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The relaxation to equilibrium of lattice systems with long-range interactions is investigated. The timescales
involved depend polynomially on the system size, potentially leading to diverging equilibration times. A kinetic
equation for long-range lattices is proposed, which explain these timescales as well as a threshold in the
interaction range reported in [Phys. Rev. Lett. 110, 170603 (2013)]. Non-Markovian effects are shown to play
an important role in the relaxation of systems of up to thousands of particles.
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I. INTRODUCTION

Systems with long-range interactions are present at various
scales in nature from astrophysics to atomic scales [1]. Apart
from the peculiarities in their statistical equilibrium, such as
negative specific heat [2] or ensemble inequivalence [3], an
important feature of these systems is the evolution timescales
that arise. For example, governed by the gravitational force,
galactic dynamics is characterized by its inefficiency at re-
distributing kinetic energy [4], resulting in relaxation times
which increase with the system size. On the microscopic
scale, long-range effects rise in the presence of light-mediated
(dipole-dipole) interactions between cold atoms [5–7], and
size-dependent equilibration times were also reported [8].

Long-range interactions may manifest between either the
internal or the external degrees of freedom of the particles,
which leads to different scaling laws for the relaxation times
[9]. In this context, a new platform for the study of long-range
lattices, i.e., for particles at fixed positions but with dynamical
internal variables, has emerged with the realization of ion
chains with tunable interactions [10,11]. There, the coupling
between the particles decay as an adjustable power law of their
mutual distance, which makes ion traps a versatile platform to
study the crossover from short to long range, including in the
quantum realm [12,13].

From a theoretical point of view, explicit scaling laws were
derived for a few specific interactions: Astrophysical systems
present relaxation times that scale as N/ ln N with N as the
number of interacting bodies; for the so-called Hamiltonian
mean-field model [14] with infinite-range interactions, a scal-
ing with N for nonhomogeneous and N2 for homogeneous
states [15–17] was derived. The existence of size-dependent
timescales was reported in the more general context of long-
range lattices with 1/rα interactions (α smaller than d , the
dimension of the system for the long-range case), both in the
classical and in the quantum contexts [18,19]. In particular,
a puzzling threshold in the scaling laws was reported at
α = d/2, which does not correspond to the transition from
long-range to short-range systems.

In this paper, we derive explicitly the scaling of the relax-
ation time of one-dimensional (d = 1) long-range classical
lattices. The threshold at α = d/2 originates in two-particle
correlation terms, and it manifests both in the non-Markovian
(small size) and in the Markovian (large size) regimes. Indeed,
the derivation of a kinetic equation for long-range lattices
allows to identify the specific scaling of the contribution of
non-Markovian terms, which are all the more important for
fast-decaying interactions terms (α → d).

II. KINETIC EQUATION FOR LONG-RANGE LATTICES

A. Long-range lattices

Let us consider a one-dimensional lattice of N particles at
coordinates xk = kξ, k = 1, . . . , N , and ξ is the lattice step.
Each particle has an internal degree of freedom represented
by an angular coordinate θk and its canonically conjugate
momentum pk with a Hamiltonian of the form

H (p, θ ) =
N∑

k=1

p2
k

2
+ 1

2Ñ

N∑
j, k = 1
( j �= k)

v(θ j − θk )

rα
jk

, (1)

where v(θ j − θk )/rα
jk is the pair interaction potential for par-

ticles j and k, separated by the distance r jk = ‖x j − xk‖
with v(0) = 0. The factor 1/Ñ ≡ 1/N1−α in front of the
potential energy term is introduced (e.g., by a renormalization
of time) in order to obtain an extensive total energy and to
properly define the passage to a Vlasov equation descrip-
tion. Such interaction was investigated as a generalization of
the Hamiltonian mean-field model [20] and describes, more
generally, lattices of fixed particles interacting through their
internal degrees of freedom as, for example, in light scattering
problems [21–23].

