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Breakdown of intermediate one-half magnetization plateau of spin-1/2 Ising-Heisenberg and
Heisenberg branched chains at triple and Kosterlitz-Thouless critical points
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The spin-1/2 Ising-Heisenberg branched chain composed of regularly alternating Ising spins and Heisenberg
dimers involving an additional side branching is rigorously solved in a magnetic field by the transfer-matrix
approach. The ground-state phase diagram, the magnetization process and the concurrence measuring a
degree of bipartite entanglement within the Heisenberg dimers are examined in detail. Three different ground
states were found depending on a mutual interplay between the magnetic field and two different coupling
constants: the modulated quantum antiferromagnetic phase, the quantum ferrimagnetic phase, and the classical
ferromagnetic phase. Two former quantum ground states are manifested in zero-temperature magnetization
curves as intermediate plateaus at zero and one-half of the saturation magnetization, whereas the one-half plateau
disappears at a triple point induced by a strong-enough ferromagnetic Ising coupling. The ground-state phase
diagram and zero-temperature magnetization curves of the analogous spin-1/2 Heisenberg branched chain were
investigated using density-matrix renormalization group calculations. The latter fully quantum Heisenberg model
involves, besides two gapful phases manifested as zero and one-half magnetization plateaus, gapless quantum
spin-liquid phase. The intermediate one-half plateau of the spin-1/2 Heisenberg branched chain vanishes at
Kosterlitz-Thouless quantum critical point between gapful and gapless quantum ground states unlike the triple
point of the spin-1/2 Ising-Heisenberg branched chain.
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I. INTRODUCTION

For many years one-dimensional quantum spin chains have
become of great scientific interest both from the theoretical
point of view [1–9] as well as from the experimental point
of view [10–17]. Quantum Heisenberg spin chains can, for
instance, exhibit many interesting features in a magnetization
process such as magnetization plateau [18,19], quantum spin
liquid [20–22], or quasiplateau [23,24]. Among these mag-
netization anomalies, the intermediate plateaus should obey
a quantization condition known as the Oshikawa-Yamanaka-
Affleck rule St − mt = integer, where St and mt is a total spin
and total magnetization per elementary unit, respectively [25].

Quantum ground states of the Heisenberg spin chains
ensue and/or break down at quantum phase transitions,
which may be, however, very different in character [3,26–
29]. For instance, the intermediate 3/7-plateau of the mixed
spin-(1/2,5/2,1/2) Heisenberg branched chain terminates at
the Kosterlitz-Thouless quantum critical point [28]. In the
present paper we will examine the ground-state phase di-
agram and magnetization process of the related spin-1/2
Ising-Heisenberg and Heisenberg branched chains, whose
magnetic structure is inspired by the heterobimetallic coordi-
nation polymer [(Tp)2Fe2(CN)6(OCH3)(bap)Cu2(CH3OH) ·
2CH3OH.H2O] (Tp = tris(pyrazolyl)hydroborate, bapH =
1,3-bis(amino)-2-propanol) [30] to be further abbreviated as
Fe2Cu2, which incorporates the highly anisotropic trivalent
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Fe3+ cations and the almost isotropic divalent Cu2+ cations
(see Fig. 1). The magnetic features of the polymeric coor-
dination compound Fe2Cu2 should be described within the
framework of the spin-1/2 XXZ Heisenberg branched chain,
which cannot be solved exactly. However, the trivalent Fe3+

magnetic ions in a low-spin state (S = 1/2) posses a relatively
high degree of the magnetic anisotropy due to unquenched
orbital momentum [31–34]. In this regard we will at first
examine the spin-1/2 Ising-Heisenberg branched chain by
considering the highly anisotropic trivalent Fe3+ ions as the
classical Ising spins and the almost isotropic divalent Cu2+

cations as the quantum Heisenberg spins. This simplification
allows a derivation of exact results for the spin-1/2 Ising-
Heisenberg branched chain and often might be regarded as
a good approximation of its full quantum XXZ Heisenberg
counterpart [23,35–41]. In additions to this, we will adapt
the density-matrix renormalization group (DMRG) method
in order to determine the ground-state phase diagram of the
fully quantum spin-1/2 Heisenberg branched chain, which
will be confronted with exact results for the simpler spin-1/2
Ising-Heisenberg branched chain.

The organization of this paper is as follows. The spin-1/2
Ising-Heisenberg branched chain is introduced and solved
by the use of the transfer-matrix method in Sec. II. The
ground-state phase diagram, magnetization curves, and the
concurrence between the Heisenberg dimers of the spin-1/2
Ising-Heisenberg branched chain are presented in Sec. III. The
most interesting results for the spin-1/2 Heisenberg branched
chain are presented in Sec. IV and finally some summarized
ideas are posted in Sec. V.
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Cu ( =1/2)2+ S
Fe (σ=1/2)3+

FIG. 1. A part of the crystal structure of the heterobimetallic coordination polymer [(Tp)2Fe2(CN)6(OAc)(bap)Cu2(CH3OH) · 2CH3OH ·
H2O] adopted according to the crystallographic data reported in Ref. [30]. Smaller (blue) circles determine positions of the divalent Cu2+

magnetic ions and larger (orange) circles determine lattice position of trivalent Fe3+ magnetic ions.

