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Solvable model of a many-filament Brownian ratchet
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We construct and exactly solve a model of an extended Brownian ratchet. The model comprises an arbitrary
number of heterogeneous, growing and shrinking filaments which together move a rigid membrane by a ratchet
mechanism. The model draws parallels with the dynamics of actin filament networks at the leading edge of the
cell. In the model, the filaments grow and contract stochastically. The model also includes forces which derive
from a potential dependent on the separation between the filaments and the membrane. These forces serve to
attract the filaments to the membrane or generate a surface tension that prevents the filaments from dispersing.
We derive an N-dimensional diffusion equation for the N filament-membrane separations, which allows the
steady-state probability distribution function to be calculated exactly under certain conditions. These conditions
are fulfilled by the physically relevant cases of linear and quadratic interaction potentials. The exact solution
of the diffusion equation furnishes expressions for the average velocity of the membrane and critical system
parameters for which the system stalls and has zero net velocity. In the case of a restoring force, the membrane
velocity grows as the square root of the force constant, whereas it decreases once a surface tension is introduced.
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I. INTRODUCTION

The Brownian ratchet models a physical system compris-
ing a ratchet-and-pawl device in a surrounding medium [1,2].
Its theoretical interest stems from it providing a mechanism to
move a fluctuating object without directly exerting a force on
it. Rather it is thermal fluctuations and steric interactions that
generate the motion [3,4] in a manner that is consistent with
the second law of thermodynamics. In mathematical terms,
the standard Brownian ratchet may be formulated as a drift-
diffusive problem for a single spatial co-ordinate [5]. More
recently many-filament systems involving several spatial co-
ordinates have been introduced and studied [6–18].

One possible natural manifestation of a many-component
ratchet mechanism may be at the boundaries of eukaryotic
cells where several actin filaments interact with a restrain-
ing cell membrane. Specifically, a network of actin fila-
ments grows and contracts in order to move and morph the
leading edge of cells [19–21]. The rate of growth of the
network is moderated by, among other factors, surround-
ing monomer concentration [22–24]. One end of the actin
filament (the barbed end) elongates at a much higher rate
than the other (the pointed end), associating a directional-
ity to the growth [25,26]. Consequently, the network ap-
pears to ‘treadmill’ in one direction with filaments disso-
ciating on the trailing edge [27]. For the bulk movement
of a leading edge (lamellipodia), this network tends to be
crosslinked, improving the rigidity of the network [19,28,29].
There are also individual ‘spikes’ out of the cell (filopo-
dia), in which the interior actin filaments form a parallel
bundle [30,31].

In this work, we introduce a general model of an array of
N growing and shrinking filaments, constrained by a rigid
drift-diffusing membrane (see Figs. 1 and 3). The model

incorporates three major extensions: (i) the filaments are
heterogeneous, each characterized by its own polymerization
velocity and variance; (ii) the filaments move under an ef-
fective potential with respect to the constraining membrane;
(iii) the filaments have long-range, lateral interactions with
neighboring filaments. In this work we consider the case
where interactions are attractive, that is, the filaments are
attracted to the membrane and/or to each other. The model
exhibits the felicitous property of an exactly solvable steady
state, for many parameter choices that correspond to a zero-
flux condition that we set out in detail below.

The model that we set out here falls into a class that
we refer to as pure ratchets [14]. The defining property of
these ratchets is that the membrane moves under thermal
fluctuations, and the network grows quickly to occupy any
space left vacant (see [5–9] for examples). The key phe-
nomenon that can arise from these pure ratchets, then, is that
a membrane that has a natural drift in one direction, may have
a net movement in the opposite direction, arising exclusively
from steric interactions and thermal fluctuations. This is to
be distinguished from other systems where filaments directly
exert a force on contact and do work to move the mem-
brane [10–18]. As noted above, the microscopic dynamics
of a filament network, involving, for example, treadmilling,
crosslinking, and heterogeneity, is complex [19,20,22,31–
35]. We do not attempt to model microscopic dynamics in
specific detail but instead consider generic heterogeneous
filaments, along with filament-membrane and interfilament
interaction potentials, which could effectively encapsulate the
dynamical complexity. Specifically, we consider potentials
that serve to attract a filament to the membrane, but does
not contribute directly to the membrane motion itself. This
is a coarse-grained, effective description of more complicated
biological, microscopic effects which may force the filament
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FIG. 1. Visualization and simulation of a continuum ratchet sys-
tem with N = 3 filaments. Top: diagram of a three-filament system.
Each filament (blue, horizontal) may have a different diffusion
constant Dn and drift μn. Bottom: realization of the system over time.
The membrane (red, vertical) tends to drift left in isolation, but in the
presence of steric interactions with filaments ratchets to the right,
settling into a steady state.

network to evolve within the locality of the membrane, al-
lowing us to interpret the system as a nonequilibrium steady
state.