The evolution of the system and its relaxation are
studied introducing the N-particle distribution function
fN (1, 2, . . . , N ; t ), defined such that fN d1 · · · dN is the prob-
ability for particle k (k = 1, 2, . . . , N ) to be in the volume
element dk ≡ dθkd pk that contains the point (θk, pk ) in phase
space at time t . We note that, since all particles are localized
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on the lattice points, the distribution fN is not required to be
invariant with respect to particle permutations, which must
be taken into account in the determination of the gener-
alized form of the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy.

The Liouville equations for the lattice system then writes
as

∂ fN

∂t
= {H, fN }

=
N∑

k=1

{
∂H

∂θk

∂ fN

∂ pk
− ∂H

∂ pk

∂ fN

∂θk

}

=
N∑

k=1

⎧⎪⎨
⎪⎩− ∂ fN

∂θk
pk + 1

2Ñ

N∑
l = 1

(l �= k)

1

rα
kl

∂vkl

∂θk

∂ fN

∂ pk

⎫⎪⎬
⎪⎭, (2)

with vkl ≡ v(θk − θl ).

B. Generalized BBGKY hierarchy

Since each particle is distinguished by its position on the
lattice in order to define the s-particle reduced distribution
function, we have to specify which particle positions and
momenta are integrated out. Thus, the s-particle reduced dis-
tribution function depending on particles of indices i1, . . . , is
is defined by

fs(i1, . . . , is) ≡
∫ ∏

j �=i1,...,is

d j fN (1, . . . , N ). (3)

In Eq. (3) and from now on, we keep the time dependence
implicit except where necessary. For the one-particle distri-
bution function (s = 1), the specification on which particle
phase-space coordinates it depends is not required, provided
boundary effects are negligible. Note that these reduced dis-
tribution functions are not invariant by permutation of their
arguments in a lattice, in general.

Let us now consider two disjoint sets of different particle
indices J1 and J2 such that J1 has s indices and J2 has
N − s indices. By integrating Eq. (2) over the position and
momentum variables of particles in J2, we obtain

∂

∂t
fs(J1) = ∂

∂t

∫ ∏
j∈J2

d j fN (1, . . . , N )

=
∫ ∏

j∈J2

d j

⎧⎪⎨
⎪⎩−

N∑
k=1

∂ fN

∂θk
pk + 1

2Ñ

×
N∑

k, l = 1
(k �= l )

1

rα
kl

∂vkl

∂θk
∂kl fN

⎫⎪⎬
⎪⎭, (4)

where we introduced the cross derivative ∂ jk ≡ ∂/∂ p j −
∂/∂ pk . By eliminating vanishing surface terms in Eq. (4) and
using Eq. (3), we obtain the generalized form of the BBGKY
hierarchy,
∂

∂t
fs(J1) = −

∑
k∈J1

pk
∂

∂θk
fs(J1) + 1

2Ñ

×
∑

k, l ∈ J1
(k �= l )

1

rα
kl

∂vkl

∂θk
∂kl fs(J1)

+ 1

Ñ

∑
k∈J1

N∑
l = 1

(l �= k)

∫
dl

1

rα
kl

∂vkl

∂θk

∂

∂ pk
fs+1

(
J (l )

1

)
, (5)

where J (l )
1 ≡ J1 ∪ {l}. The next step towards the kinetic equa-

tion is the introduction of the s-particle correlation functions
as discussed below.

C. Irreducible cluster representation and prototypical
kinetic equation

The s-particle reduced distribution function can be decom-
posed into a purely uncorrelated part and contributions from
s-particle correlation functions gs( j1, . . . , js) as [24]

f2( j, k) = f1( j) f1(k) + g2( j, k),

f3( j, k, l ) = f1( j) f1(k) f1(l )

+
∑

P( j,k,l )

f1( j)g2(k, l ) + g3( j, k, l ), (6)

and so on, where P( j, k, l ) stands for all different permuta-
tions of particles j, k, l . All permutations must be considered
due to the absence of permutation invariance. Since we are
considering correlation among different particles in the sum in
Eq. (7), only terms with k �= l must be considered for g2(k, l ).
In order to determine the order of magnitude of the functions
gs, we note that the correlation between two particles require
the interaction between these particles, the correlation func-
tion g2 is on the order of Ñ−1, the order of the interaction.
Similarly, g3 requires, at least, two pair interactions and is,
therefore, on the order of Ñ−2. More generally, the correlation
function gs is on the order of Ñ−s+1.

