0 � y0.
(52)

In the above expression we see that there is a δ-function
contribution to the distribution of La. This results from those
paths which are absorbed at the boundary before making a
first passage to y0. For this reason, the δ-function contribution
appears only when 0 � x0 � y0 or, in other words, there is
a chance for the molecule to be absorbed at the boundary at
x = 0 before ever reaching y0 for the first time. This element
of chance decreases as one starts closer to y0, which explains
the multiplicative factor (y0 − x0). On the other hand, if the
molecule starts at x0 � y0 it will definitely cross y0 before it
is absorbed at x = 0, and, as a result, it spends some nonzero
time around y0 (due to the Brownian nature of the motion).
This is the reason behind the absence of a δ-function term
for x0 � y0. In Fig. 6 we compare the analytical expression
given by Eq. (52) to simulation results finding, once again, an
excellent agreement.

V. METHODS OF SIMULATIONS

In this section, we outline the method we have used
to simulate our system. There are many ways to generate
trajectories of a Brownian particle diffusing in a box with
two reactive boundaries [13,28,61,62]. In one such method,
as described in Ref. [28], the authors define the partially
reflected process as the limit of a Markovian jump process
generated by the dynamics using an Euler scheme. Using
boundary layer analysis, they derive a relation between the
reactive constants and the reflection probability. In another
paper [13], the authors study four different approaches to
simulate such systems, and they have derived the correct
choices of the reactive boundary conditions to implement in
stochastic simulations. For our work, we have adapted one of
these approaches from Ref. [13] to generate the trajectories.
This is known as the Euler scheme for the velocity jump
process [13]. In this scheme, one simulates the system by
defining an auxiliary underdamped motion (by introducing
a velocity component along with the existing position com-
ponent) with a large friction coefficient 	. The dynamics
is discrete in time, continuous in space, and discontinuous
in velocities. We sketch the basic steps in the following
discussion.

Let us consider a system of N independent molecules. The
ith molecule is described by two variables: its position xi(t )
and velocity vi(t ) at time t . The underdamped dynamics for
the set {xi(t ), vi(t )} at each time step �t is introduced in the
following way:

xi(t + �t ) = xi(t ) + vi(t )�t,

vi(t + �t ) = vi(t ) − 	vi(t )�t + 	
√

2D�tηi, (53)

where 	 should be taken large and ηi is a normally distributed
random variable with zero mean and unit variance [13]. In this
problem we have two reactive boundaries at x = 0 and x = L,

and the reactive boundary conditions can be stated as follows:
whenever a molecule hits any one of the two boundaries (0, L)
it is adsorbed with probability p0/

√
	 or pL/

√
	, respectively,

or reflected otherwise. The implementation is the following:
whenever the value xi(t + �t ) computed from Eq. (53) is

FIG. 6. Numerical distribution of the local time P(La, y0, x0 ) at
y0 till its first adsorption at 0 given that it had started from x0. We have
compared the numerical simulation with the distribution obtained
analytically in Eq. (52). The distribution has different analytical
forms depending on x0, y0. In panel (a), we consider x0 = 0.5, y0 =
0.75 (so that x0 < y0), while in panel (b) we have x0 = 0.75, y0 =
0.5 (so that x0 > y0). In both plots, analytical formulas (solid blue
lines) are plotted against the simulation curves (marked with orange
circles). The inset in the left panel shows the presence of the Dirac
δ function when x0 < y0. The parameters for this figure are set as
D = 1, α0 = 5.0.
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negative, then

xi(t + �t ) = −xi(t ) − vi(t )�t,

vi(t + �t ) = −vi(t ) + 	vi(t )�t − 	
√

2D�tηi, (54)

with probability 1 − p0√
	

, or we remove the ith molecule from
the system. On the other hand, if xi(t + �t ) computed from
Eq. (53) is greater than L, we do the following:

xi(t + �t ) = 2L − xi(t ) − vi(t )�t,

vi(t + �t ) = −vi(t ) + 	vi(t )�t − 	
√

2D�tηi, (55)

with probability 1 − pL√
	

; otherwise we remove the ith
molecule from the system. Finally, we use the following
relation between the reactive constants and the reflection
probabilities [13]:

p0 = α0

√
2π√

D
,

pL = αL

√
2π√

D
. (56)

