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Collective performance of a finite-time quantum Otto cycle
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We study the finite-time effects in a quantum Otto cycle where a collective spin system is used as the working
fluid. Starting from a simple one-qubit system we analyze the transition to the limit cycle in the case of a
finite-time thermalization. If the system consists of a large sample of independent qubits interacting coherently
with the heat bath, then the super-radiant equilibration is observed. We show that this phenomenon can boost the
power of the engine. Mutual interaction of qubits in the working fluid is modeled by the Lipkin-Meshkov-Glick
Hamiltonian. We demonstrate that in this case the quantum phase transitions for the ground and excited states
may have a strong negative effect on the performance of the machine. Conversely, by analyzing the work output
we can distinguish between the operational regimes with and without a phase transition.
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I. INTRODUCTION

Bringing the concept of heat engines to the quantum
regime raised new questions on optimal working schemes
for such machines [1–5]. A significant amount of effort has
been invested into the attempt to overcome some classi-
cal limitations using quantum features of the working fluid
(WF) or the heat baths [6–9]. Experimental realizations of
such microscopic engines are already feasible these days.
Recently, successful implementations have been reported in
Refs. [10,11] using trapped ions and in Ref. [12] where nega-
tively charged nitrogen vacancies in diamond were employed.
Numerous theoretical proposals have also been made using
superconducting qubits [13–15] or optomechanical systems
[16,17].

An important direction of research leads toward finite-time
thermodynamics employed in the cycle [18–30]. In this case
the WF is not kept in contact with the heat bath for sufficiently
long time to be considered as fully thermalized before the next
stroke takes place. Starting from an arbitrary initial state, after
several cycles the engine reaches a stable mode of operation
corresponding to a limit cycle in any quantum thermodynamic
diagram. Description of the transition period as well as the
limit cycle itself is then useful to understand the properties
of such an engine. A complementary question is how long it
takes for the system to reach thermal equilibrium (within a
given tolerance) with the heat bath. Obviously, knowing how
to decrease the time needed for the thermalization (which we
simply call thermalization time througout the paper) could
help in gaining more power [31–34].

Similarly, effects of the finite-time duration of the stroke
need to be quantified also for the unitary parts of the cycle in
which an internal parameter of the WF is varied [35,36]. Very
often the optimal working protocol is achieved by quantum
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adiabatic driving where no population transfers between the
energy levels occur. In order to fulfill the adiabatic condition
the evolution must become significantly slow if the system
is driven across the point where the energy levels get very
close to each other. In particular, this is the case in the systems
with a quantum phase transition (QPT) where the energy gap
between the ground state and the first excited state closes
at the critical point in the thermodynamic limit [37,38]. A
similar scenario can take place among the excited states if a
so-called excited-state quantum phase transition (ESQPT) is
formed [39–41]. Even in strictly finite systems where only
precursors of these phenomena appear, their presence may
lead to significant population changes and thus may have a
negative effect on the amount of work extracted. On the other
hand, it has been recently reported that the presence of a
QPT may also have a possitive effect on efficiency of the heat
engine [42,43] so some conclusive statement is needed.

In this paper we aim at investigating the finite-time effects
both in the thermalization strokes and in the evolution of the
WF with some nonthermal parameter. The heat engine will
be driven through the quantum Otto cycle which is briefly
described in Sec. II. In the same section we also introduce
the concept of reference temperature which we will employ
to monitor the evolution of the system during the cycle. In
Sec. III we start with a toy model of a single qubit where we
analytically reproduce the evolution of the system in the plane
“mean energy vs. reference temperature.” Further, we model
the WF by a large-spin system where a significant decrease
in thermalization time is observed and explained in analogy
to super-radiance. We demonstrate a power boost in this
case compared to an incoherent ensemble of a large number
of mutually uncorrelated qubits. Our results in this section
complement the previously reported ones on performance
enhancement due to collective effects in quantum transport
[44–46] or in models of quantum batteries with global in-
teractions [47–51]. Recent publications [8,32–34] also show
the benefits of cooperative many-body effects in context of

2470-0045/2019/100(4)/042126(12) 042126-1 ©2019 American Physical Society

https://orcid.org/0000-0002-4575-7723
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.042126&domain=pdf&date_stamp=2019-10-21
https://doi.org/10.1103/PhysRevE.100.042126


KLOC, CEJNAR, AND SCHALLER PHYSICAL REVIEW E 100, 042126 (2019)

quantum heat engines, namely in Refs. [33,34] a direct link to
Dicke super-radiance [52] is made. In this paper we elaborate
this analogy in more detail, namely we identify an operational
region where power scales as N2 and show that the classical
super-radiant equations written down by Gross and Haroche
[53] can be generalized to the finite-temperature regime.

Finally, in Sec. IV we consider the Lipkin-Meshkov-
Glick (LMG) model [54] in the cycle. This model is well
known to exhibit both a QPT and ESQPTs (see, for example,
Refs. [55–57]) so varying its control parameters may take
the system through the critical point. Similarly to the prior
section, the cyclic evolution is monitored in the plane “mean
energy vs. reference temperature” where the traces of a QPT
are identified. In the end we discuss the effect of criticality on
the performance of the engine and put our results in context
with other works on a similar topic.

II. TECHNICAL BACKGROUND

Throughout the paper we work with the units h̄ = 1 and
kB = 1.

A. Quantum Otto cycle

The standard quantum Otto cycle consists of four strokes,
see Fig. 1. The WF is initially in thermal equilibrium with the
cold reservoir Tc, and then it is decoupled from it and under-
goes a unitary (thus isentropic) evolution with a nonthermal
parameter λ during the first stroke 1 → 2. In the second stroke
2 → 3 it is brought into contact with the hot reservoir Th while
the parameter λ is fixed. At the end of the stroke the WF is in
thermal equilibrium with the hot bath. In a similar way the
WF reaches its initial state after the subsequent strokes 3 → 4
and 4 → 1.

Strictly speaking the perfect thermal equilibration is
achieved in infinite time. This idealized operational mode,
however, harvests work at zero power. So whenever we refer
to any state as reaching thermal equilibrium (or being fully
thermalized) in a finite time we implicitly mean “within a
certain tolerance.”