II. ISING-HEISENBERG BRANCHED CHAIN

Let us consider the spin-1/2 Ising-Heisenberg branched
chain schematically depicted in Fig. 2, which can be defined
through the following Hamiltonian:

Ĥ =
N∑

i=1

{
J
[
�
(
Ŝx

1,iŜ
x
2,i + Ŝy

1,iŜ
y
2,i

)+ Ŝz
1,iŜ

z
2,i

]
+ J1

(
Ŝz

1,iσ̂
z
1,i + Ŝz

2,iσ̂
z
1,i+1 + Ŝz

1,iσ̂
z
2,i

)
− h1

(
Ŝz

1,i + Ŝz
2,i

)− h2σ̂
z
1,i − h3σ̂

z
2,i

}
, (1)

where σ̂ z
i and Ŝα

i (α = x, y, z) denote the spatial components
of the spin-1/2 operators related to the Ising and Heisenberg
spins, respectively. The coupling constant J > 0 stands for
the antiferromagnetic Heisenberg interaction inside of dimeric
Cu2+-Cu2+ units from a backbone of the polymeric chain, the
parameter � determines an exchange anisotropy in this XXZ
Heisenberg interaction, while the coupling constant J1 >

0 (J1 < 0) describes the antiferromagnetic (ferromagnetic)
Ising-type interaction between nearest-neighbor Ising and
Heisenberg spins approximating the magnetically anisotropic
Fe3+ and magnetically isotropic Cu2+ ions, respectively. Last,
Zeeman’s terms h j ( j = 1, 2, 3) are assigned to a coupling
of the Ising and Heisenberg spins with an external magnetic
field, N denotes the total number of unit cells. For simplicity,
periodic boundary conditions σ1,N+1 ≡ σ1,1 are assumed.

J1

J1

J1 J1

J1
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J Ji(S i)
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FIG. 2. A schematic illustration of the spin-1/2 Ising-Heisenberg
branched chain. Dark (blue) circles denote lattice positions of the
Heisenberg spins and light (orange) circles denote lattice positions
of the Ising spins. The notation for an analogous pure spin-1/2
Heisenberg branched chain is given in round brackets whenever it
differs from the spin-1/2 Ising-Heisenberg branched chain.

For further convenience it is advisable to rewrite the Hamil-
tonian (1) as a sum of the cell Hamiltonians,

Ĥ =
N∑

i=1

Ĥi, (2)

where the cell Hamiltonian Ĥi is defined by

Ĥi = J
[
�
(
Ŝx
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)
. (3)

The cell Hamiltonians Ĥi commute, i.e., [Ĥi, Ĥ j] = 0, which
means that the partition function of the spin-1/2 Ising-
Heisenberg branched chain can be written in this form,

Z =
∑
{σ }

Tr e−β
∑

i Ĥi =
∑
{σ z

1,i}

N∏
i=1

∑
σ z

2,i

Tr[S1,i,S2,i]e
−βĤi

=
∑
{σ z

1,i}

N∏
i=1

T
(
σ z

1,i; σ
z
1;i+1

)
, (4)

where β = 1/(kBT ), kB is the Boltzmann’s factor, and T
is the absolute temperature. Tr[S1,i,S2,i] denotes a trace over
degrees of the Heisenberg dimer from the ith unit cell, and
the symbol

∑
{σ z

1,i} marks a summation over all possible spin
configurations of the Ising spins from a backbone chain and
the expression

T
(
σ z

1,i; σ
z
1;i+1

) =
∑
σ z

2,i

Tr[S1,i,S2,i]e
−βĤi (5)

is the effective Boltzmann’s factor obtained after tracing out
spin degrees of freedom of two Heisenberg spins and the
Ising spin σ2,i at lateral branching. To proceed further with
a calculation, one necessarily needs to evaluate the effective
Boltzmann’s factor given by Eq. (5). For this purpose, it
is advisable to pass to a matrix representation of the cell
Hamiltonian Ĥi in the basis spanned over four available states
of two Heisenberg spins S1,i and S2,i,

|↑,↑〉i = |↑〉1,i|↑〉2,i, |↑,↓〉i = |↑〉1,i|↓〉2,i,

|↓,↑〉i = |↓〉1,i|↑〉2,i, |↓,↓〉i = |↓〉1,i|↓〉2,i. (6)

042127-2



BREAKDOWN OF INTERMEDIATE ONE-HALF … PHYSICAL REVIEW E 100, 042127 (2019)

whereas |↑〉k,i and |↓〉k,i (k = 1, 2) denote two eigenvec-
tors of the spin operator Ŝz

k,i with the respective eigen-
values Sz

k,i = ±1/2. After a straightforward diagonalization

of the cell Hamiltonian Ĥi one obtains the following four
eigenvalues:
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4
± J1

2

(
σ z

1,i + σ z
2,i + σ z

1,i+1

)∓ h1

− h2

2

(
σ z

1,i + σ z
1,i+1

)− h3σ
z
2,i,

E3i,4i = −J

4
± 1

2

√
J2

1

(
σ z

1,i + σ z
2,i − σ z

1,i+1

)2 + (J�)2

− h2

2

(
σ z

1,i + σ z
1,i+1
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z
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and the corresponding eigenvectors

|ϕ1,i〉 = |↑〉1,i|↑〉2,i,

|ϕ2,i〉 = |↓〉1,i|↓〉2,i,

|ϕ3,i〉 = c+|↑〉1,i|↓〉2,i + c−|↓〉1,i|↑〉2,i,

|ϕ4,i〉 = c+|↓〉1,i|↑〉2,i − c−|↑〉1,i|↓〉2,i, (8)
where

c± = 1√
2
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(
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√