The kinetic equation is a closed equation for the one-
particle reduced function, and therefore, as a preliminary step,
we replace Eq. (7) in Eq. (5) for s = 1 (J1 = j) to obtain

∂

∂t
f1( j) = −p j

∂

∂θ j
f1( j) + 1

Ñ

N∑
k = 1

(k �= j)

∫
dk

1

rα
jk

∂v jk

∂θ j

∂

∂ p j

× [ f1( j) f1(k) + g2( j, k)]. (7)

Proceeding similarly for s = 2 (with J1 = { j, k}) leads to

∂

∂t
f2( j, k) = −p j

∂

∂θ j
f2( j, k) − pk

∂

∂θk
f2( j, k) + 1

Ñ

1

rα
jk

∂v jk

∂θk
∂ jk f2( j, k)

+ 1

Ñ

N∑
l = 1

(l �= j)

∫
dl

1

rα
jl

∂v jl

∂θ j

∂

∂ p j
f3( j, k, l ) + 1

Ñ

N∑
l = 1

(l �= k)

∫
dl

1

rα
kl

∂vkl

∂θk

∂

∂ pk
f3( j, k, l ). (8)

042123-2



RELAXATION PROCESSES IN LONG-RANGE LATTICES PHYSICAL REVIEW E 100, 042123 (2019)

Hence, in order to have a closed equation for f1, the correlation function g2 must be expressed in terms of f1. Replacing the
irreducible cluster expansion in Eq. (7) in Eq. (8) yields(

∂

∂t
+ p j

∂

∂θ j
+ pk

∂

∂θk

)
g2( j, k) = 1

Ñ

1

rα
jk

∂v jk

∂θ j
∂ jk[ f1( j) f1(k) + g2( j, k)]

+ 1

Ñ

N∑
l = 1

(l �= j)

∫
dl

1

rα
jl

∂v jl

∂θ j

∂

∂ p j
[ f1( j)g2(k, l ) + f1(k)g2( j, l )]

+ 1

Ñ

N∑
l = 1

(l �= k)

∫
dl

1

rα
kl

∂vkl

∂θk

∂

∂ pk
[ f1( j)g2(k, l ) + f1(k)g2( j, l )]

+ 1

Ñ

N∑
l = 1

(l �= k)

∫
dl

1

rα
kl

∂vkl

∂θk

∂

∂ pk
g3( j, k, l ) + 1

Ñ

N∑
l = 1

(l �= j)

∫
dl

1

rα
jl

∂v jl

∂θ j

∂

∂ p j
g3( j, k, l ), (9)

where we used
∫ π

−π
dθl (∂vkl/∂θl ) = 0.

By considering only terms up to order 1/Ñ , one obtains a
closed form equation for g2. Its solution, inserted in Eq. (7)
and after some simplifying assumptions (see below), leads
to the generalization of the Balescu-Lenard equation [24]. It
is known that, in the mean-field case (α = 0), the collision
term in the kinetic equation vanishes at order 1/Ñ for a ho-
mogeneous state [25]. Consequently, one must consider terms
on the order of 1/Ñ2 by including three-particle correlations
to describe the relaxation process. Nevertheless, solving the
resulting equation for g3 is a daunting task. Here, we rather
follow the weak-coupling approach of Ref. [17]: It consists
of expanding the hierarchy in orders of a weak coupling,
considering an interparticle potential on the order of λ � 1,
but at the same time, retaining only dominant terms in 1/Ñ .
In the case of long-range systems where each particle is
coupled to all others, it refers to disordered regimes where the
macroscopic degrees of freedom that describe the coupling

(such as the magnetization) are very weak on average. For a
detailed discussion of the weak-coupling approach, the reader
is referred to Refs. [17,26]. This leads to a generalization
of the Landau equation for lattice systems. The correlations
functions are then expanded as

g2( j, k) = λg(1)
2 ( j, k) + λ2g(2)

2 ( j, k) + O(λ3),

g3( j, k, l ) = λ2g(2)
3 ( j, k, l ) + O(λ3). (10)

Before determining a kinetic equation at leading order in λ

and 1/Ñ , let us first consider the mean-field limit for the lattice
system.