In all the studies discussed so far, a key observable of
interest is the steady-state velocity of the membrane. One
wishes to understand how the velocity varies with the dynam-
ical properties of the filaments, membrane, and interactions
between them. With the model introduced here, we are able
to gain exact insight into how the various physical properties
of the filaments affect the ability of the overall network to
move the fluctuating membrane. We show how the membrane
velocity increases with an increasing harmonic attraction of
filaments to the membrane, but decreases on introducing a
surface tension that pulls neighboring filaments towards one
another. The velocity also increases on increasing the diffu-
sion constant of the membrane.

This paper is organized as follows. In Sec. II, we introduce
and motivate our system by taking the continuum limit of
a lattice Brownian ratchet [5,12]. We then solve for the
probability distribution function (pdf) and membrane velocity,
first in Sec. III for the case where the filaments have a
constant drift, and then in Sec. IV for where there are effective
quadratic interaction potentials. In particular in Sec. IV A
we consider a restoring force towards the membrane and in
Sec. IV B we consider surface tension across the filament
bundle leading edge. We summarize in Sec. V.

FIG. 2. The lattice Brownian ratchet model, which is the starting
point of the continuum model we solve in this paper. On a lattice,
each of the N filaments (blue, horizontal) polymerize and depoly-
merize, at the rates shown. The membrane (red, vertical) also makes
jumps left and right. in � 0 is the integer displacement between
filament n and the membrane. In the event of a filament touching
the membrane (bottom), the membrane may only move right at the
usual rate, and the filament in contact may only contract at its usual
rate. The dynamics of the other filaments are unaffected.

II. MODEL DERIVATION

A. Lattice model

Our starting point is a lattice model of a Brownian ratchet
in continuous time, where the discrete lattice represents dis-
cretized monomers of the filament. The reason for start-
ing with a lattice model is that the boundary conditions
on the filaments arising from the hard-core exclusion be-
tween the filaments and the membrane arise more naturally
within the discrete formulation than if one uses a continuum
description at the outset.

The dynamics of this lattice model are as follows (see
also Fig. 2 in the Appendix). The (rigid) membrane makes
unit steps to the left and right at rates defined as m + l and
m, respectively. Similarly, filament n shrinks (depolymerizes)
and grows (polymerizes) across unit steps at rates qn and
qn + rn, respectively. Movement is only permitted when a
hard-core exclusion interaction is satisfied: the membrane
must stay to the right of the right-most filament(s). Thus,
the system exhibits ratcheting, where the membrane moves
at a velocity different to its inherent drift—perhaps in the
opposite direction entirely—as a result of thermal fluctuations
and steric interactions. The polymer filaments to not exert a
force on contact with the membrane, or vice versa. The rate rn

represents the speed of the filament growth and may depend
upon the displacement of the filament from the membrane.

Assume now that the system has settled into a steady
state, in which the displacements between the filaments and
the membrane have stationary distributions. We define i =
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FIG. 3. The complete continuum Brownian ratchet system that we address in this paper. Each of the filaments (blue, horizontal) are growing
and shrinking by a diffusion process with coefficient Dn, and drift μn. The membrane (red, vertical) moves with diffusion coefficient DM and
drift μM towards the filaments. xn is the displacement between filament n and the membrane. Filament n may then also be attracted to the
membrane by a spring force with strength κ , and also may have a surface tension-like interaction with neighboring filaments with strength ν.