Heat Qh injected into the WF during 2 → 3 and heat Qc

released during 4 → 1 can be expressed as

Qh = Tr{Hf (ρ3 − ρ2)}, Qc = Tr{Hi(ρ1 − ρ4)}, (1)

where we denoted Hi = H (λi ), Hf = H (λ f ), ρα for α =
{1, 2, 3, 4} represents the density matrix in the corresponding

FIG. 1. Schematic Otto cycle. S is entropy and λ a nonthermal
control parameter of the WF.

stages of the cycle, cf. Fig. 1. Formulas in Eqs. (1) are
constructed in the way that if the heat is transferred into the
WF, then Q > 0 and if transferred out, then Q < 0. As no heat
is transferred between the WF and the reservoirs in the strokes
1 → 2 and 3 → 4, the first law of thermodynamics gives the
amount of work per closed cycle as W = −(Qh + Qc). This
formula can be used for the finite-time operational mode of
the engine as well, provided that the limit cycle has been al-
ready reached. Note that in our convention the extracted work
has negative sign W < 0 (let us denote this quantity simply
as W ′ = −W ). The efficiency of the engine η = W ′/Qh is
bounded by the Carnot efficiency ηC = 1 − Tc/Th.

B. Reference temperature

For any state of the system described by a density matrix
ρ and Hamiltonian H we can define a reference thermal state
[58,59] ρ∗ by equating the entropies S(ρ) = −Tr{ρ ln ρ} and
imposing the Gibbs form of ρ∗

ρ∗ = e−β∗H

Tr{e−β∗H } , S(ρ) = S(ρ∗). (2)

Quantity β∗ is referred to as an inverse reference temperature
(we define also the reference temperature T ∗ = 1/β∗). When
restricted to positive values only β∗ > 0 it can be uniquely
assigned to any state via Eq. (2). If one thinks of entropy from
the viewpoint of information theory, then the corresponding
thermal reference state ρ∗ minimizes the energy while keep-
ing the same amount of information. The energy difference
between the actual state and the thermal reference state is
used to set the upper bound on ergotropy, i.e., the maximal
extractable work with unitary transformations [58].

Generally, the reference temperature is not a real temper-
ature of the system which may be in an arbitrary nonequilib-
rium state. One example where it is, however, so is the case
of a qubit. Indeed, any diagonal qubit state with decreasing
populations as a function of energy can be considered as
thermal. In other cases the reference temperature can still
provide some intuitive insight. When the Hamiltonian H is
constant in time, the state ρ may still change either due to
unitary evolution, Lindblad evolution, and so on. Then the
inverse intrinsic temperature β∗ becomes time dependent. One
can show that

dS

dt
= −dβ∗

dt
β∗(t )[〈H2〉∗ − 〈H〉2

∗]. (3)

Since the expression in brackets is always positive, it means
that the entropy increases when the reference temperature
increases and vice versa.

More specifically, for a Davies-Lindblad map—
microscopically implementing a thermal reservoir at inverse
temperature β—one can express the change of the system
entropy also as [60]

dS

dt
= βQ̇ − Tr{(Lρ)[ln ρ − ln ρβ]}, (4)

where ρβ just denotes the thermal Gibbs state with tempera-
ture β and L is the evolution superoperator with Lρβ = 0. In
particular, the second term is always positive due to Spohn’s
inequality −Tr{(Lρ)[ln ρ − ln ρβ]} � 0 (see Refs. [1,61] and
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references therein). The quantity Q̇ denotes the heat current
entering the system from the reservoir.

From this, we can conclude (i) if the heat current is
positive, then the reference temperature must increase, and (ii)
if the reference temperature decreases, then the heat current
must be negative. However, we cannot infer the corresponding
opposite, i.e., an increasing reference temperature does not
imply that the heat current is positive.

C. Fidelity

There exist several measures on the space of density ma-
trices which quantify the distance between individual states.
In the present work we use fidelity which takes two density
matrices ρ and σ as arguments [62]

F (ρ||σ ) = Tr{
√√

ρσ
√

ρ}2. (5)

It will be used below to monitor the departure of the actual
state of the WF from the thermal reference state.

In principle, any other measure could be used with the
same qualitative results. The reasons why we favor fidelity
is that it is symmetric F (ρ||σ ) = F (σ ||ρ) and bounded
0 � F (ρ||σ ) � 1 where the maximum is achieved for ρ =
σ . Moreover, for pure states ρ = |φρ〉〈φρ |, σ = |φσ 〉〈φσ | it
reduces to the simple form F (ρ||σ ) = |〈φρ |φσ 〉|2 having a
direct intuitive meaning.

III. NONINTERACTING SPIN MODEL

Due to the absence of interaction, we neglect in this section
all effects of coherences in the eigenbasis of the WF Hamil-
tonian. They would decay during thermalization anyway and
are not restored during the unitary strokes. Therefore the
only genuinely quantum feature in this section is the discrete
spectrum of the WF.

A. Single qubit

We start by considering the WF composed of mutually
noninteracting spins (qubits), first treating a single one only

H (t ) = −λ(t )

2
ωσz, (6)

where λ(t ) is a time-dependent dimensionless parameter and
σz is the Pauli matrix. Parameter ω defines the energy scale of
the model.

This model was used to set benchmark conditions on the
performance of the Otto cycle [63,64]. As there is no inter-
action in unitary strokes 1 → 2 and 3 → 4, only the energy
gap between the levels is altered and the process is inherently
quantum adiabatic (classically, “adiabatic” just means no heat
exchange, so any unitary stroke would always be adiabatic).
For the same reason the density matrix stays unchanged in
these strokes, i.e., ρ1 = ρ2 and ρ3 = ρ4. Using Eqs. (1), the
efficiency can be expressed simply as

η = 1 − λi

λ f
, (7)

where λi and λ f are the initial and final values of the parameter
λ, respectively (assuming λi < λ f ).

FIG. 2. Single qubit in Otto cycle with parameters λi = 1, λ f =
3, Tc = 1ω, Th = 8ω, γ = 0.1ω. (a) Cycle with a full thermaliza-
tion. The numbers in circles correspond to Fig. 1. The dotted curves
are analytic. (b) A visual demonstration of the Carnot bound. For
description see the main text. (c) System approaching the limit cycle
in the case of a finite-time thermalization. Duration of the contact
with the heat baths is fixed as tth = 1ω−1. The arrows show how the
limit cycle is reached by “winding” around the full thermalization
cycle (plotted with dotted curves).