D. Vlasov equation

The mean-field description is obtained in the limit Ñ → ∞
and is equivalent to neglecting two-particle correlations g2 =
O(Ñ−1) in Eq. (7). It results in the generalized form of the
Vlasov equation [27],

∂

∂t
f1( j) = −p j

∂

∂θ j
f1( j) + 1

Ñ

N∑
k = 1

(k �= j)

∫
dk

1

rα
jk

∂v jk

∂θ j

∂

∂ p j
f1( j) f1(k), (11)

after eliminating a vanishing surface term. The continuous limit on the lattice is obtained by performing d → 0 at constant lattice
length N = Nd ,

∂

∂t
f1(θ, p) = −p j

∂

∂θ
f1(θ, p) + 1

N

∫
dx′dθ ′d p′ 1

|x′|α
∂v(θ − θ ′)

∂θ

∂

∂ p
f1(θ, p) f1(θ ′, p′). (12)

In Eq. (12), collisional (granularity) effects are neglected.
For states homogeneous in θ , one has ∂ f1(p)/∂t = 0, i.e.,
the distribution function has no dynamics. An evolution is
recovered by introducing the corrections due to collisions,
which is the purpose of the next sections. The less triv-
ial case of nonhomogeneous states can be addressed using
action-angle variables [28], yet it will not be considered
here.

E. Weak-coupling limit

For the homogeneous states under consideration, the pro-
totypical kinetic equation in Eq. (7) assumes the form

∂

∂t
f1( j) = 1

Ñ

N∑
k = 1

(k �= j)

1

rα
jk

∂

∂ p j

∫
dk

∂v jk

∂θ j
g2( j, k). (13)
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We now proceed to obtained a closed form for the two-
particle correlation function g2 in the weak-coupling limit by
performing the expansion in power series on the parameter
λ given in Eq. (11). This represents a generalization of the
Landau equation for lattice systems.

By replacing Eq. (11) in Eq. (9) and retaining only domi-
nant terms in λ, we obtain(

∂

∂t
+ p j

∂

∂θ j
+ pk

∂

∂θk

)
g(1)

2 ( j, k)

= 1

Ñ

1

rα
jk

∂v jk

∂θ j
∂ jk f1( j) f1(k). (14)

As discussed in Ref. [17], this approximation is justified by
the fact that the total effective force on a given particle is weak
in a nonmagnetized state. Equation (14) can be solved in the
form of a convolution as

g(1)
2 ( j, k; t ) = e(−p j∂/∂θ j−pk∂/∂θk )t g(1)

2 ( j, k; 0)

+ 1

Ñ

∫ t

0
dτe(−p j∂/∂θ j−pk∂/∂θk )τ 1

rα
jk

× ∂v jk

∂θ j
∂ jk f1( j; t − τ ) f1(k; t − τ ). (15)

The first term on the right-hand side of this equation is a
transient contribution from the correlations at the initial time
and can be discarded after a short transient [24]. Since for
a homogeneous state, the angle variables θ j evolve in a free
(ballistic) motion, up to corrections of order λ, we obtain

f1( j; t − τ ) f1(k; t − τ )

= e(p j∂/∂θ j+pk∂/∂θk )τ f1( j; t ) f1(k; t ) + O(λ), (16)

where we have used the free time propagator exp(−t∂/∂θ ).
Using the identities,

e(−p j∂/∂θ j−pk∂/∂θk )τ ∂

∂ p j
e(p j∂/∂θ j+pk∂/∂θk )τ = ∂

∂ p j
+ τ

∂

∂θ j
,

e(−p j∂/∂θ j−pk∂/∂θk )τ ∂

∂θ j
v(θ j − θk ) = ∂

∂θ j
v(θ jk − p jkτ ),

(17)

where θ jk ≡ θ j − θk and p jk ≡ p j − pk , we rewrite Eq. (15)
as

g(1)
2 ( j, k; t ) = 1

Ñ

∫ t

0
dτ

1

rα
jk

v′(θ jk − p jkτ )∂ jk

× f1( j; t − τ ) f1(k; t − τ ). (18)