(i1, i2, . . . , iN ), in � 0 as a vector of displacements between
each of the N filaments and the membrane. From here on
we treat these displacements i as the system configuration,
although the whole system will in general be drifting at a
nonzero velocity (unless it is in a stalled state). Define Pi

as the stationary probability of observing the system with
displacements i under the steady-state condition ∂t Pi = 0. By
considering all possible ways the system can enter and leave
configuration i (first assuming in > 0 ∀n, so no filaments are
in contact with the membrane), the master equation whose
solution gives the stationary distribution is

0 = −
[

2m + l +
N∑

n=1

(2qn + rn)

]
Pi + mPi−1

+ (m + l )Pi+1 +
N∑

n=1

[qnPi−n̂ + (qn + rn)Pi+n̂] . (1)

Here, n̂ is defined as the unit vector along component n, and
1 ≡ ∑N

n=1 n̂.
We now consider the case where filament k makes contact

with the membrane and ik = 0, in �=k > 0. The membrane can
now only move to the right, and filament k can only move to
the left. In this case, the master equation reads

0 = −

⎡
⎢⎢⎢⎣m + qk +

N∑
n=1
n �=k

(2qn + rn)

⎤
⎥⎥⎥⎦Pi + (m + l )Pi+1

+
N∑

n=1
n �=k

qnPi−n̂ +
N∑

n=1

(qn + rn)Pi+n̂ (2)

for any k = 1, 2, . . . , N . It is the continuum limit of this
equation that furnishes the appropriate boundary condition for
the diffusion equation we are about to derive.

B. Continuum limit and diffusion equation

We now take the limit in which the length of each filament,
as well as the position of the membrane, is treated as a
continuous random variable. Note that it is in the direction
perpendicular to the membrane that the continuum limit is
taken; the number of filaments remains discrete (and fixed).
We introduce an explicit lattice spacing a such that x =
(x1, x2, . . . , xN ) = ai. The continuum limit then arises by
taking a to be small, and then expanding Eq. (1) to second
order in a. In this limit, the probability approaches a pdf that
we denote P(x). From Eq. (1), we then derive a drift-diffusion
equation and from Eq. (2) a set of N boundary conditions. The
resulting continuous space system is illustrated in Fig. 3.

The details of this continuum limit are given in the Ap-
pendix. Here, we emphasize the important parameters that
emerge. These are the drift and diffusion rates for the mem-
brane (subscript M):

μM ≡ l, μ
M

≡
N∑

n=1

μMn̂, DM ≡ am (3)

and their counterparts for each filament

∂nV (x) ≡ rn, Dn ≡ aqn. (4)

In Eq. (4) ∂n ≡ ∂/∂xn and the biases (or drifts) rn derive from
a potential V (x). Note that, as is usual when obtaining a drift-
diffusion equation from a lattice-based model, the diffusion
coefficients DM , Dn in Eqs. (3) and (4) scale with the lattice
spacing.
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We can now express the diffusion equation in terms of the
quantities established in Eqs. (3) and (4) as

0 =
N∑

n=1

∂n

(
∂nV (x) + μM + DM

N∑
k=1

∂k + Dn∂n

)
P(x) (5)

and from Eq. (2) a set of boundary conditions

0 =
[(

∂nV (x) + μM + DM

N∑
k=1

∂k + Dn∂n

)
P(x)

]
xn=0

.

(6)

We refer to Eq. (6) as zero-current boundary conditions, be-
cause the equation fixes the probability current at the bound-
aries to be zero. To see this, note that the stationary diffusion
equation (5) can be written as 0 = ∇ · J where J is the N-
component probability current vector and the nth component
of the operator ∇ is ∂n. Then Eq. (6) is the condition that the
nth component of the current Jn is zero at the boundary xn = 0.

The bulk equation (5) and boundary conditions (6) fully
determine the stationary distribution of filament displace-
ments in our model. We observe that the displacements x =
(x1, x2, . . . , xN ) evolve as a correlated N-dimensional diffu-
sion with negative drift. The diffusion of the shared membrane
couples the different xn.

We now highlight the key property of the steady-state
equations, Eqs. (5) and (6), that makes this system exactly
solvable under certain conditions. The boundary condition (6)
holds at xn = 0. However, if Eq. (6) were to hold not just
at the boundary but also into the bulk, xn � 0, then Eq. (5)
would also be satisfied. In scenarios where this occurs, we can
reduce the problem to a set of first order equations that satisfy
both equations. We note that for the more general problem
of reflected Brownian motion with general boundary inter-
actions, closed-form pdfs are not known [36,37]. Therefore
the assumption that Eq. (5) holds in the bulk xn � 0, that is
that the stationary solution has a zero current everywhere,
should be thought of as an ansatz. In a one-filament system
this is necessarily the case, however in a higher dimensional
system it is possible to have solutions that only have zero
current at the boundaries. We will therefore find there are
certain restrictions on model parameters that are consistent
with the zero-current ansatz. The fact that some particular
parameter combinations satisfy this ansatz and some do not
is interesting; the systems that do not satisfy this ansatz must
contain circulatory currents of probability through the bulk,
which one would expect yields a more complex steady state
distribution.