It is important that only in the high friction limit, that is, only
when 	 is large enough, do we recover the diffusion equation
(1), which is the overdamped limit and the inception of our
study. Further details on how to prove this result can be found
in Ref. [13]. In our particular case, we have taken 	 = 500
for all the simulations unless specified in particular case. The
above prescription allows us to successfully generate Brow-
nian trajectories in the presence of two reactive boundaries,
and the number of molecules present in the system after a
given time t is simply proportional to the probability density
defined in Eq. (1). We conclude this section by stating that
other statistical quantities such as the survival probability or
the local time profile also can be simulated using this method.

VI. CONCLUSIONS AND FUTURE OUTLOOK

In this paper, we have provide a comprehensive study
of various statistical properties of a Brownian molecule in
the presence of reactive boundaries. Such boundaries are
ubiquitous in physics, chemistry, and biology. Several molec-
ular movements inside a cell can fairly well be described
by a Brownian motion where the cell boundary provides
the confined geometry. One often considers these boundaries
to be either completely reflecting or completely absorbing.
However, the effects of adsorption, catalysis, etc., occurring at
the cell boundary makes them reactive, in the sense that these
boundaries are neither fully absorbing nor fully reflecting.
In this paper, we have looked at the Brownian motion of a
molecule in one dimension with partially absorbing (reflect-
ing) boundaries. We have also looked at the survival properties
of the molecule, which also provides explicit expressions of
the distribution of absorption time and the mean absorption
time as well as the distribution of the maximum displacement.
Using the Feynman-Kac formalism, we have investigated the
distribution of the reaction or local time density both when
observed for a fixed time or till the absorption time. We
have obtained explicit expressions of the distribution of the
local time which give an excellent match with the numerical
simulations.

Our work can be extended in multiple directions. In a re-
cent study [63], the authors considered the mean first passage
time to a reaction event on a specific site in a cylindrical
geometry with mixed boundary conditions. It would be inter-
esting to estimate the survival probabilities and the longest
excursions (maximum displacement and time to reach the
maximum) in such a setup and further extend it to different
nonuniform geometries. It would be also interesting to see
how the properties of a tagged particle in the presence of
other particles are effected by considering reactive crossing
conditions. Effects of a partially absorbing boundary have
also been investigated recently in an interesting stochastic
dynamics, namely, stochastic resetting [64–69] which mixes
long-range moves along with the local moves due to diffusion
[50]. Moreover, such dynamics could be quite beneficial
strategies to target searches [70,71]. It would be interesting
to combine this dynamics in conjugation with diffusion to
expedite first passage processes to a target in a confined
domain with reactive boundaries.
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APPENDIX A: DERIVATIONS OF THE PROPAGATOR IN
THE SEMI-INFINITE DOMAIN

To derive the propagator in the semi-infinite domain, we
have to take the limit L → ∞ in Eq. (4). In this limit Eq. (5)
yields k = nπ

L . The summation over k can now be converted
into an integral over k as L → ∞. A short calculation gives us

Gsi
t (x, x0) = 1

2π

[
∂

∂x

∂

∂x0
+ α0

(
∂

∂x
+ ∂

∂x0

)
+ α2

0

]

×
∫ ∞

−∞
dk

2 sin(kx0) sin(kx)

α2
0 + k2

e−Dk2t

= 1

2π

( ∂

∂x
+ α0

)( ∂

∂x0
+ α0

)

×
∫ ∞

−∞
dk

cos[k(x + x0)] + cos[k(x − x0)]

α2
0 + k2

× e−Dk2t . (A1)

To compute Eq. (A1) we consider the following integral:

Iα (z) =
∫ ∞

−∞
dk

cos(kz)

α2 + k2
e−k2t

= eα2t

[∫ ∞

−∞
dk

cos(kz)