J2
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)2 + (J�)2
. (9)

Note that the effective Boltzmann’s factor T (σ z
1,i; σ

z
1;i+1) given

by Eq. (5) depends only on two Ising spins from backbone of
the spin chain and can be alternatively viewed as the transfer
matrix defined by

T (σ z
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⎭. (10)

A successive summation over states of a set of the Ising
spins {σ1,i} from the backbone of a spin chain gives within
the standard transfer-matrix approach [42] the following final
formula for the partition function:

Z =
∑
{σ1,i}

N∏
i=1

T
(
σ z

1,i; σ
z
1;i+1

) = Tr T N = λN
+ + λN

−, (11)

which depends on two eigenvalues of the transfer matrix (10),

λ± = T1 + T2

2
±
√(

T1 − T2

2

)2

+ T3T4. (12)

Here the expressions Ti (i = 1, 2, 3, 4) denote specific ele-
ments of the transfer matrix (10) for the following particular
spin states of the Ising spins σ1,i and σ1,i+1,

T1 = T

(
1

2
,

1

2

)
, T2 = T

(
−1

2
,−1

2

)
,

T3 = T

(
1

2
,−1

2

)
, T4 = T

(
−1

2
,

1

2

)
. (13)

At this stage, the exact result for the partition function (11)
can be used to obtain the Gibbs free energy, which is given
in the thermodynamic limit only by the largest transfer-matrix
eigenvalue,

G = −kBT lim
N→∞

1

N
lnZ = −kBT ln λ+. (14)

One can subsequently obtain local magnetizations (and con-
sequently the total magnetization) by differentiating the Gibbs
free energy (14) with respect to local magnetic fields

m1,2 = 1

2

〈
Ŝz

1,i + Ŝz
2,i

〉 = − 1

2N

∂G

∂h1
,

m3 = 1

2

〈
σ̂ z

1,i + σ̂ z
1,i+1

〉 = − 1

N

∂G

∂h2
,

m4 = 〈
σ̂ z

2,i

〉 = − 1

N

∂G

∂h3
,

mt = 1

4
(2m1 + m2 + m3). (15)

To bring insight into a degree of bipartite entanglement
inside of the Heisenberg dimers one may take advantage of
the concurrence [43], which can be expressed in terms of
the local magnetization and the respective pair correlation
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(a) (b)

(c) (d)

FIG. 3. (a) The ground-state phase diagram of the spin-1/2 Ising-Heisenberg branched chain in the J1/J-h/J plane supplemented with
a density plot of the concurrence calculated for the Heisenberg dimers; [(b)–(d)] magnetic-field dependencies of the local magnetizations
(m1,2, m3, m4) and the total magnetizations (mt ) defined according to Eq. (15) at two different temperatures kBT/J = 0.002 and 0.05 for three
different values of the interaction ratio: (b) J1/J = 1.5; (c) J1/J = −0.5; (d) J1/J = −1.5.

functions [44,45]. To this end, one can perform relevant differ-
entiation of the Gibbs free energy (14) with respect to spatial
components of the coupling constant in order to calculate
respective spatial components of the pair correlation function
between the nearest-neighbor Heisenberg spins according to
the formulas

Czz = 〈
Ŝz

1,iŜ
z
2,i

〉 = − ∂ lnZ
N∂ (βJ )

,

Cxx = 〈
Ŝx

1,iŜ
x
2,i

〉 = − ∂ lnZ
N∂ (βJ�)

. (16)

The concurrence can be then calculated from the exact results
for the pair correlation functions (16) and the local magneti-
zation (15) according to the formula [43–45]

C = max

⎧⎨
⎩0; 4|Cxx| − 2

√(
1

4
+ Czz

)2

− m2
1

⎫⎬
⎭. (17)

III. THE MOST INTERESTING RESULTS

In what follows, we will consider the particular case
of the spin-1/2 Ising-Heisenberg branched chain with the
isotropic (� = 1) antiferromagnetic Heisenberg interaction
J > 0, which will henceforth serve as an energy unit when
defining dimensionless interaction parameters J1/J and h/J
measuring a relative strength of the coupling constants and

magnetic field, respectively. For simplicity, we will further as-
sume that all particular local magnetic fields are the same h =
h1 = h2 = h3, which corresponds to assuming equal Landé
g factors of Cu2+ and Fe3+ magnetic ions. By comparing
energies of all lowest-energy eigenstates one can obtain the
ground-state phase diagram of the spin-1/2 Ising-Heisenberg
branched chain as depicted in Fig. 3(a) in the J1/J-h/J plane.
Solid lines in Fig. 3(a) denote discontinuous field-induced
phase transitions, which split the overall parameter space into
three regions labeled as I (I′), II, and III. The microscopic
character of the relevant ground states is schematically shown

I (J1<0)