For notational convenience, it is helpful to rewrite the zero-
current condition (6), which is now taken to hold in the bulk,
in the vector form

(∇V (x) + μ
M

+ S∇ )P(x) = 0, (7)

where μ
M

is specified in Eq. (3) and

S =

⎛
⎜⎜⎝

DM + D1 DM . . . DM

DM DM + D2 . . . DM
...

...
. . .

...
DM DM . . . DM + DN

⎞
⎟⎟⎠ (8)

is the diffusion matrix of the system. This multi-dimensional
diffusive process then has a drift vector −∇V (x) − μ

M
.

C. Membrane velocity formula

We now require an expression for the mean membrane
velocity, vM , in the steady state. By convention, we take
this to be positive if the membrane is moving to the right.
As previously, this is most straightforwardly obtained within
the lattice model, so we write down the lattice version first
and then take the continuum limit. This is detailed in the
Appendix, and we obtain

vM = −μM + DM

N∑
n=1

⎡
⎢⎢⎣

N∏
m=1
m �=n

(∫ ∞

0
dxm

)
P(x|xn=0)

⎤
⎥⎥⎦, (9)

where P(x|xn=0) is the pdf evaluated at xn = 0. This equation
has an intuitive form: the membrane tends to move left at
speed μM , but is then biased right by an amount that increases
with increasing contact of the membrane with filaments. We
note that vM can take either sign: the membrane can move in
either direction. If vM = 0 the system has stalled.

D. Introductory example: Single filament

As a familiarization exercise, we first solve the model in
the case of a single filament. The filament grows and contracts
stochastically, with a constant drift μ1 towards the membrane
along with a restoring force κx1 and diffusion constant D1.
The membrane has a diffusion constant DM , and a drift μM

towards the filament. We stress that there is an asymmetry in
this interaction: the restoring force κx1 attracts the filament
to the membrane, but not vice versa. This is equivalent to a
one-dimensional drift-diffusion, in a harmonic potential and a
reflecting boundary at zero [38].

For a single filament the zero current boundary condition
implies that Eq. (7) must hold for all x1 and the condition reads

0 = [κx1 + μ1 + μM + (D1 + DM )∂1]P(x1). (10)

This is straightforwardly integrated to give

P(x1) = A−1 exp

(
−

1
2κx2

1 + (μ1 + μM )x1

D1 + DM

)
. (11)

The normalization A is fixed by the condition
∫∞

0 dx1P(x1) =
1 which yields

A = √
π

√
D1 + DM

2κ
ec2

erfc(c), (12)

where erfc(α) = 2/
√

π
∫∞
α

e−t2
dt is the complimentary error

function, and c = (μ1 + μM )/
√

2κ (D1 + DM ). With this, we
find using Eq. (9) the membrane velocity

vM = −μM + DMP(0) (13)

= −μM +
DM

√
2κ

D1+DM
exp

(− (μ1+μM )2

2κ (D1+DM )

)
√

π erfc
(

μ1+μM√
2κ (D1+DM )

) . (14)
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FIG. 4. Analytic membrane velocity vM Eq. (14) for a single
filament system, for four different filaments. vM is a monotonically
increasing function of the restoring force constant κ . Against the
same membrane (μM = 1, DM = 1), we see that less diffusive, higher
drift filaments are more effective at moving the membrane.

We plot vM for various filaments in Fig. 4. vM is a mono-
tonically increasing function of κ . For the example μ1 = 1,
D1 = 5 (red, dashed lines), we see that the membrane can
have a positive, negative or zero velocity depending on the
value of κ . Thus a large enough restoring force will always
lead to a positive velocity. In the case μM + μ1 = 0, for which
the filament and membrane a relative drift towards each other
only due to the linear restoring κx1, Eq. (14) reduces to

vM = −μM + DM√
π

√
2κ

D1 + DM
(15)

and the velocity deviates from the free velocity −μM as the
square root of the force constant κ . We show in Sec. IV A that
this scaling holds for N filaments.