α2 + k2
e−(α2+k2 )t

]
. (A2)
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By noting that
∫ ∞

t dt ′ e−(k2+α2 )t ′ = e−(α2+k2 )t

α2+k2 , we find from
Eq. (A2)

Iα (z) = eα2t
∫ ∞

t
dt ′e−α2t ′

Re

[∫ ∞

−∞
dkeikze−k2t ′

]

= 2
√

π

α
ey2

∫ ∞

y
dqe−q2

e
− z2α2

4q2 , (A3)

where y = α
√

t . Applying the standard integral formula∫ ∞

y
dte−a2t2− b2

t2 =
√

π

4a
e2aberfc

[
ay + b

y

]

+
√

π

4a
e−2aberfc

[
ay − b

y

]
, (A4)

in Eq. (A3), eventually we obtain from Eq. (A2)

Iα (z) = π

2α
eα2t

[
ezαerfc

(
2αt + z√

4t

)

+ e−x0αerfc

(
2αt − z√

4t

)]
. (A5)

Plugging the above expression in Eq. (A1), we obtain Eq. (6)
along with Eq. (7).

APPENDIX B: DERIVATIONS OF STATISTICAL
PROPERTIES OF LOCAL TIME SPENT AT y0 TILL

OBSERVATION TIME t

In this Appendix we present the detailed derivations re-
garding the statistical properties of local time spent at y0 till
observation time t . Starting from Eq. (36), we notice that one
can write its solution into two separate regions:

Q̃(I )
p (y0, x0, s) = A1e−x0

√
s/D + B1ex0

√
s/D + 1

s
, (B1)

for � x0 � y0, and

Q̃(II )
p (y0, x0, s) = A2e−x0

√
s/D + B2ex0

√
s/D + 1

s
, (B2)

for y0 � x0 � L. The constants A1, A2, B1, and B2 are fixed
by implementing the boundary conditions (37), together with
continuity of the solution at x0 = y0, and discontinuity of the
first derivative at x0 = y0. These conditions yield

α0

s
= B1(

√
s/D − α0) − A1(

√
s/D + α0), (B3)

−αL

s
= B2(

√
s/D + αL )eL

√
s/D − A2(

√
s/D − αL )e−L

√
s/D, (B4)

B1ey0
√

s/D + A1e−y0
√

s/D = A2e−y0
√

s/D + B2ey0
√

s/D, (B5)

p

sD
= −

√
s

D
A2e−y0

√
s/D +

√
s

D
B2ey0

√
s/D +

(√
s

D
− p

D

)
A1e−y0

√
s/D −

(√
s

D
+ p

D

)
B1ey0

√
s/D. (B6)

For later use, it is convenient to introduce the following function:

R̃L(s) = √
s[p + D(α0 + αL )] cosh

[
L
√

s√
D

]
+

√
D[s + (p + α0D)αL] sinh

[
L
√

s√
D

]
. (B7)

Particularizing for an initial position set at y0 = 0, we obtain the following solution for the four constants A1, A2, B1, and B2:

4 A1
√

s

√
s

D
R̃L(s) = e−L

√
s
D

{
− p

[
e2L

√
s
D

(√
s

D
+ αL

)
+

√
s

D
− αL

]

− 2DeL
√

s
D

[
α0eL

√
s
D

(√
s

D
+ αL

)
− αL

(
α0 −

√
s

D

)]}
, (B8)

2
√

D s A2

(√
s

D
− α0

)
R̃L(s) =

{
−DαL

[
s + α0D

(
−2

√
s

D
+ α0

)
+ p

(
−

√
s

D
+ α0

)]

+ eL
√

s
D (p + Dα0)

[
−s + D

(√
s

D
α0 −

√
s

D
αL + α0αL

)]}
, (B9)

2sB1

(
s − α0D

√
s

D

)
R̃L(s) = e−L

√
s
D

(
D

√
s
[ − αL

(
s − α2

0D
)
eL

√
s
D + α0αL

√
sD + α0(−α0DαL − s) + α2

0

√
sD

]