III

II

I’ >0)(J1

FIG. 4. A schematic illustration of spin arrangements within all
possible ground states of the spin-1/2 Ising-Heisenberg branched
chain. Two arrows within a single site denote quantum superposition
of both spin states, whereas larger (smaller) arrow refers to a spin
state emergent with a greater (smaller) occurrence probability.
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in Fig. 4 and the corresponding eigenvectors are given by

|I, I′〉 =
N/2∏
i=1

{[a+|↓〉S1,2i−1 |↑〉S2,2i−1 − a−|↑〉S1,2i−1 |↓〉S2,2i−1 ]|↑〉σ1,2i−1 |↑〉σ2,2i−1

+ [(a−|↓〉S1,2i |↑〉S2,2i − a+|↑〉S1,2i |↓〉S2,2i ]|↓〉σ1,2i |↓〉σ2,2i},

|II〉 =
N∏

i=1

[b+|↓〉S1,i |↑〉S2,i − b−|↑〉S1,i |↓〉S2,i ]|↑〉σ1,i |↑〉σ2,i ,

|III〉 =
N∏

i=1

|↑〉S1,i |↑〉S2,i |↑〉σ1,i |↑〉σ2,i . (18)

The respective probability amplitudes are defined as

a± = 1√
2

√√√√√1 ±
3J1
2√( 3J1

2

)2 + (J�)2
(19)

and

b± = 1√
2

√√√√1 ±
J1
2√( J1

2

)2 + (J�)2
. (20)

The ground state |I〉 (|I′〉) can be viewed as the modulated
antiferromagnetic phase with a twofold breaking of trans-
lational symmetry, which involves a singletlike state of the
Heisenberg dimers and up-up-down-down spin arrangements
of the Ising spins. The breaking of translational symmetry
is a direct consequence of an energetic equivalence of two
lowest-energy eigenstates |ϕ4,i〉 obtained from Eqs. (8) and
(9) by considering two opposite orientations of the Ising
spins σ1,i = σ2,i = −σ1,i+1 = ±1/2, the regular alternation of
which is required to build the modulated antiferromagnetic
ground states |I〉 and |I′〉 with a twofold symmetry breaking.
Note furthermore that the ground states |I〉 and |I′〉 emergent
for the antiferromagnetic (J1 > 0) and ferromagnetic (J1 <

0) Ising coupling differ from one another just by a relative
orientation of the singletlike state of the Heisenberg dimers
with respect to its surrounding Ising spins. The ground state
|II〉 has character of the quantum ferrimagnetic phase with
other singletlike state of the Heisenberg dimers accompanied
with the fully polarized Ising spins. It is noteworthy that these
ground states have obvious quantum features as exemplified
by nonzero concurrence serving as a measure of bipartite
entanglement within the Heisenberg dimers. Finally, the third
ground state |III〉 is classical ferromagnetic phase with fully
polarized Ising as well as Heisenberg spins. The ground-state
phase boundaries [solid lines in Fig. 3(a)] are given by the
following exact prescriptions:

(i) phase boundary |I〉(|I′〉)/|II〉:

h

J
= 1

2

⎡
⎣
√(

3

2

J1

J

)2

+ 1 −
√(

1

2

J1

J

)2

+ 1

⎤
⎦, (21)

(ii) phase boundary |I′〉/|III〉:

h

J
= 1

4
+ 3

8

J1

J
+ 1

4

√(
3

2

J1

J

)2

+ 1, (22)

(iii) phase boundary |II〉/|III〉:

h

J
= 1

2
+ 3

4

J1

J
+ 1

2

√(
1

2

J1

J

)2

+ 1. (23)

The local and total magnetizations are plotted in Fig. 3(b)
against the external magnetic field for the special case J1/J =
1.5 and two different temperatures. The local magnetization
m1,2 defined as the mean magnetization of the Heisenberg
dimers exhibits only zero magnetization plateau, because the
Heisenberg dimers do not contribute to the total magnetization
up to a saturation field due to their singletlike character in
the phases |I〉 and |II〉 (see Fig. 4). The local magnetizations
m3 and m4, which refer to the magnetization of the Ising
spins within the main chain (m3) and side branching (m4),
respectively, are zero only at low-enough magnetic fields due
to their up-up-down-down spin alignment realized within the
phase |I〉. However, the total magnetization should exhibit at
zero temperature a discontinuous magnetization jump due to
a field-driven phase transition from zero plateau (the phase
|I〉) toward the one-half plateau (the phase |II〉), which relates
to a reorientation of the Ising spins (i.e., the local magneti-
zations m3 and m4) toward the magnetic field. Nevertheless,
it should be noted that at finite temperatures there is no true
magnetization plateau and jump neither in Fig. 3(b) nor in
Figs. 3(c) and 3(d), because the actual magnetization jump
and plateau exist at zero temperature only. Hence, Fig. 3(b)
would suggest that the magnetization curve at low-enough
temperature kBT/J = 0.002 shows a very steep but con-
tinuous rise with the magnetic field indiscernible from the
discontinuous magnetization jump by naked eye, while an
increase of temperature generally causes a gradual smoothing
of the magnetization curve. The second steep increase of the
total magnetization emerges near a saturation field, at which a
spin reorientation of the Heisenberg spins takes place due to
another discontinuous phase transition driven by the magnetic
field at zero temperature.

The local and total magnetizations are depicted in Fig. 3(c)
as a function of the magnetic field for another value of the
interaction ratio J1/J = −0.5. In this parameter space the

042127-5
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phases |I′〉, |II〉, and |III〉 can be realized as the respective
ground states depending on a relative size of the magnetic
field. The only change with respect to the aforementioned
particular case lies in a change of relative orientation of the
nearest-neighbor Ising and Heisenberg spins, which relates
to different character of the Ising coupling constant. At very
low magnetic fields, the phase |I′〉 is realized as the relevant
ground state, whose microscopic character implies zero con-
tribution of all local magnetizations to the total magnetization.
Above the first transition field ht/J ≈ 0.11 the phase |II〉
becomes the ground state with zero contribution of the local
magnetization m1 of the Heisenberg dimers and saturated
values of the local magnetizations m3 and m4 of the Ising
spins. It is obvious from Fig. 3(c) that temperature kBT/J =
0.05 is high enough to destroy zero-magnetization plateau of
the local magnetization m3 and m4.