In particular, the latter equation implies that

g(1)
2 ( j, k) = g(1)

2 (k, j). (19)

Plugging Eq. (18) into Eq. (13) and using that fact that the
mean-field force cancels for a homogeneous state, we obtain

∂

∂t
f1(p j ; t ) = λ

Ñ2

N∑
k = 1

(k �= j)

1

r2α
jk

∫ t

0
dτ

∫
d pk∂ jk〈F jk (0)

×F jk (τ )〉∂ jk f1(p j ; t −τ ) f1(pk; t −τ ), (20)

where the force autocorrelation function has been introduced

〈F jk (0)F jk (τ )〉 =
∫ π

−π

dθk
∂

∂θ j
v(θ jk )

∂

∂θ j
v(θ jk − p jkτ ).

(21)
A kinetic equation in the form of Eq. (20) is clearly non-
Markovian, and one usually goes a step further: If the force
autocorrelation decays to zero faster than any significant
change in the one-particle distribution function, then the time
integral in Eq. (20) can be extended to infinity, and we can set
f1(p; t − τ ) → f1(p; t ). This results in a Markovian dynam-
ical evolution [24,29]. The validity of this approximation is
discussed in detail in Sec. III.

Let us first show that, assuming the Markovian regime is
reached, the first-order contribution to the kinetic equation is
dominant. To this end, expressions (20) and (21) are cast in
the Fourier space, using the following series for the potential
v(θ ):

v(θ ) =
∞∑

n=−∞
ṽ(n)e−inθ , (22)

where the Fourier coefficients are given by

ṽ(n) = 1

2π

∫ π

−π

dθ v(θ )einθ , (23)

and the correlation function is given by

g̃(l )
2 (n, m; pi, p j ; t ) =

∫ π

−π

dθi

∫ π

−π

dθ j g(l )
2 (i, j; t ) einθi eimθ j .

(24)
From Eq. (18), we obtain

g̃(1)
2 (n, m; p j, pk ; t ) = − inδn+m,0

(2π )2rα
jk

ṽ(n)∂ jk f1(p j ; t ) f1(pk; t )

×
∫ τ

0
dτ einp jkτ , (25)

where δn,m refers to the Kronecker δ. As g(1)
2 ( j, k) is the

correlation function between two different particles, it is only
defined for j �= k. Equation (13) then converts into

∂

∂t
f1(p j ; t ) = 2πλ

Ñ

N∑
l = 1

(l �= j)

1

r2α
jl

∫ ∞

−∞
d pl

∞∑
n=−∞

[nṽ(n)]2∂ jl

×
∫ ∞

0
dτ einp jl τ ∂ jl f1(p j ; t ) f1(pl ; t ),

= 2π2λ

Ñ

N∑
l = 1

(l �= j)

1

r2α
jl

∞∑
n=−∞

|nṽ(n)|2

× ∂ jlδ+(np jl )∂ jl f1(p j ; t ) f1(pl ; t ), (26)

where we have used the property v(−n) = v∗(n) = v(n) and
the Cauchy integral,∫ ∞

0
dτ eiaτ = πδ+(a) = πδ(a) + iP

(
1

a

)
, (27)

with P (x) as the Cauchy principal part of x (an odd function).
The imaginary part of the right-hand side of Eq. (26) vanishes
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and setting p j = p and pl = p′, we obtain

∂

∂t
f1(p; t ) = 2π2λ

Ñ

N∑
l = 1

(l �= j)

1

|x j − xl |2α

∞∑
n=−∞

|nṽ(n)|2

× ∂

∂ p

∫ ∞

−∞
d p′δ[n(p − p′)]

(
∂

∂ p
− ∂

∂ p′

)
× f1(p; t ) f1(p′; t ). (28)

The right-hand side of Eq. (28) vanishes due to the Dirac
δ function, just as for the Balescu-Lenard equation for the
mean-field (α = 0) case [17]. Thus, under the hypothesis of
a Markovian dynamics, one needs to go one order further in λ

to determine the kinetic equation.