−
{

peL
√

s
D

(
s − α0D

√
s

D

)[√
s cosh

(
L
√

s√
D

)
+

√
DαL sinh

(
L
√

s√
D

)]})
, (B10)

2B2
√

s(s −
√

sDα0) R̃L(s) = e−L
√

s
D

{
p
√

sDα0 + D2

√
s

D
α2

0 + p
√

sDαL − p
√

sDαL eL
√

s
D

+ D2

√
s

D
α0αL − DαL eL

√
s
D [s − α0(p + Dα0)] + (p + Dα0)(−s − Dα0αL )

}
. (B11)
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As mentioned earlier, at this stage it is hard to perform the in-
verse Laplace transform on Q̃p(0, x0, s) to obtain Q̃p(0, x0, t ).
Instead, we compute the first and the second moment of the
local time from Q̃p(0, x0, s). First, note that

〈Lt (0, x0)〉 = − 1

SL(x0, t )

∂Qp(0, x0, t )

∂ p

∣∣∣∣
p→0

= 〈lt (0, x0)〉
SL(x0, t )

,

〈
L2

t (0, x0)
〉 = 1

SL(x0, t )

∂2Qp(0, x0, t )

∂ p2

∣∣∣∣
p→0

=
〈
l2
t (0, x0)

〉
SL(x0, t )

,

(B12)

where SL(x0, t ) is the associated survival probability given by
Eq. (9) and we have defined

〈lt (0, x0)〉 ≡ −∂Qp(0, x0, t )

∂ p

∣∣∣∣
p→0

, (B13)

〈
l2
t (0, x0)

〉 ≡ ∂2Qp(0, x0, t )

∂ p2

∣∣∣∣
p→0

. (B14)

Now, we can take the Laplace transform on 〈lt (0, x0)〉 and
〈l2

t (0, x0)〉, which is related to Q̃p(0, x0, s) in the following
manner:

f1(s) ≡ Lt [〈lt (0, x0)〉] = −∂Q̃p(0, x0, s)

∂ p

∣∣∣∣
p→0

, (B15)

f2(s) ≡ Lt
[〈

l2
t (0, x0)

〉] = ∂2Q̃p(0, x0, s)

∂ p2

∣∣∣∣
p→0

. (B16)

We further simplify our calculations by taking both bound-
aries to be purely reflecting, α0 = αL = 0. Now defining τ1 =
L−x0√

D
and τ2 = L/

√
D, we can write

f1(s) = cosh(τ1
√

s)√
Ds3/2 sinh(τ2

√
s)

,

f2(s) = 2 cosh(τ1
√

s) cosh(τ2
√

s)

Ds2 sinh(τ2
√

s)2
. (B17)

Now we can do inverse Laplace transform on Eq. (B17) with
respect to s to arrive at the following expressions:

〈lt (0, x0)〉 = 1√
D

[
τ 2

1

2τ2
+ t

τ2
− τ2

6

− 2τ2

∞∑
n=1

(−1)n

n2π2
cos

nπτ1

τ2
e
− n2π2t

τ2
2

]
(B18)

and

〈
l2
t (0, x0)

〉 = τ 2
1

6D
+ τ 4

1

12τ 2
2 D

− 7τ 2
2

60D
+ t

3D
+ τ 2

1 t

τ 2
2 D

+ t2

τ 2
2 D

− 4

D

∞∑
n=1

(−1)ne
− n2π2t

τ2
2

n4π4

[
τ1τ2nπ sin

nπτ1

τ2

+ (
3τ 2

2 + 2n2π2t
)

cos
nπτ1

τ2

]
. (B19)

Similarly, when αL = 0, α0 �= 0, after a lengthy calculation
we find∫ ∞

0
dte−st 〈lt (0, x0)〉

= cosh τ1
√

s√
D

sinh τ2
√

s/
√

s

(
√

s sinh τ2
√

s + √
Dα0 cosh τ2

√
s)2

(B20)

and ∫ ∞

0
dt e−st

〈
l2
t (0, x0)

〉 = cosh2 τ1
√

s√
D

(B21)