The master equation to model the thermalization strokes
can be written as follows [65,66]:

ρ̇ = i
λ

2
ω[σz, ρ] + γ (1 + nb)D[σ+]ρ + γ nbD[σ−]ρ, (8)

with the Lindblad dissipators D[O]ρ = OρO† − 1
2 {O†O, ρ}.

The temperature of the heat bath β = 1/T with T ∈ {Tc, Th} is
contained in the Bose-Einstein distribution factor nb = (eβλ −
1)−1, where γ denotes the dissipation rate. Such a Lindblad
equation arises from the subsequent application of Born-
Markov and secular approximations [65], and we therefore
expect it to be valid in the regimes γ β 	 1 and λω 
 γ .

We will study the evolution of the system in the plane
〈E〉 × T ∗, where 〈E〉 is the mean energy and T ∗ = 1/β∗ is
the reference temperature. We stress again that in a two-
level system any diagonal state with decreasing populations
with energy can be considered as thermal so the reference
temperature is directly linked with the thermodynamic one.
In Fig. 2(a) the full Otto cycle with a single qubit is depicted.
The cycle can be reconstructed analytically.

The unitary parts 1 → 2 and 3 → 4 are unavoidably quan-
tum adiabatic and they show linear dependence between T ∗
and 〈E〉. The occupation probabilities for the excited pe and
the ground states pg remain constant. Suppose mean energy
〈E〉0 and the corresponding temperature T0 are known for a
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certain value λ0. We can then write

〈E〉λ = −λ

2
ωTr{σzρ} ⇒ 〈E〉λ

〈E〉0
= λ

λ0
, (9)

pe ∝ e− λ0ω

2T0 = const ⇒ T ∗
λ = λ

λ0
T0. (10)

Combining Eqs. (9) and (10) we obtain

T ∗ = T0

〈E〉0
〈E〉. (11)

For example, in position 1 of the cycle the system is at
temperature T0 = Tc. The corresponding mean energy can be
computed 〈E〉0 ≈ −0.231ω. From Eq. (11) we obtain the
evolution in Fig. 2(a) between 1 → 2. Similarly, the evolution
between 3 → 4 can be obtained by considering T0 = Th (at
point 3) and 〈E〉0 ≈ −0.278ω.

Thermalization in strokes 2 → 3 and 4 → 1 is performed
with λ fixed. Along the thermalization process we always
write the occupation probability of the excited state in the
form of a thermal state

pe = e− λω
2T ∗

Z (T ∗)
= 1

1 + e
λω
T ∗

, (12)

where Z (T ∗) is the partition sum. Considering 1 = pe + pg,
the mean energy can be expressed as 〈E〉/ω = λ

2 (2pe − 1).
Combining this with Eq. (12) we can express

T ∗ = λω

ln
(

λω−2〈E〉
λω+2〈E〉

) . (13)

The map 〈E〉 × T ∗ can provide some insight simply based
on visual inspection. As we change parameter λ in the unitary
strokes we effectively “heat up” or “cool down” the system
in a linear way. For example, in the stroke 1 → 2, there
always exists a point where this linear dependence reaches the
temperature of the heat bath Th, see Fig. 2(b). If by changing
λ f this point is crossed, then the machine cannot work as
a heat engine because no heat is transferred from the heat
reservoir in the subsequent stroke. According to Eq. (10)
the relation between the initial and final temperature in the
stroke is T ∗

f = λ f

λi
T ∗

i . Considering we start from the thermal
equilibrium state of the cold reservoir Ti = Tc, positive work
can be extracted in the cycle only if Tf < Th. We obtain the
condition λ f /λi < Th/Tc, which guarantees that the efficiency
given by Eq. (7) is bounded by Carnot’s value ηC .

Now we prepare the WF in a thermal equilibrium with the
cold bath at Tc and evolve it in a way that in the thermalization
segments of the cycle it will be in contact with the heat
bath for only tth = 1ω−1. During this time the WF is unable
to fully thermalize, see Fig. 2(b). After a few cycles the
system reaches a stable operational mode represented by a
limit cycle in the plane 〈E〉 × T ∗ which is approached by
“winding” around the full thermalization cycle. The reason
that the evolution does not deviate from it is grounded in the
fact that during the cycle the population distribution in the
qubit WF stays precisely thermal. So the unitary evolution
always oscillates between the thermalization curves given by
Eq. (13) for λi and λ f . As the reference temperature coincides
with the thermodynamic one for a two-level system, the stable
mode of operation is equivalent to a fully thermalized Otto

FIG. 3. Collective spin system (14) in Otto cycle with parameters
j = 20, λi = 1, λ f = 3, Tc = 1ω, Th = 8ω, γ = 0.1ω. (a) Cycle
with a complete thermalization. The numbers in circles correspond
to Fig. 1. The dotted curves represent truly thermal states for λi and
λ f . (b) Distance between the actual state ρ and the thermal reference
state ρ∗ during the thermalization stroke 2 → 3 measured by fidelity
F . (c) System approaching the limit cycle in the case of a finite-time
thermalization. Duration of the contact with the heat baths is fixed
as tth = 0.1ω−1. The dotted cycle represents the full thermalization
case.

cycle working between different effective heat baths. Their
temperatures T eff

c , T eff
h can be identified as the lowest and

highest points of the limit cycle, respectively. The efficiency
of such a machine is still given by Eq. (7) and is bounded
by Carnot value given by the real bath temperatures Tc, Th,
so it does not differ from the fully thermalized regime. The
work extracted in a cycle is smaller but can be gained faster
compared to the case when one operates the machine between
the real heat baths with temperatures T eff

c and T eff
h . So

the finite-time machine can outperform the one with fully
thermalized strokes in terms of the power output as will be
explicitly shown later.

B. Collective spin model, super-radiant effect

In this section we consider the Hamiltonian of N = 2 j
copies of a single qubit written using collective spin operators

H (t ) = −λ(t )ωJz, Jα =
2 j∑

i=1

σ (i)
α

2
, α = x, y, z. (14)

If they thermalize incoherently (without any mutual corre-
lations), then the previous section is applicable as there are
N independent qubits forming the WF. Here we consider
coherent dissipation [45,67] with J± = Jx ± iJy according to
the equation

ρ̇ = iλω[Jz, ρ] + γ (1 + nb)D[J+]ρ + γ nbD[J−]ρ. (15)

In Fig. 3(a) we show the full Otto cycle with the system
of the size j = 20. In many aspects it behaves similarly to the
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single qubit case. Again, the density matrix does not change
during the unitary strokes and the changes of λ only uniformly
modify the gaps between the levels. If originally the WF was
in the thermal state, then varying λ effectively “heats up” or
“cools down” the WF. The reason is simply that the distri-
bution of occupation probabilities is only uniformly stretched
or shrunk and so keeps its thermal nature. This means that
Eq. (11) for quantum adiabatic strokes is still valid and the
reference temperature coincides with the thermodynamic one.
In the same way as discussed in the previous Sec. III A one
can conclude that the efficiency is still given by Eq. (7) and
bounded by the Carnot value.