Last, we have investigated the local and total magneti-
zations in the parameter space supporting only the phases
|I′〉 and |III〉 as the respective ground states. To support this
statement, the local and total magnetizations are plotted in
Fig. 3(d) against the external magnetic field for the special
case J1/J = −1.5. The phase |I′〉 is realized as the ground
state below the saturation field hs/J ≈ 0.30, while the clas-
sical fully polarized ferromagnetic phase |III〉 becomes the
ground state above the saturation field. All local magnetiza-
tions of the Ising and Heisenberg spins behave alike in this
particular case and, thus, they cannot be discerned within the
displayed figure. To bring a deeper insight into a degree of
bipartite entanglement between the nearest-neighbor Heisen-
berg spins (dimers) we will comprehensively examine the
concurrence as a function of the magnetic field and tempera-
ture in three different cuts of the parameter space. It is obvious
from the eigenvectors (18) that the Heisenberg dimers are
in the ground states |I〉 (|I′〉) and |II〉 quantum-mechanically
entangled, whereas the concurrence characterizing bipartite
entanglement achieves in a zero-temperature limit the follow-
ing asymptotic values:

CI = CI′ = 1√(
3
2

J1
J

)2 + 1
, CII = 1√(

1
2

J1
J

)2 + 1
. (24)

It follows from the formulas (24) that Heisenberg dimers are
more strongly entangled in the ferrimagnetic phase |II〉 than
in the modulated antiferromagnetic phase |I〉 (|I′〉) for the
same value of the interaction ratio J1/J . The field dependence
of the concurrence is displayed in Fig. 5(a) for the interac-
tion ratio J1/J = 1.5 and several values of temperature. The
low-temperature asymptotes (kBT/J = 0.01) of the concur-
rence can be understood from the ground-state phase diagram
[Fig. 3(a)] and the formulas (24), which imply existence of
three different ground states |I〉, |II〉, and |III〉 depending on
a relative size of the magnetic field. It follows from Fig. 5(a)
that the concurrence is kept constant at low-enough temper-
atures and then it shows abrupt changes in a vicinity of the
transition fields associated with the magnetization jumps. The
nonzero value of the concurrence up to the saturation field
hs/J = 2.25 at sufficiently low temperatures (kBT/J = 0.01)
proves quantum character of the phases |I〉 and |II〉, while
the zero concurrence at higher magnetic fields h/J > 2.25
confirms classical character of the phase |III〉. Interestingly,

the bipartite entanglement within the Heisenberg dimers is
approximately two-times stronger in the quantum ferrimag-
netic phase |II〉 than in the quantum antiferromagnetic phase
|I〉 for this choice of the interaction constants [see Fig. 5(a)].
An increase of temperature causes a gradual smoothing of
the concurrence, which is successively suppressed by thermal
fluctuations above both quantum ground states |I〉 and |II〉 and
contrarily reinforced above the classical ground state |III〉.

Typical temperature dependencies of the concurrence in
the same cut of the parameter space J1/J = 1.5 are depicted in
Fig. 5(b) for several values of the magnetic field. It is evident
from Fig. 5(b) that the concurrence mostly monotonically
decreases with increasing temperature though it may also
show a more striking nonmonotonous temperature depen-
dence, specifically slightly below the saturation field. Indeed,
the concurrence shows at the saturation field hs/J = 2.25
a gradual thermally induced decline starting from the zero-
temperature asymptotic value C ≈ 0.4 due to a coexistence of
the phases |II〉 and |III〉, while it exhibits a vigorous thermally
induced decline (rise) just below (just above) of the saturation
field h/J = 2.2 (h/J = 2.3) owing to thermal excitations to
the classical ferromagnetic (quantum ferrimagnetic) phase
|III〉 (|II〉).

The concurrence is plotted in Fig. 5(c) against the mag-
netic field at fixed value of the interaction ratio J1/J = −0.5
and a few different temperatures. Under this condition, the
concurrence exhibits stepwise changes close to the transition
fields ht/J ≈ 0.11 and hs/J ≈ 0.64. Apparently, a small rise
of temperature can invoke increase of the concurrence, specif-
ically, the concurrence at zero magnetic field is higher at mod-
erate temperature kBT/J = 0.1 than at very low temperature
kBT/J = 0.01 on account of thermal excitations from the less
entangled phase |I′〉 toward the more entangled phase |II〉. To
support this statement, temperature dependence of the concur-
rence is depicted in Fig. 5(d) for the interaction ratio J1/J =
−0.5 and several values of the magnetic field. The displayed
temperature dependence of the concurrence at zero magnetic
field indeed corroborates a transient strengthening of the
bipartite entanglement within the range of moderate tempera-
tures (kBT/J � 0.2), which is successively followed by a rela-
tively steep decrease at higher temperatures. The concurrence
thus starts from its highest possible value for J1/J = −0.5 in a
range of moderate magnetic fields h/J ∈ (0.11; 0.64), which
stabilize the phase |II〉 in concordance with the ground-state
phase diagram shown in Fig. 3(a). Unlike this, the concurrence
starts from zero above the saturation field in agreement with
the classical character of the phase |III〉 [cf. Fig. 5(c)], but
afterward it shows a marked temperature-induced rise until a
round maximum is reached that is successively followed by a
steep decrease on increasing of temperature. It is worthwhile
to remark that the concurrence approaches zero close to a
threshold temperature kBT/J ∼= 0.9, above which it equals
zero independently of the magnetic field.