× sinh τ2
√

s/
√

s

(
√

s sinh τ2
√

s + √
Dα0 cosh τ2

√
s)3

. (B22)

The inversion of these expression can be done analytically;
however, it is not possible to express this inversion in explicit
forms, because the zeros of this expression come from solu-
tions of the transcendental equation

τ2
√

s tanh τ2
√

s = −α0L, (B23)

which one can compute numerically rather easily. One finds
that the poles lie on the negative real axis. Since poles oc-
curs at these zeros and since they are simple multiple order
poles, one can just evaluate the residues while performing
the Bromwich integral. In the large t limit, it is enough to
compute the contribution from the largest pole, i.e., the one
which lies closest to the origin on the negative real axis. For
large L > 3/α0, one can solve the transcendental equation in
(B23) to find an approximate form of this pole for x0 = 0,
which is given by

s0 = −π2D

4L2
+ π2D

3L2 + α0L3
. (B24)

A comparison of the analytical results with simulation for the
mean and variance obtained following the above procedure
is given in the main text (see Fig. 4). For both α0 �= 0 and
αL �= 0, one can proceed in the same way to compute various
cumulants. The calculations are straightforward but fairly
lengthy.

1. Semi-infinite case: L → ∞
The calculation for the distribution of Lt becomes simpler

in the semi-infinite case, in the L → ∞ limit. We first consider
y0 = 0, and we start from

Qp(y0, x0, t ) = Qp(y0, x0, t )

S(x0, t )
, (B25)

Qp(y0, x0, t ) =
∫ ∞

0
dx〈x|e−t Ĥp |x0〉, (B26)

where S(x0, t ) is given by Eq. (10), while the governing
equation for Q̃p(y0, x0, s) is still given by Eq. (34) with new
boundary conditions:[

∂Q̃p

∂x0
− α0Q̃p

]
x0=0

= 0,

Q̃p(y0, x0, s)|x0→∞ = 1

s
. (B27)
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The second boundary condition is obtained from the fact that
as x0 → ∞, the local time Lt → 0, which results in Qp → 1.
To obtain a complete solution of Q̃p(y0, x0, s) of Eq. (34) with
these new boundary conditions, we write the solution in the
following regions:

Q̃(I )
p (y0, x0, s) = A e−x0

√
s/D + B ex0

√
s/D + 1

s
, (B28)

for 0 � x0 � y0, and

Q̃(II )
p (y0, x0, s) = C e−x0

√
s/D + 1

s
, (B29)

for x0 � y0. The constants A, B, and C can be obtained
imposing the following conditions: (a) boundary condition
at x0 = 0, (b) continuity of the solution at x0 = y0, and (c)
discontinuity of the first derivative at x0 = y0. The first two
yield

B(
√

s/D − α0) − A(
√

s/D + α0) = α0

s
, (B30)

Bey0
√

s/D + Ae−y0
√

s/D = Ce−y0
√

s/D, (B31)

which can be solved to obtain an expression in terms of the
constant C:

Ae−y0
√

s/D =
√

D

2Ry0 (s)

[
−α

s
+ C (

√
s/D − α0) e−2y0

√
s/D

]
,

(B32)

Bey0
√

s/D =
√

D

2Ry0 (s)

[
α

s
+ C

(√
s

D
+ α0

)]
, (B33)

where we have defined the function

Ry0 (s) = √
s cosh

(
y0

√
s

D

)
+ α0

√
D sinh

(
y0

√
s

D

)
. (B34)

Finally, using these solutions into the third condition results
into the following expression for the constant C:

C e−y0
√

s/D = −1

s

pRy0 (s) + α0D
√

s

pRy0 (s) + √
s(

√
sD + α0D) ey0

√
s/D

.

(B35)

Thus we have a complete solution of Q̃p(y0, x0, s), from which
performing double inverse Laplace transformation one can, in
principle, obtain P(Lt |x0, y0, t ) for any reaction location y0.
In the following we consider two choices for this location to
demonstrate few exact results. The choices are (1) at the origin
(y0 = 0) and (2) at its initial position y0 = x0.