F. Higher-order contributions

Neglecting the two last terms on the right-hand side of
Eq. (9), i.e., retaining only terms up to order 1/Ñ and neglect-
ing collective effects, leads to an integral equation for g2. Its
solution, inserted into Eq. (13), will provide a generalization
of the Balescu-Lenard equation for lattice systems [24,30].
Once more, it results in a vanishing collisional integral. In-
deed, the only contributions to g2 with a nonvanishing con-
tribution to the kinetic equation originate in the three-particle
correlation function g3 of Eq. (13), which are on the order
of 1/Ñ2.

Using algebra package MAPLE [31], the leading-order con-
tribution for g3 is determined to be[

∂

∂t
− pk

∂

∂θk
− pl

∂

∂θl
− pn

∂

∂θn

]
g3(k, l, n; t )

= −
N∑

m=1

[
D(l,n,m)

k

rα
k,m

+ D(k,n,m)
l

rα
l,m

+ D(k,l,m)
n

rα
n,m

]

− B(n)
k,l

rα
k,l

− B(l )
k,n

rα
k,n

− B(k)
l,n

rα
l,n

, (29)

where we have introduced

B(n)
k,l = v′(θk − θl )∂kl [ f (pk, t )g(1)

2 (θl , θn, pl , pn, t )

+ f (pl , t )g(1)
2 (θk, θn, pk, pn, t )

+ f (pn, t )g(1)
2 (θk, θl , pk, pl , t )],

D(l,n,m)
k = ∂

∂ pk
f (pk, t )v′(θk − θm)

[
f (pl , t )

∫
dθmd pmg(1)

2

× (θn, θm, pn, pm, t ) + f (pn, t )

×
∫

dθmd pmg(1)
2 (θl , θm, pl , pm, t )

]
. (30)

Inserting the three-particle correlation g3 from Eq. (29) into
Eq. (9), one can obtain a closed form for the kinetic equation
to the second order in the coupling. This approach was used
in Ref. [17] to obtain a kinetic equation for the Hamiltonian
mean-field model. Since we are here interested in the scaling
of the relaxation time, rather than its exact expression, we now
proceed with discussing the Markov approximation.

III. RELAXATION TIMES AND THE MARKOV
APPROXIMATION

A. The Markovian hypothesis

The Markov approximation consists in assuming that the
force autocorrelation function Cp in Eq. (21) vanishes over
a time such that the one-particle distribution function does
not change significantly. If it does not apply, autocorrelation
terms in the force distribution make that the right-hand term
of Eq. (20) contributes substantially and may even dominate
over the higher-order contributions discussed in Sec. II F.

The (non-)Markovian nature of the dynamics strongly de-
pends on the model especially on the system size [24] but
also on the initial conditions. Let us here consider the cosine
potential from the αXY chain [19,20],

v(θ ) = − cos(θ ) (31)

for which we study numerically the evolution of the force
autocorrelation. The simulations are realized by integration
of the equation of motion where the initial state is a random
realization of a state homogeneous in angles and bounded in
momentum,

f (p, θ, t = 0) =
{

1/(4π p0), if − p0 < p < p0,

0, otherwise. (32)

The constant p0 allows to choose an energy such that the
system remains in a nonmagnetized phase at all times [27].