Last, we have examined field and temperature dependen-
cies of the concurrence for the interaction ratio J1/J = −1.5,
which is consistent with only two ground states |I′〉 and
|III〉 in accordance with the established ground-state phase
diagram [see Fig. 3(a)]. In this particular case, one observes
an abrupt fall of the concurrence at the saturation field hs/J ≈
0.3, which determines a field-driven phase transition from
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. (a) The concurrence C as a function of the magnetic field h/J (left panels) or temperature kBT/J (right panels) for three selected
values of the interaction ratio: [(a) and (b)] J1/J = 1.5, [(c) and (d)] J1/J = −0.5, and [(e) and (f)] J1/J = −1.5.

the phase |I′〉 toward the phase |III〉. It is apparent from
Fig. 5(e) that the concurrence is gradually suppressed on
strengthening of the magnetic field. The most peculiar temper-
ature dependencies of the concurrence can be detected when
the magnetic field is selected sufficiently close but slightly
below the saturation field [e.g., hs/J = 0.3 for J1/J = −1.5
in Fig. 5(f)]. Under this condition, the concurrence shows at
very low temperature a steep decline until it reaches a local
minimum, and then it passes through a round local maximum
emergent at moderate temperatures until it finally completely
vanishes at the threshold temperature kBTt/|J1| = 1

ln 3 ≈ 0.9.

IV. HEISENBERG BRANCHED CHAIN

Next, let us consider the analogous but purely quantum
spin-1/2 Heisenberg branched chain (see Fig. 2), which can

be defined through the following Hamiltonian:

Ĥ =
N∑

i=1

[
JŜ1,i · Ŝ2,i + J1(Ŝ1,i · Ŝ3,i + Ŝ2,i · Ŝ3,i+1

+ Ŝ1,i · Ŝ4,i ) − h
4∑

j=1

Ŝz
j,i

]
. (25)

Here Ŝ j,i ( j = 1, 2, 3, 4) are standard spin-1/2 operators
assigned to four magnetic ions from the ith unit cell, the
coupling constant J > 0 stands for the antiferromagnetic in-
teraction within the dimeric Cu2+-Cu2+ units of the main
chain, and the coupling constant J1 > 0 (J1 < 0) stands for an-
tiferromagnetic (ferromagnetic) interaction between Cu2+ and
Fe3+ ions (see Figs. 1 and 2). The Zeeman’s term h accounts
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(a) (b)

FIG. 6. The magnetic-field dependence of the total magnetization of the spin-1/2 Heisenberg branched chain for several values of the
interaction ratio: (a) J1/J = 0.5, 1.0, 1.5, 2.0; (b) J1/J = −3.0, −2.0, −1.0, −0.5. Stepwise curves display DMRG data for a finite-size chain
with N = 24 unit cells, while smooth curves are an extrapolation to thermodynamic limit N → ∞.

for the external magnetic field, N denotes the total number
of unit cells and Nt = 4N is the total number of spins. For
simplicity, periodic boundary conditions are also assumed.

To obtain the ground-state phase diagram and magneti-
zation process of the spin-1/2 Heisenberg branched chain
(25), we have performed DMRG simulations by adapting the
subroutine from the Algorithms and Libraries for Physics
Simulations (ALPS) project [46]. It should be mentioned that
the DMRG data were obtained for the spin-1/2 Heisenberg
branched chain with N = 24, 36, and 48 unit cells (i.e., with
the total number of spins NT = 96, 144, and 192), whereas

adequate numerical accuracy was achieved through 12 sweeps
at targeted system size when increasing the number of kept
states up to 1500 during the final sweeps.

The magnetic-field dependence of the total magnetization
is displayed in Fig. 6 for several values of interaction ratio
J1/J . If the coupling constant J1 > 0 is antiferromagnetic,
then the total magnetization of the spin-1/2 Heisenberg
branched chain first displays a zero magnetization plateau,
which ends up at field-driven quantum phase transition toward
a quantum spin liquid terminating at second field-driven quan-
tum phase transition (QPT) toward the one-half magnetization

(a) (b)

(c) (d)

FIG. 7. The magnetic-field dependence of the local magnetizations mj ≡ 〈Ŝz
j,i〉 ( j = 1 − 4) and the total magnetization mt = (m1 + m2 +

m3 + m4)/4 of the spin-1/2 Heisenberg branched chain for several values of the interaction ratio: (a) J1/J = 0.5; (b) J1/J = 1.0; (c) J1/J =
1.5; (d) J1/J = 2.0. Stepwise curves display DMRG data for a finite-size chain with N = 24 unit cells, while smooth curves were obtained
from an extrapolation to thermodynamic limit N → ∞.
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(a) (b)

(c) (d)