For the first case (y0 = 0), notice that the function Ry0 (s) =√
s. Hence, the constant C in Eq. (B35) now reads

C = −1

s

p + α0D

p + α0D + √
sD

, (B36)

and as a result the function Q̃p(0, x0, s) has the following
form:

Q̃p(0, x0, s) = 1

s
− 1

s

p + α0D

p + α0D + √
sD

e−x0
√

s/D,

= 1 − e−x0
√

s/D

s

+ e−x0
√

s/D

√
s(p + α0D + √

sD)
. (B37)

Performing the inverse Laplace transform with respect to s we
obtain

Qp(0, x0, t ) = S(x0, t )Qp(0, x0, t )

= eDα2
pt+αpx0 erfc

(
2Dαpt + x0√

4Dt

)
+ erf

(
x0√
4Dt

)
,

(B38)

where αp = α0 + p
D . Now performing the inverse Laplace

transform with respect to p, we get

q0(Lt , t |x0) = L−1
Lt

[Qp(0, x0, t )]

= 2erf

(
x0√
4Dt

)
δ(Lt )

+
√

D

πt
e−α0Lt De− (x0+Lt D)2

4Dt . (B39)

Hence, the distribution of the local time (density) at y0 = 0 is
given by

P(Lt |x0, 0, t ) = 1

S(x0, t )

[
2erf

(
x0√
4Dt

)
δ(Lt )

+
√

D

πt
e−α0Lt De− (x0+Lt D)2

4Dt

]
, (B40)

where

S(x0, t ) = eDα2
0 t+α0x0 erfc

(
2Dα0t + x0√

4Dt

)

+ erf

(
x0√
4Dt

)
, (B41)

and reported in the main text.
Let us consider now the second case, the local time around

its initial position y0 = x0. Plugging y0 = x0 into Eqs. (B28)
and (B29), and using the expression of C from Eq. (B35), we
have

Q̃p(x0, x0, s) = 1

s
+ Ce−x0

√
s/D

= 1

s

s
√

D + α0D
√

s(1 − e−y0
√

s/D)

Ry0 (s)e−x0
√

s/D

× 1

p + s
√

D+α0D
√

s
Rx0 (s) e−x0

√
s/D

, (B42)

where Rx0 (s) is given by Eq. (B34). Performing the inverse
Laplace transform with respect to p we get

Z̃s(Lt , x0) = L−1
Lt

[Q̃p(x0, x0, s)]

= 1

s

s
√

D + α0D
√

s(1 − e−x0
√

s/D)

Rx0 (s)e−x0
√

s/D

× e
− s

√
D+α0D

√
s

Rx0 (s) e−x0
√

s/DLt
. (B43)
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We need to perform another inverse Laplace transform
with respect to s to get Zt (Lt , x0) = L−1

s [Z̃s(Lt , x0)]. We
can then use this result to obtain the local time density
P(Lt |x0, x0, t ) as

P(Lt |x0, x0, t ) = Zt (Lt , x0)

S(x0, t )
, (B44)

where S(x0, t ) is the survival probability given by Eq. (B40).
It is, however, rather cumbersome to perform the second
Laplace inversion analytically. We can obtain analytical ex-
pressions in the limits for large and short times. Indeed, let us
start consider the asymptotic behavior for large t . In this case,
the dominant contribution to the inverse Laplace transform
with respect to s comes from the small s limit of Z̃s(Lt , x0),
and that is given by

Z̃s(Lt , x0)|s→0 �
√

D e− α0DLt
1+x0α0

1√
s

e− DLt
√

s
1+x0α0 , (B45)

which provides

Zt (Lt , x0)|t→∞ �
√

D

πt
e− α0DLt

1+x0α0 e
− D2L2

t
4t (1+x0α0 )2 . (B46)

On the other hand, S(x0, t )|t→∞ � 1+x0α0√
πDtα2

0

. Hence the density

function P(Lt |x0, x0, t ) for large t is given by

P(Lt |x0, x0, t )|t→∞ � Dα0

1 + x0α0
e− α0D

1+x0α0
Lt . (B47)

Note that the distribution of the local time becomes indepen-
dent of time for asymptotically large t .