During the thermalization parts of Fig. 3(a) it is, however,
not guaranteed that the system passes through truly thermal
states so T ∗ cannot be generally associated with thermody-
namic temperature. As can be numerically verified, during
the stroke the WF deviates from the thermal state with T ∗
but it still stays remarkably close to it. This is visible in
Fig. 3(b) where the distance between the actual state ρ and the
reference thermal state ρ∗ expressed via fidelity (5) is plotted.
One can see that the maximal deviation is of order 10−5 so the
reference thermal state approximates the real state very well.

The evolution of the finite-time heat engine with tth =
0.1ω−1 is depicted in Fig. 3(c). The limit cycle is formed in
a similar way as in a single qubit case. However, now the
equivalence to a fully thermalized cycle with two effective
heat baths is only approximate because of the arguments in
the paragraph above.

As has been already pointed out, for any j the efficiency
is still the same regardless of the operational mode (fully
thermalized vs. finite time). Work extracted in the limit cycle
is apparently decreasing by making tth smaller. However,
the system can run through the limit cycle very quickly, so
the power of the machine in this setting can overcome the
mode with full thermalization. Indeed, in Fig. 4 we present
the dependence of power P as a function of the duration of the
thermal strokes tth. Power is computed as P = W ′

c /tc, where
W ′

c is the work output in the limit cycle and tc is its duration.
As in the current setting the unitary strokes can be arbitrarily
fast, we simply put tc = 2tth.

Generally, for smaller values tth we can get higher power
from the system regardless of the size j. For any j the power
per limit cycle is a monotonously decreasing function of tth.
There also exists a certain value tth = tT (thermalization time)
where the WF can be considered as fully thermalized and so
by further enlarging tth, one does not extract any more work.
As a result, for tth > tT the power must behave simply as
∝1/tth.

The maximal power output could be naively extracted by
taking tth → 0 but this limit is singular (for tth = 0 there is
no contact with the baths so the work output is zero) and,
of course, practical realization of very small values of tth is
limited. Nevertheless, the results in Fig. 4 show that operating
the engine in the regime tth < tT is beneficial for the power
output.

Now we turn our attention to the performance of the heat
engine as a function of j. We express Eq. (15) in the eigenba-
sis Jz|m〉 = m|m〉 and focus on the dynamics of the diagonal
terms ρm ≡ 〈m|ρ|m〉 (the coherences evolve independently

FIG. 4. Power of the collective-spin heat engine as a function
of the duration of the thermal strokes tth. The curve for j → ∞
is analytic according to Eq. (17). Parameters are Tc = 1ω, Th =
8ω, λi = 1, λ f = 3, γ = 0.1ω. Inset: Power as a function of the
size of the system j computed for fixed tth = 1ω−1 (denoted with
a thin vertical line in the main part) and two different values of Th

as indicated (other parameters are the same as in the main part of
the figure). The dashed curve represents the quadratic fit for j � 5.
The dotted line indicates the saturation value of power P ≈ 12.26ω2

[given by Eq. (17)] for the Th = 40ω bath. The maximal power for
the Th = 80ω bath is P ≈ 25.59ω2.

and decay during the thermalization)

ρ̇m = γ (1 + nb)( j + m)( j − m + 1)ρm−1

+ γ nb( j − m)( j + m + 1)ρm+1

− γ (1 + nb)[ j( j + 1) − m(m + 1)]ρm

− γ nb[ j( j + 1) − m(m − 1)]ρm. (16)

The Clebsch-Gordon coefficients in front of the terms ρm±1

are of order j at both edges of the spectrum 〈Jz〉 ≈ ± j,
whereas in the central region 〈Jz〉 ≈ 0 they scale as j2. The
latter coefficients are responsible for the well-known super-
radiant relaxation at zero temperature [52,53]. Our case gen-
eralizes the situation to the finite-temperature regime; never-
theless, due to the large Clebsch-Gordon coefficients we can
still expect some super-radiant N2 (or j2) scaling of the engine
when eigenstates with m ≈ 0 are populated.

The inset of Fig. 4 shows that this scaling can appear in
power output of the machine operated at the fixed time tth,
however, in a rather small domain of values j. The reason
is that in order to observe the super-radiant enhancement, at
least one of the thermal reservoirs must have sufficiently large
temperature so that the 〈Jz〉 ≈ 0 region becomes populated
(in the inset of Fig. 4 we consider Th = 40ω and Th = 80ω).
Obviously, for growing j one would need higher and higher
temperatures to keep this region occupied. So the initial
quadratic scaling, representing a super-radiant boost in power,
reduces to the linear with growing j, unless the hot reservoir
is kept at infinite temperature.
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The inset of Fig. 4 also shows that for j → ∞ the power
output saturates at the maximal value P. Maximal power P as
a function of tth can be computed analytically and is shown
in the main part of Fig. 4. The saturation results from the
maximal extractable work harvested in the large- j limit W

′
c =

lim j→∞ W ′
c which is finite. Using Eqs. (1) and the fact that in

our setting ρ1 = ρ2 and ρ3 = ρ4 (as was already pointed out)
we obtain

P = W
′
c

tc
= �λω

2tth

eβcλiω − eβhλ f ω

(eβhλ f ω − 1)(eβcλiω − 1)
, (17)

where �λ = λ f − λi. The same result would be obtained for
an adiabatically driven harmonic oscillator with frequency
λ(t )ω [3].

If one inserts the values of λi = Tc/ω and λ f = Th/ω

so that the Carnot maximal efficiency (7) is achieved, then
Eq. (17) gives zero power output, as expected. The efficiency
at the maximum power is well approximated by the Curzon-
Ahlborn (Chambadal-Novikov) value [68–70],

ηCA = 1 −
√

Tc

Th
, (18)

which is reached by setting parameters λi = √
Tc/ω and λ f =√

Th/ω. The corresponding performance is then

PCA = (
√

Th − √
Tc)

√
ω

2tth

e
ω
Tc − e

ω
Th

(e
ω
Th − 1)(e

ω
Tc − 1)

. (19)

More precise analytic estimations on the efficiency at maximal
power which employ the same or similar systems can be found
in Refs. [21,26,27,71,72].