FIG. 8. The magnetic-field dependence of the local magnetizations mj ≡ 〈Ŝz
j,i〉 ( j = 1 − 4) and the total magnetization mt = (m1 + m2 +

m3 + m4)/4 of the spin-1/2 Heisenberg branched chain for several values of the interaction ratio: (a) J1/J = −0.5; (b) J1/J = −1.0; (c) J1/J =
−2.0; (d) J1/J = −3.0. Stepwise curves display DMRG data for a finite-size chain with N = 24 unit cells, while smooth curves are an
extrapolation to thermodynamic limit N → ∞.

plateau. The intermediate one-half plateau breaks down at
third field-driven QPT when the investigated spin chain reen-
ters quantum spin-liquid regime, which terminates at fourth
field-driven QPT emergent at a saturation field. For the fer-
romagnetic coupling constant J1 < 0, the total magnetization
successively exhibits a tiny zero magnetization plateau, quan-
tum spin liquid, one-half magnetization plateau and quantum
spin liquid up to a relatively strong ferromagnetic interac-
tion J1/J ≈ −4, at which the intermediate one-half plateau
vanishes from the magnetization curve. It can be seen from
Fig. 6 that a width of one-half plateau becomes narrower
with decreasing of the interaction ratio J1/J . Contrary to this,
zero magnetization plateau extends over a wider range of
the magnetic fields on strengthening of the antiferromagnetic
coupling constant J1 > 0, while it almost remains unchanged
with respective of a relative size of the ferromagnetic coupling
constant J1 < 0.

The magnetic-field dependence of the local and total mag-
netizations of the spin-1/2 Heisenberg branched chain are
plotted in Fig. 7 at zero temperature for several values of the
relative size of the antiferromagnetic coupling constant J1/J .
It is apparent from Fig. 7 that the local magnetizations m2 ≡
〈Ŝz

2,i〉, m3 ≡ 〈Ŝz
3,i〉, and m4 ≡ 〈Ŝz

4,i〉 are positive albeit not yet
fully saturated in a full range of the magnetic fields, while
the local magnetization m1 ≡ 〈Ŝz

1,i〉 changes its sign. It should
be stressed that the local magnetization m4 achieves within
the one-half plateau almost saturated value, while there is
evident a quantum reduction in all other local magnetizations

due to a presence of quantum fluctuations. It is noteworthy
that all local magnetizations generally differ from one another.
However, the local magnetizations may become identical as
for instance the local magnetizations m2 and m3 for the special
value of interaction ratio J1/J = 1.0 in a full range of the
magnetic fields [see Fig. 7(b)] or as the local magnetizations
m2 and m4 for the coupling ratio J1/J = 1.5 within the one-
half plateau [see Fig. 7(c)].

The magnetic-field dependencies of local and total mag-
netizations for the spin-1/2 Heisenberg branched chain with
ferromagnetic coupling constant J1 < 0 are depicted in Fig. 8.
It turns out that all local magnetizations are positive in a
full range of the magnetic fields except the local magnetiza-
tion m2, which may be oriented in opposite to the external
magnetic field (negative) [see Figs. 8(a) and 8(b)]. It is quite
curious that the local magnetization m4 is almost saturated at
weak ferromagnetic coupling constant J1/J � 0 [see Fig. 8(a)
and Fig. 8(b)], which means that it does not principally matter
whether the spins S4,i are described by the notion of classically
Ising or fully quantum Heisenberg spins. Hence, it follows
that the spin-1/2 Heisenberg branched chain should resemble
in this particular limit a magnetic behavior of the spin-1/2
Ising-Heisenberg branched chain. It should be pointed out,
moreover, that the one-half magnetization plateau of the spin-
1/2 Heisenberg branched chain generally shrinks on strength-
ening of the interaction ratio |J1|/J . Due to this fact, the
one-half plateau emerges just within a very narrow range of
the magnetic fields and it becomes almost indiscernible within
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(a) (b)

(c) (d)

FIG. 9. (a) A width of the intermediate one-half plateau versus a reciprocal value of the total number of spins Nt , for a few different values
of the interaction ratio J1/J; (b) upper and lower magnetic fields of the magnetization sector, which might be responsible for intermediate
one-half plateau against a reciprocal value of the total number of spins Nt for the interaction ratio J1/J = −4.0; (c) the total magnetization
as a function of the magnetic field for the interaction ratios J1/J = −3.0 and J1/J = −4.0. Stepwise curves are magnetization data obtained
from DMRG simulation of finite-size chains with the total number of spins Nt = 96 and 144 (i.e., N = 24 and 36 unit cells), while smooth
curves are an extrapolation to thermodynamic limit Nt → ∞; (d) the susceptibility as a function of the magnetic field for the interaction ratios
J1/J = −3.0 and J1/J = −4.0 as obtained from DMRG simulation of finite-size chains with the total number of spins Nt = 96 and 144 (i.e.,
N = 24 and 36 unit cells).

the used scale as depicted, for instance, in Fig. 8(d) for the
interaction ratio J1/J = −3.