On the other side of the time variable, for small t , the
dominant contribution to the inverse Laplace transform with
respect to s comes from the large s limit of Z̃s(Lt , x0) and that
is given by

Z̃s(Lt , x0)|s→∞ �
√

D
e−Lt

√
sD

√
s

, (B48)

which yields

Zt (Lt , x0)|t→0 �
√

D

πt
e− L2

t D
4t . (B49)

In this case S(x0, t )|t→0 � 1 − 4α0(Dt )3/2√
π x2

0
e− x2

0
4Dt . Therefore, the

density function P(Lt |x0, x0, t ) for small t reads

P(Lt |x0, x0, t )|t→0 �
√

D

πt
e− L2

t D
4t , (B50)

as reported in the main text.

APPENDIX C: DERIVATION OF P(La, y0, x0)

To find a solution of the differential equation (50) we first
notice that this is naturally divided in three different regions:
(1) 0 � x0 � y0 − ν, (2) y0 − ν � x0 � y0 + ν, and (3) x0 �
y0 + ν. Thus, the solution can be written in the following way:

Qν (p, y0, x0) = Aν + Bν x0, for 0 � x0 � y0 − ν, (C1)

Qν (p, y0, x0) = Fν cosh

[
(x0 − y0 − ν)

√
p

D

]
,

for y0 − ν � x0 � y0 + ν, (C2)

Qν (p, y0, x0) = Fν, for x0 � y0 + ν. (C3)

The constants Aν , Bν , and Fν are computed from the following
matching conditions: (a) continuity of the solutions, (b) con-
tinuity of their derivatives at x0 = y0 ± ν, and (c) using the
reactive boundary condition at x0 = 0 according to Eq. (51).
Now, using the matching conditions (a) and (b) yields

Aν + Bν (y0 − ν) − Fν cosh

[
2ν

√
p

D

]
= 0, (C4)

Bν (y0 − ν)
√

D + √
pFν sinh

[
2ν

√
p

D

]
= 0. (C5)

Similarly, the boundary condition (c) at x0 = 0 allows us to
write

Bν = α0 Aν − α0. (C6)

Solving the three equations (C4), (C5), and (C6), we get

Aν (p) = α0
(y0 − ν)

√
p sinh(2ν

√
p/D) + √

D cosh(2ν
√

p/D)

[1 + α0(y0 − ν)]
√

p sinh(2ν
√

p/D) + α0

√
D cosh(2ν

√
p/D)

, (C7)

Bν (p) = −α0

√
p sinh(2ν

√
p/D)

[1 + α0(y0 − ν)]
√

p sinh(2ν
√

p/D) + α0

√
D cosh(2ν

√
p/D)

, (C8)

Fν (p) = α0

√
D

[1 + α0(y0 − ν)]
√

p sinh(2ν
√

p/D) + α0

√
D cosh(2ν

√
p/D)

. (C9)

To establish the connection between the generating function as prescribed in Eq. (49), we first take the ν → 0 limit in the
expressions of the constants Aν (p/2ν), Bν (p/2ν), and Fν (p/2ν). This yields

Aa = lim
ν→0

Aν (p/2ν) = α0(y0 p + D)

(1 + α0y0)p + α0D
, (C10)

Ba = lim
ν→0

Bν (p/2ν) = − α0 p

(1 + α0y0)p + α0D
, (C11)

Fa = lim
ν→0

Fν (p/2ν) = α0D

(1 + α0y0)p + α0D
. (C12)
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All in all, we arrive at the following solution of the generating function Tp(y0, x0):

Tp(y0, x0) =
⎧⎨
⎩

pα0(y0−x0 )+α0D
(1+α0y0 )p+α0D , if 0 � x0 � y0,

α0D
(1+α0y0 )p+α0D , if x0 � y0.

(C13)

Finally, to obtain the distribution P(La, y0, x0) we need to perform the inverse Laplace transform in Eq. (C13), which yields the
full distribution P(La, y0, x0) given by Eq. (52).
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