Let us compare the current situation to that of independent
qubits with incoherent dissipation. We already showed that
there exists a region where the power is boosted as N2

compared to the incoherent case where one simply gets the
linear scaling. The growth of power is bounded by P from
Eq. (17) and so the quadratic dependence occurs only when
the machine is operated at tth < tT .

Now we focus on the regime tth ≈ tT . Work extracted in a
fully thermalized cycle for a single qubit is

W ′
qb = �λω

eβcλiω − eβhλ f ω

(eβhλ f ω + 1)(eβcλiω + 1)
. (20)

Obviously, for N such qubits we gain work of the total amount
NW ′

qb which goes to infinity with N = 2 j → ∞. On the other
hand, when these qubits dissipate coherently their work output
is finite in j → ∞ as shown in Eq. (17). Does that imply
that the large sample of incoherently dissipating qubits should
now be favored in terms of power? Not really. In reality, the
opposite statement is true.

The key observation is that W ′
qb as well as W

′
c are reached

under the condition of a fully thermalized cycle and so a
relevant comparison of the power output must be made for
the precise corresponding thermalization times tT . Figure 5
shows the dependence of tT on the size of the system j for the
coherent case. We observe that tT decreases as 1/ j ∼ 1/N . In
contrast, for the incoherent case, essentially, the thermaliza-
tion time corresponds to the one of a single qubit tqb

T regardless
of the size of the ensemble.

FIG. 5. Thermalization time tT as a function of j according to
Eq. (15). Fidelity F (ρ||ρTf ) was used as a measure of the distance
between the actual state ρ and the final thermal state ρTf , see Eq. (5).
The case shown corresponds to cooling of the thermal state from
Ti = 4ω to Tf = 1ω with λ = 1 fixed, γ = 0.1ω. The tolerance to
establish tT was chosen as 1 − F � 10−5. The green curve is a 1/ j
fit.

So an optimal setting to harvest work W ′
qb or W

′
c is to

operate the machine with the corresponding tqb
T or tT (N ). We

define a relative power output at these optimal times for the
large system limit as

P = lim
N→∞

P[tT (N )]

NPqb
(
tqb
T

) , (21)

where Pqb = W ′
qb/tc is a single qubit performance in the cycle.

Due to the dependence tT (N ) = α/N the limit in Eq. (21) is
nonzero. Apparently, the constant α can be read off as the
value tT (N = 1). As the fitting function in Fig. 5 corresponds
to the numerical data well even in the region of small j, we
approximate α by the real single qubit thermalization time tqb

T .
Thus we obtain

P ≈ coth

(
βhλ f ω

2

)
coth

(
βcλiω

2

)
> 1, (22)

showing that the power output is larger in the case of coherent
dissipation.

Now it is clear that the coherent dissipation is beneficial
in terms of a power gain both in the region tth < tT and
tth ≈ tT (region tth > tT is generally unfavorable as no further
work is extracted). As already mentioned, this cooperative
boost in power represents a close analog of the Dicke super-
radiance phenomenon, i.e., the collective enhancement of
coherent spontaneous emission from a dense ensemble of
atoms [33,52,53]. In the original setting the atoms interact
with each another through a common radiation field. In anal-
ogy to that the interaction among the qubits in the current
case is mediated by a common heat bath and the collective
dissipators.

Pushing this analogy forward, motivated by Ref. [53] we
derive the equation for the time evolution of the expectation
value of Jz using Eq. (15)

˙〈Jz〉 = −γ (1 + 2nb)〈Jz〉 − γ
〈
J2

z

〉 + γ j( j + 1). (23)

Applying the mean-field approximation 〈J2
z 〉 ≈ 〈Jz〉2 the equa-

tion can be solved analytically. We further denote m(t ) ≡ 〈Jz〉
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FIG. 6. Analytic solution to the thermalization from a thermal
state of Ti = 8ω to Tf = 4ω using Eq. (23) for three different values
of j. We define �m(t ) = m(t ) − m0. Value λ = 1 is fixed, γ = 0.1ω.
The dotted lines are the numerical solutions.

and consider it to be continuous. The mean-field solution to
Eq. (23) is

m(t ) = − 1
2 (1 + 2nb) + C tanh [Cγ (t − t̃ )],

C = 1
2

√
4 j( j + 1) + (1 + 2nb)2. (24)

Equation (24) gives qualitatively the same type of time depen-
dence m(t ) as in the standard super-radiant setting [53]. Time
shift t̃ is determined by the initial value of m0 ≡ m(0). If the
initial state is thermal with initial inverse temperature βi, then

m0 = Tr{Jze−βiH }
Tr{e−βiH } . (25)

The value t̃ can then be expressed (using exponential expan-
sion of hyperbolicus tangent)

t̃ = 1

2Cγ
ln

(−1 + 2C − 2m0 − 2nb

1 + 2C + 2m0 + 2nb

)
. (26)

It is negative and converges to 0 for j → ∞. This is different
from the standard super-radiance where t̃ would define the
time of the super-radiant burst (so apparently its value must
be positive). However, qualitatively the solution is the same
in this case and explains the speed-up in thermalization. This
is demonstrated in Fig. 6 where the simple analytic solution
given by Eq. (24) shows how the steady state given by
�m(t ) = m(t ) − m0 = const is reached faster for growing j.
The analytic formula is also compared with the numerical
results. We see the improvement of the mean-field approxi-
mation as j becomes larger.

The solution (24) can as well be used to show the 1/ j
dependence in the thermalization time tT for large j as
depicted in Fig. 5. From Eq. (24) one obtains the analytic
approximation of the steady state considering limit t → ∞,

mss = C − 1
2 (1 + 2nb). (27)

We can represent the “fidelity” as the distance

dist(t ) = |mss − m(t )|
mss

, (28)

and we can introduce a condition that we consider the
system to be thermal if dist(t ) < ε where ε defines the

precision. Considering j 
 1 and setting t̃ = 0 for the sake
of simplicity, one obtains the condition for tT

1 − tanh ( jγ tT ) = ε, (29)

from which the dependence tT ∝ 1/ j is clear.