The Markovian nature of the dynamics is tested by com-
paring the dynamics of the average autocorrelation function of
the force CF with the macroscopic evolution of the distribution
function and is assessed from molecular dynamics simula-
tions. This average autocorrelation function CF is defined by

CF (τ ) ≡
∑

j,k �= j〈F jk (0)F jk (τ )〉∑
j,k �= j〈F jk (0)F jk (0)〉 , (33)

so it is normalized at time zero. Here, we implemented the
numerical solutions of the Hamiltonian equations of motion
using a fourth-order symplectic integrator [32] in a parallel
implementation as described in Ref. [33]. Because we are con-
sidering homogeneous states, we monitor the first moments
of the momentum distribution Mk ≡ 〈pk〉. The odd moments
fluctuate around zero, and the second moment M2 does not
evolve substantially due to energy conservation. We, thus,
focus on M4 (other even momenta M6, M8, . . . , support the
same conclusions but higher flutuations with higher order),
which typically present a slow dynamics during the relaxation
process [19]. Figure 1 shows the force autocorrelation as a
function of time for an increasing system size N (ranging from
256 to 16 384) and several values of α. The decay of the force
autocorrelation does not appear to depend significantly on the
system size and little on the interaction range α. We, thus,
consider that it cancels around tFC ≈ 30 and consider that the
Markovian approximation is valid if the fourth momentum
M4 does not vary significantly in this time interval, i.e., that
M(tFC ) − M4(0) is small.

Different from the force autocorrelation, the momentum
M4 presents an evolution that depends strongly on both the
system size and the interaction range. Figure 2 shows the vari-
ation of M4 from its initial value as a function of time. Larger
N and smaller α values are associated with a much slower
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FIG. 1. Evolution of the autocorrelation of the force for different system sizes and interaction ranges α. The plain lines correspond to N =
256, the dashed-dotted ones correspond to N = 4096, and the dashed ones correspond to N = 16 384 for (a) α = 0, (b) α = 0.3, (c) α = 0.6,
and (d) α = 0.9. Simulations realized for p0 = 7.
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FIG. 2. Evolution of the fourth momentum M4 for different system sizes and interaction ranges α for (a) α = 0, (b) α = 0.3, (c) α = 0.6,
and (d) α = 0.9. The initial value of the momentum is always close to M4(0) ≈ 30. The plain lines correspond to N = 256, the dashed-dotted
ones correspond to N = 4096, and the dashed ones correspond to N = 16 384. Simulations realized for p0 = 7.
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FIG. 3. Relative variation of the fourth momentum 
M4, see
Eq. (34) for different system sizes and interaction ranges α. The
initial value the momentum is always close to M4(0) ≈ 30. The plain
lines correspond to N = 256, the dashed-dotted ones correspond to
N = 4096, and the dashed ones correspond to N = 16 384. Simula-
tions realized for p0 = 7.

evolution of the momentum distribution. Thus, the Markov
approximation is reached for increasing system sizes, and the
larger the range of the interaction (that is, the smaller α), the
smaller the system size required to reach it.

The (non-)Markovian nature of the dynamics has been
characterized in detail for the mean-field case (α = 0) in
Ref. [29]. We, here, simply evaluate the typical relative change
in the fourth momentum during the time over which the force
autocorrelation cancels by characterizing the average growth
of the momentum [through a linear fit of M4(t )] as given by
the normalized quantity,


M4 = 〈dM4/dt〉tFC

〈M4〉 , (34)

where 〈· · · 〉 stands for a time average between t = 0 and tFC .
Its evolution is shown in Fig. 3. Thus, close to the threshold to
short-range interactions (α = 1), the dynamics requires huge
system sizes to reach the Markovian regime whereas close
to the infinite-range case (α = 0), the Markov approximation
is already valid for modest system sizes. We note that such
results are highly dependent on the model, its parameters,
dimensionality, etc.

B. Non-Markovian regime

Hence, if over the momentum, distribution changes sig-
nificantly over the timescale during which the force auto-
correlation is nonzero, the dynamics must be considered
non-Markovian: The lower-order term on the right-hand side
of Eq. (20) does not vanish and contributes significantly to
the single-particle distribution evolution. The timescale of
the evolution of the single-particle distribution f1 with time
originates in the sum

∑
k r−2α

jk , whose scaling with the system
size changes with the interaction range. Assuming periodic
boundary conditions for which the distance is given by r jk =

ξ min(| j − k|, N − | j − k|), in the large-N limit one obtains

∑
k �= j

1

r2α
jk

≡ 1

ξ 2α
×

⎧⎨
⎩

N1−2α22α/(1 − 2α), if 0 � α < 1/2,

ln N, if α = 1/2,

ζ (2α), if α > 1/2.