Let us examine a breakdown of the intermediate one-half
magnetization plateau of the spin-1/2 Heisenberg branched
chain in a somewhat more detail. A width of the magneti-
zation sector, which corresponds to the intermediate one-half
plateau, is plotted in Fig. 9(a) against a reciprocal value of
the total number of spins Nt for a few different values of
the interaction ratio J1/J . It is quite obvious from Fig. 9(a)
that a spin gap associated with existence of the intermediate
one-half plateau closes only very gradually on strengthening
of the interaction ratio |J1|/J . A proper finite-size analysis
implies that the one-half magnetization plateau (spin gap)
still persists in the thermodynamic limit for the interaction
ratio J1/J = −3.0 and −3.5, while it completely vanishes
below a quantum critical point emergent close the interaction
ratio J1/J ≈ −4.0 [see Fig. 9(a)]. The data extrapolated for
upper and lower critical fields of the intermediate one-half
plateau, which are displayed in Fig. 9(b) for the interaction
ratio J1/J = −4.0, are in accordance with this statement.
Moreover, an exponentially slow suppression of a spin gap
suggests that the intermediate one-half magnetization plateau
terminates at a quantum critical point of Kosterlitz-Thouless
type quite similarly as recently reported for a quantum critical
point of the mixed spin-(1/2,5/2,1/2) Heisenberg branched

chain [28]. While the magnetization curve does not bear
any clear evidence of this type of quantum criticality [see
Fig. 9(c)], the susceptibility should display a pronounced dip
at the relevant quantum critical point and zero value within
the magnetic-field range corresponding to the intermediate
one-half plateau [see Fig. 9(d)].

To confirm all above-described results we have plotted
in Fig. 10(a) the ground-state phase diagram of the spin-
1/2 Heisenberg branched chain in the plane J1/J-h/J . The
ground-state phase diagram totally involves zero and one-half
plateau, quantum spin liquid and fully polarized ferromag-
netic phase. The ground state related to zero plateau becomes
narrower on weakening of the antiferromagnetic coupling
constant (J1 > 0), while it holds very low (but nonzero)
value for all negative values of the ferromagnetic coupling
constant (J1 < 0). Contrary to this, the gapped phase related
to the one-half magnetization plateau becomes narrower on
strengthening of the ferromagnetic coupling constant until it
completely vanishes below a quantum critical point located
around the interaction ratio J1/J � −4.0, at which gapful
one-half plateau phase coexist together with the gapless spin-
liquid phase.

Finally, we have plotted in Fig. 10(b) the ground-state
phase diagrams of the spin-1/2 Heisenberg branched chain
and the spin-1/2 Ising-Heisenberg branched chain in order to
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(a) (b)

FIG. 10. (a) The ground-state phase diagram of the spin-1/2 Heisenberg branched chain in the h/J-J1/J plane; (b) a comparison between
the ground-state phase diagrams of the spin-1/2 Heisenberg branched chain (solid lines) and the spin-1/2 Ising-Heisenberg branched chain
(broken lines). Violet ball denotes Kosterlitz-Thouless critical point.

compare phase boundaries of both studied systems. It follows
from Fig. 10(b) that the intermediate one-half magnetization
plateau of the spin-1/2 Ising-Heisenberg branched chain is
suppressed by a quantum spin liquid. Moreover, the phase re-
lated to zero magnetization plateau of the spin-1/2 Heisenberg
branched chain is realized only at very low magnetic fields
in comparison with zero magnetization plateau of the spin-
1/2 Ising-Heisenberg branched chain. On the other hand, the
phase transition between one-half plateau and saturation is for
both models achieved almost at the same magnetic field when
considering sufficiently small values of the interaction ratio
|J1|/J < 0.25. The most significant discrepancy is that the in-
termediate one-half plateau of the spin-1/2 Ising-Heisenberg
branched chain ends up at a triple point (J1/J ≈ −0.97), while
the one-half plateau of the spin-1/2 Heisenberg branched
chain diminishes at the Kosterlitz-Thouless quantum critical
point (J1/J � −4.0), at which phases related to the one-half
plateau and the quantum spin liquid coexist together.

V. CONCLUSION

In the present work, we have examined the ground-state
phase diagram, magnetization curves, and concurrence of the
spin-1/2 Ising Heisenberg branched chain by the use of the
transfer-matrix method. Besides this, we have performed the
numerical DMRG simulations in order to obtain the ground-
state phase diagram, local and total magnetization of the spin-
1/2 Heisenberg branched chain. We have found three different
ground states in the spin-1/2 Ising-Heisenberg branched chain
depending on a mutual interplay between the magnetic field
and two different coupling constants. The modulated quantum
antiferromagnetic phase with a twofold symmetry beraking
manifests itself in a zero-temperature magnetization process
as zero plateau, the quantum ferrimagnetic phase as the

intermediate one-half plateau and the classical ferromagnetic
phase is trivial fully polarized state. Besides zero and one-half
plateau we have discovered a gapless quantum spin-liquid
phase in a magnetization process of the spin-1/2 Heisen-
berg branched chain. The most interesting finding presented
in this paper is that the one-half plateau of the spin-1/2
Heisenberg branched chain ends up at Kosterlitz-Thouless
quantum critical point, while the one-half plateau of the spin-
1/2 Ising-Heisenberg branched chain terminates at a triple
point. Although the magnetic structure of both studied models
was inspired by the heterobimetallic coordination polymer
Fe2Cu2 [30], the investigated quantum spin chains with only
two different coupling constants J and J1 supposed between
the nearest-neighbor Cu2+-Cu2+ and Fe3+-Cu2+ magnetic
ions have to be refined by the third coupling constant due to
existence of two structurally inequivalent exchange pathways
between the nearest-neighbor Fe3+ and Cu2+ magnetic ions
[30]. A theoretical modeling of magnetic properties of the
heterobimetallic coordination polymer Fe2Cu2 based on the
spin-1/2 Ising-Heisenberg and Heisenberg branched chains
with three different coupling constants thus represents a chal-
lenging task for our future investigations.
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