IV. LIPKIN-MESHKOV-GLICK MODEL

In this section we turn to the situation when the spins
forming the WF mutually interact. We consider a collective
long-range interaction of the the LMG type [54]. Due to
the interaction the unitary evolution is generally quantum
nonadiabatic, unless sufficiently slow. For the same reason the
coherences are built up in the basis of Jz.

A. The protocol

The LMG Hamiltonian is taken in the form

H (t ) = −λ(t )ωJz − (t )ω

N
J2

x , N = 2 j. (30)

The Hamiltonian is time dependent through the dimensionless
control parameters λ(t ) and (t ). Similarly to the previous
section, parameter ω sets the energy scale of the system.
Hamiltonian (30) conserves parity � = eiπ (Jz+ j) and so the
states from different parity sectors do not interact.

As we want to be able to model the thermalization strokes
with Eq. (15) we have to guarantee that during these segments
of the cycle (t ) = 0. So we consider the following protocol
for varying the parameters during the unitary strokes:

λ(t ) = λi[1 − s(t )] + λ f s(t ), (31)

(t ) = 4̄s(t )[1 − s(t )]. (32)

The function which inserts the time dependence is a simple
linear ramp s(t ) = t/tu where tu defines the overall duration
of a unitary stroke. One can easily check that for t = 0 and
t = tu the system is described by a noninteracting Hamiltonian
(14). Constant parameter ̄ defines the maximal value of (t )
reached during the stroke.

In our protocol the LMG model is coupled to the thermal
baths with (t ) = 0 and we focus on the system with large j.
Therefore, the findings of the previous section on collective
equilibration are directly applicable. In the following we
always consider full thermalization in the cycle (again, within
a given tolerance). We focus solely on the effects of finite-time
unitary strokes as they are crucial for the work and power
output of the engine in this setting.

B. Criticality and the reference temperature

The LMG model exhibits a QPT between the normal and
the symmetry-broken phase at λ(t ) = (t ). This ground-state
QPT is accompanied by a chain of ESQPTs in the symmetry-
broken phase, i.e., for (t ) > λ(t ) [55–57]. As for t = 0 and
t = tu the system is in the normal phase, whenever the pre-
vious inequality of parameters is satisfied during the stroke,
the critical point has been crossed. In Fig. 7(a) we present
an example of how the energy levels evolve in the protocol
given by Eqs. (31) and (32). The abrupt change of the ground
state with t corresponds to a QPT which is crossed twice. In
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FIG. 7. (a) Energy spectrum of the LMG model during the
unitary stroke as a function of time. The blue full lines correspond
to even parity while the red dashed lines to odd parity. Parameters
of the model are j = 20, λi = 1, λ f = 3, ̄ = 15. For t = 0 and
t = tu the energy spectrum is equidistant. (b) Detail of the spectrum
from panel (a), the QPT and a chain of ESQPTs are marked. (c) A
sketch of the dependence (λ). If the protocol is critical, then for
certain values of λ the system enters the symmetry-broken phase.

Fig. 7(b) a detail of the spectrum is shown indicating the QPT
critical point and a chain of ESQPTs manifested by avoided
crossings among the excited levels. In order to highlight the
effect of a QPT, we work with relatively low temperatures
of both heat baths. As a result, only those ESQPTs in a
close vicinity to the QPT critical point are relevant when
driving the system through the critical region. Figure 7(c)
shows a sketch of the mutual dependence of  and λ. The
critical protocol corresponds to the situation when the sys-
tem enters and leaves the symmetry-broken phase during the
stroke.

A QPT as well as the associated ESQPTs are characterized
by vanishing energy gaps between the neighboring energy
levels in the N → ∞ limit, which obviously represents an
obstacle for quantum adiabatic driving. In the following part
we investigate how the finite-time quantum nonadiabatic
driving through the critical region affects the heat engine
performance.

In Fig. 8 the cycles for several values of the duration of
the unitary strokes tu are presented (we suppose the full ther-
malization in the corresponding strokes). Parameters λi, λ f ,
and ̄ are selected in the way that the QPT is crossed during
the unitary evolution. In this case the reference temperature
no longer approximates the thermodynamic one; however,
still some valuable information can be gained from its be-
havior during the cycle. First, because of its definition (2)
the reference temperature inherently contains information on
the structure of energy levels of the system. Indeed, in all
panels of Fig. 8 one can identify specific “bumps” in the
unitary parts related to the the system entering or leaving the
symmetry-broken phase [in Fig. 8(b) their position is pointed
out explicitly by circles]. For relatively moderate N/2 = j =
20 these precursors may seem a little weak; nevertheless,

FIG. 8. Quantum nonadiabatic evolution during the unitary
strokes of the LMG model. The thermalization strokes are considered
as perfect. The black dotted lines correspond to the fully thermalized
cycle with no interaction as in Fig. 3. The panels differ according to
the finite value of the time tu of the unitary strokes. (a) tu = 6ω−1,
(b) tu = 8ω−1, (c) tu = 10ω−1, (d) tu = 15ω−1, (e) tu = 20ω−1, and
(f) tu = 100ω−1. The parameter value ̄ = 3 guarantees that during
the unitary stroke the system crosses the QPT. Other parameters are
j = 20, λi = 1, λ f = 3, Tc = 1ω, Th = 8ω, γ = 0.1ω.

it can be numerically proven that with growing N these
structures become much sharper.

The reason why the reference temperature forms a dip in
N → ∞ can be viewed from the following. With methods
used in Refs. [73,74] the Hamiltonian (30) can be recast into
a bosonic form. After applying the Bogoliubov transform, the
Hamiltonian is further mapped to a single harmonic oscillator
mode where the energy gap closes at the critical point. All
these transformations are unitary and hence conserve entropy.
So in the definition of the reference temperature (2) we can
replace the original Hamiltonian with the transformed one.
Therefore, keeping the entropy constant during the unitary
evolution requires at closing energy gap a diverging β∗, i.e., a
vanishing T ∗, see Fig. 9.

C. Criticality and the work output

Now let us focus on the work output of the machine. Sur-
prisingly, already Fig. 8 can give us a hint on the performance
of the engine. For instance on Fig. 8(a) with a rather short
time tu = 6ω−1 we can see an overshoot of the reference
temperature above the value of the temperature of the hot
reservoir (Th = 8ω). In other words in this thermal stroke the
reference temperature is not monotonously approaching the
value Th. Based on Eq. (4) and the respective discussion below
in Sec. II B it means that the heat current flows from the WF
to the reservoir. Thus, the hot bath is being heated up, which
obviously contradicts the functionality of the machine as a
heat engine. Similar overshoots (with the same consequences)
can be noticed in Figs. 8(b) and 8(c) as well.