(35)

Inserting the 1/Ñ2 ∼ N2α−2 in the above expression leads to
the following scaling for the relaxation time as due to the non-
Markovian contribution:

τr ∼
⎧⎨
⎩

N, if 0 � α < 1/2,

N/ ln N, if α = 1/2,

N2−2α, if α > 1/2.

(36)

The threshold at α = d/2 reported in Ref. [19] is, thus,
already present in the non-Markovian contribution from the
two-particle collisions term (lower-order term). This threshold
is also clearly visible in the variation of the momentum
distribution presented in Fig. 3.

C. Markovian regime

Prediction (36) fits only partially the numerical findings
for the one-dimensional classical chain reported in Ref. [19]
where a scaling on the order of τ ∼ N1.5 was observed for
α < 0.5 before it decays roughly as τ ∼ N2.5−2α for 1/2 <

α < 1. In other words, the relaxation times appear to scale
with a factor on the order of

√
N larger than as predicted by

the non-Markovian contribution.
The origin of this discrepancy can be found in the compe-

tition between non-Markovian and Markovian contributions.
Indeed, as discussed extensively for the mean-field case in
Ref. [29], this competition leads to the observation of scaling
laws that are intermediate between the two regimes: τ ∼ N
for the non-Markovian terms and τ ∼ N2 for the Markovian
terms for α = 0. The same effect happens for long-range lat-
tices with any α for the system sizes achievable by numerical
simulations.

The inspection of Eqs. (9) and (29) reveals that similar∑
k r2α

jk terms appear for the Markovian contribution to the
dynamics, although the variety of terms prevents a thorough
analysis of the contribution of g3. Nevertheless, the presence
of these sums is an indicator that the threshold at α = d/2
will be preserved at larger system sizes as supported by the
variation of the momentum M4 presented in Fig. 3. There,
simulations realized with N = 262 144 (a factor of 64 larger
than the relaxation study presented in Ref. [18]) still exhibit
the threshold, although such a large system size prevents one
from realizing a full equilibration study instead restricting us
to the initial stage of the dynamics. Hence, the non-Markovian
and Markovian terms present different scaling laws, both
exhibiting the α = d/2 threshold, and systems of thousands
of particles being in-between these two regimes.

We note that, whereas a rigorous evaluation of the Marko-
vian nature of the dynamics would require a dedicated and
arduous study of each reduced distribution and autocorrelation
function involved in Eq. (9). This task is beyond the scope
of this paper, and the good agreement between the prediction
of Eq. (36) and the numerical results suggest that these
terms do not contain scalings that change significantly the
(non-)Markovian nature of the dynamics.
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IV. CONCLUSION

In this paper, we have derived a kinetic equation for long-
range lattices with power-law interactions. This allowed us
to identify contributions that the change in scaling with the
system size at α = d/2, both in the non-Markovian and in
the Markovian terms. Lattices of hundreds to thousands of
particles are subject to a competition between these two kinds
of terms, at least, in the context of the homogeneous states of
the αXY chain considered here.

Establishing kinetic equations for these classical systems is
an important step toward the understanding of their relaxation
to equilibrium. The presence of a threshold may lead to a
further distinction between the classification of the interaction
range, just as it was performed between short and long range
[1] or between lattices and moving bodies [9].

The tools presented here could, in principle, be generalized
to address quantum systems, by using the quantum analog of
the BBGKY hierarchy, e.g., from the Wigner function repre-

sentation of the quantum equation of motion [34], and study
thermalization processes in quantum systems. In this context,
the emergence of flexible experimental platforms, such as
cold atom or trapped ion setups where the engineering of
the Hamiltonians and the reduction of decoherence channels
make constant progress, is a promising tool to investigate
the equilibration processes of both classical and quantum
systems.
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