The fact that in the cycle the heat is transferred from the
WF to the hot reservoir is a result of an extremely inefficient
unitary evolution in the preceding stroke. Indeed, a large
fraction of work was invested into population transfers so at
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FIG. 9. Quantum nonadiabatic evolution during the unitary
stroke 1 → 2 of the LMG model for different values of j. Duration
of the stroke is tu = 8ω−1 as in Fig. 8(b). Other parameters are
̄ = 3, λi = 1, λ f = 3, Tc = 1ω, Th = 8ω, γ = 0.1ω. The dip
indicating the QPT becomes sharper with growing j.

the end the mean energy is greater than the thermal mean at
Th. Figure 10 depicts the extracted work per cycle W ′

c as a
function of tu. We stress again that the machine works as a
heat engine only if W ′

c > 0. In Fig. 10(a) the system remains
in the normal phase during the unitary strokes, in Fig. 10(b)
the critical point is crossed.

Both dependencies have some common features. For tu →
0 the situation corresponds to an abrupt quantum quench
when the evolution is infinitely fast. Then the final state is
given simply by the distribution of the initial state in the final

FIG. 10. Extracted work in a cycle W ′
c as a function of the

duration of the unitary stroke tu. (a) ̄ = 0.75 (the QPT is not
crossed). (b) ̄ = 3, same as in Fig. 7. The QPT is crossed. The
red dashed line marks zero work output level. The inset shows the
result for longer timescale tu ∈ [0, 40]ω−1. Other parameters are
j = 20, λi = 1, λ f = 3, Tc = 1ω, Th = 8ω, γ = 0.1ω.

eigenbasis. As in our protocol the initial and final eigenbases
are the same [the Hamiltonians for t = 0 and t = tu have the
same simple noninteracting form as in Eq. (14)], after such a
fast quench the populations are actually conserved. Therefore,
if initially in the thermal state, after the quench to λ f the WF
remains in the thermal state (with a different reference temper-
ature) similarly as in Sec. III B. Therefore for extremely short
times the work extracted reaches its maximum. For growing
tu the gain of work decreases very quickly; nevertheless, for
tu 
 1 (where the quantum adiabatic condition becomes more
appropriately fulfilled) we retrieve the maximal work output.
However, Figs. 10(a) and 10(b) show a substantial difference.
In Fig. 10(a) where the QPT is not crossed, the decrease in the
work output is relatively shallow and stays in positive values.
Whereas in Fig. 10(b) depicting the situation where the critical
point is crossed, W ′

c falls very deep into negative values which
means that for large interval of tu the machine cannot work as
a heat engine at all. As can be anticipated from the quantum
adiabatic theorem, the QPT and the associated ESQPTs (or
better, say, even their precursor for finite N) form obstacles for
quantum adiabatic driving which can easily bring the machine
out of the useful operational mode.

Breaking of quantum adiabaticity and the resulting de-
crease in the amount of harvested work can also serve as
an indicator of the QPT. Since the dominant contribution to
population transfers comes from the low-energy states (which
are always the most populated ones), we estimate the proper
criterion for adiabatic evolution from their behavior. At the
quantum-critical point the energy gap �E01 above the ground
state closes. For finite-size systems, the gap will therefore
scale inversely with the system size and in particular for the
LMG model this scaling is known to behave as �E01 ∝ j−

1
3

[75]. However, also near the critical point one may already
observe that the gap decreases with the system size. In order to
remain adiabatic as long as the critical point is not crossed, the
driving time tu in Eqs. (30), (31), and (32) has to be carefully
tuned.

Suppose we smoothly vary the parameter ̄ in Eq. (32).
The critical value ̄c corresponds to the setting where the
critical point of the QPT has been exactly reached during
the unitary strokes [the parabola in Fig. 7(c) is tangent to the
critical line  = λ]. Let us denote |ψ0〉 the ground state and
|ψ1〉 the first excited state (from the same parity subspace)
of the Hamiltonian (30) at this critical point. According to
the quantum adiabatic theorem, it is necessary to evaluate
the ratio 〈ψ1|Ḣ |ψ0〉/(�E01)2 [76], where �E01 is the energy
gap between the two states |ψ0〉 and |ψ1〉 and Ḣ is the time
derivative of the Hamiltonian (30) which reads as

Ḣ = −λ f − λi

tu
ωJz − 4̄

N

1

tu

(
1 − 2t

tu

)
ωJ2

x . (33)

The matrix element is evaluated for t = tc and ̄ = ̄c for
which the quantum-critical point is reached. The analytic ex-
pression for both tc and ̄c can be obtained from Eqs. (31) and
(32) by setting (tc) = λ(tc) and requiring a single solution
only. After some algebraic manipulations one arrives at the
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FIG. 11. Extracted work in a cycle W ′
c as a function of parameter

̄ from Eq. (32) for several values of j. The duration of the unitary
stroke is j dependent and set to tu = jω−1. The arrow indicates the
critical value ̄c = 1.87 when the QPT is crossed. Other parameters
are λi = 1, λ f = 3, Tc = 1ω, Th = 8ω, γ = 0.1ω.

expressions

̄c = 1
4 (

√
λi + √

λ f )2, (34)

tc = tu
2

√
λi

̄c
. (35)

Numerically, we can prove the following scalings at the
critical point:

〈ψ1|Jz|ψ0〉 ∝ j
1
3 , 〈ψ1|J2

x |ψ0〉 ∝ j
4
3 . (36)

From the previous paragraph it follows that 〈ψ1|Ḣ |ψ0〉 ∝
j

1
3 . In total we obtain

〈ψ1|Ḣ |ψ0〉
(�E01)2

∝ j

tu
, (37)

so in order to make this term of order 1 (hence break the
adiabaticity at the critical point) we have to scale tu linearly
with j. If tu is scaled with a larger power of j (slow evolution),
then the evolution remains adiabatic throughout. On the other
hand, if tu is scaled with a smaller power of j (fast evolution),
then the adiabatic condition breaks before the QPT.

While these arguments would be sufficient for a discussion
of the low-temperature regime, for finite temperatures a non-
negligible fraction of the populations will be in the excited
states already in the beginning of the unitary strokes. Since in
the thermodynamic limit j → ∞ an effective harmonic oscil-
lator description applies [74], the lower part of the spectrum
will be equidistant as long as the critical point is not crossed.
Consistently, we numerically find that energy gaps and matrix
elements between the first few excited states behave similarly.
Therefore, we expect the same arguments to hold also for
the first few excited states, such that the above adiabaticity
argument should generally hold.

Indeed, we observe a breakdown of adiabaticity once the
critical point is crossed in Fig. 11, where the work per cycle as
a function of ̄ is plotted for several values of j while the time
of unitary driving was always set to tu = jω−1. Of course, the
right-hand side of this dependence can be multiplied by any
positive constant which would finely tune the protocol. Even
with this simple j dependence one can see that crossing the
critical value ̄c (which is indicated by an arrow) leads to a
decrease of the work output. Putting it the other way round,

simply by monitoring the performance of the engine one can
distinguish whether the system has been driven across the
QPT or not.

D. Consequences and relevance to other known results

Let us compare our results with the case where the presence
of a QPT in the LMG model is reported to improve the
efficiency [42]. First, the authors restrict themselves to a Jz-
conserving version of LMG [54] whose Hamiltonian remains
diagonal in the eigenbasis of Jz for any parameters λ, 

[similarly to our discussion of the noninteracting collective
model (14)]. Due to this fact, the criticality is associated with
a real level crossing even for strictly finite N . Indeed, the
authors demonstrate the effect of the QPT already for N = 2
which in the “standard” case would be highly problematic as
the nonanalytic features of the transition would appear in the
large-N limit. Second, one should note that the cycle used
by authors in Ref. [42] is not a standard Otto cycle. The
difference is that in their case the evolution with λ is supposed
to be undergone in thermal equilibrium with the heat bath.

A nice idea how to achieve the Carnot efficiency is to
keep temperatures of both baths small Tc, Th 	 1ω so the
system is predominantly in the ground state, and set λi to
the corresponding value of the real level crossing. At this
point, due to the thermal dissipators the ground state is doubly
degenerate and therefore has nonzero entropy S = ln 2 which
is used to extract maximal work [42,77]. We should also stress
that in this low-temperature setting the operational protocol
can be fully replaced with a standard Otto cycle. Indeed, as in
the strokes where the internal parameters of the LMG Hamil-
tonians are being changed, the system (dominantly) stays in
its ground state. Such a quantum adiabatic evolution is simply
achieved by changing the parameters when detached from the
heat bath due to the diagonal Hamiltonian as discussed in the
previous paragraph. Therefore comparison to our results is
very relevant.

Authors in Ref. [43] also model the WF with a N = 2
LMG Hamiltonian of essentially a noninteracting type. They
demonstrate a similar feature as in Ref. [42] and show that
crossing the critical point creates an obstacle for the machine
to extract work. The reason for that can be intuitively seen
as in the critical point the levels cross in this model (without
mutual interaction), then after the stroke we obtain the state
with swapped populations. Similarly to our case when the
machine did not work as a heat engine, the final state after the
unitary stroke had a higher energy then the respective thermal
state of the heat bath.

Our results obtained with a Jz-violating LMG model with
a standard QPT complements those achieved in Refs. [42,43].
We can see that crossing (or even approaching) the critical
point (for some large but still finite N) decreases the amount
of the extracted work W ′

c . Indeed, it can even go to negative
values W ′

c < 0; however, as the gap at the critical point is not
really closed for finite N we can still operate the machine
slowly enough to make it work as a heat engine again. The
case when the system would undergo a thermal stroke when
tuned to the critical point (in resemblance to Ref. [42]) was
not investigated within our driving protocol. One can however
guess that the positives (like long correlation length in the
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critical point which is known to increase the power output
[31]) would be traded off for the nonadiabatic losses in driving
of the system as discussed in the Sec. IV C. However, it
should be stressed that the derivation of a correct dissipator
for near-degenerate systems is an open problem.

Our results are also relevant in context of Ref. [5] where
optimal working modes for and LMG with various internal
parameters are studied. The authors restrict themselves only
on the system with small N so their results are essentially not
affected by any critical behavior. However, if one considers
large N (which is beneficial in terms of power output as shown
earlier), then the negative effects of a QPT must be taken into
account.

V. SUMMARY AND CONCLUSION

In the first part we modeled the WF with a simple non-
interacting spin system. In the case of a single qubit we
analytically reconstructed the cycle in the plane “mean energy
vs. reference temperature.” In a similar manner we provided
a description of how the system approaches the limit cycle if
finite-time thermal strokes are considered.

We demonstrated that for large j and coherent dissipation
the evolution in the “mean energy vs. reference temperature”
plane is very similar to a single qubit. The collectivity in
dissipation significantly speeds up the thermalization process
and so can boost the power output compared to the incoherent
case. We showed that the mean-field equation describing
the super-radiant burst (cf. Ref. [53]) can be employed for the
coherent dissipation provided that j is sufficiently large.
The quadratic scaling j2 of the power output was directly
observed if the region 〈Jz〉 ≈ 0 was populated. This required
at least one of the baths to have relatively high temperature. If
one considers a model Hamiltonian of the type H = λJ2

z , then

this super-radiant scaling should be easily observed even for
small temperatures as the ground state already has the large
Clebsch-Gordon coefficients.

In the second part, we studied the Otto cycle with an in-
teracting WF described by the Lipkin-Meshkov-Glick model.
Namely the effects of finite-time unitary strokes were inves-
tigated. The effect of QPT and ESQPT precursors on the
performance of the heat engine was generally negative. If the
unitary strokes were performed across the critical point, then
their overall duration had to be significantly slowed down in
order to be able to extract work in the cycle. This was the
direct effect of increasing number of population changes in the
parts of the spectrum where the levels get close to each other.
We showed that different regimes of unitary strokes (with and
without a QPT) can be distinguished according to the work
output per cycle. A detailed discussion with relevance to other
works can be found in Sec. IV D.

Taking into account the results presented in this paper, we
can make the following statement. During the equilibration
strokes the collective coupling to the reservoirs is beneficial
but during the unitary strokes the collective spin-spin inter-
action is detrimental to the power output. Taking advantage
of the collective effects therefore suggests to avoid critical
points.
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