III. CONSTANT DRIFT SOLUTION FOR MANY
FILAMENTS

We now solve the system for N filaments. First, we con-
sider the case of a linear potential V (x), implying constant
drifts for each filament. That is,

V (x) = μ
F

· x, μ
F

≡
N∑

n=1

μnn̂ (16)

with the subscript F denoting the filaments. The zero-current
condition (7) now reads

(μ
M

+ μ
F

+ S∇ )P(x) = 0. (17)

To satisfy this condition let us assume a normalized, trial
solution

P(x) =
(∏N

n=1 λn

)
e−λ·x (18)

with λ = (λ1, λ2, . . . , λN ). This solution has exponential de-
cay of the filament-membrane separations with decay con-
stants λn and the distributions for individual filaments are
decoupled, despite the fluctuating membrane coupling the xn

to one another. Substituting this trial solution into Eq. (17)
leads to the constraint

μ
M

+ μ
F

− Sλ = 0 (19)

which in turn implies

λ = S−1(μ
M

+ μ
F

). (20)

Furthermore, the entries of S−1 are explicitly calculable for
any N via the Sherman-Morrison formula [39]:

(S−1)nk = D−1
n

(
δnk − D−1

k

D−1
M + ∑N

n′=1 D−1
n′

)
. (21)

With further algebra, the components of λ reduce to

λn = D−1
n

(
μn + μMD−1

M − ∑N
n′=1 μn′D−1

n′

D−1
M + ∑N

n′′=1 D−1
n′′

)
(22)

giving an explicit solution for P(x) as a function of the dif-
fusion and drift parameters of the system. We see that λn, the
exponential decay constant for the separation, increases with
drift μn but decreases with diffusion constant Dn. However the
dependence on the drift and diffusion constants of the other
filaments appears rather complicated. We shall see that the
interdependencies are best understood when we consider the
membrane velocity.

A. Mean membrane velocity

We initially consider the case where all λn > 0 (see
Sec. III B for discussion of when this does not hold). With
the decoupled exponential form (18) of P(x), the membrane
velocity (9) is straightforward to calculate as

vM = −μM + DM

N∑
n=1

λn (23)

= −μMD−1
M + ∑N

n=1 μnD−1
n

D−1
M + ∑N

n′=1 D−1
n′

. (24)

Equation (24) is the central result of this section and gives
the membrane velocity in terms of all the constituent filament
drift and diffusion constants {μn, Dn}.

The exponential decay constants λn can then be written as

λn = μn − vM

Dn
(25)

with the numerator of λn being the difference between the drift
of filament n and the net velocity of the membrane determined
by the whole system. As this difference decreases, the average
separation 〈xn〉 = λ−1

n increases.
The membrane stalling drift μ∗

M is defined as the drift for
which vM = 0:

μ∗
M = DM

N∑
n=1

μn

Dn
. (26)

This result can be interpreted in terms of the ratcheting mech-
anism. μ∗

M increases as the drift of each filament μn increases.
Thus the membrane must have large drift to the left to stall the
ratchet mechanism arising from more strongly polymerising
filaments. However μ∗

M decreases as each Dn increases. Thus
greater variability of the polymerization process reduces any
ratcheting effect. On the other hand, increasing the membrane
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diffusion constant DM increases vM and thus requires an
increase in membrane drift to stall the ratchet mechanism.
This is because the fluctuations in membrane position due to a
large DM afford more opportunity for polymerization near the
membrane.

B. Steady-state condition

A property of the membrane-filament system is that it
may not reach a steady state. If at least one of the λn is
negative, then Eq. (18) is not normalizable, indicating the
absence of a steady state. Physically, this arises from one or
more of the filaments drifting away from the membrane in
perpetuity. Thus the requirement for a steady state in which
the filaments travel with the membrane is that λn > 0 for all
n = 1, 2, . . . , N .

To determine when this requirement holds, we first note
from Eq. (22) that the sign of each λn is dependent on each
and every other filament. Given N filaments with a set of
parameters {Dn, μn} and a membrane with a given μM , DM ,
we then need to determine whether the full system forms a
steady state.

Label the filaments 1, 2 . . . , N in order of decreasing drift,
such that μ1 � μ2 � · · · � μN . We first check if the filament
with the highest drift (μ1) would form a steady state with
the membrane, if it were the only filament in the system.
From the form of λn for N = 1, this gives the trivial condition
μ1 + μM > 0. If this is satisfied, filament 1 participates in the
steady state because it moves towards the membrane. If it does
not, the membrane and the filament drift apart, and no steady
state is formed. Furthermore, as μ1 � μ2 · · · � μN , none of
the filaments settle into a steady state.

We now add filament 2. We check if λ2 > 0. From
the form of λn for N = 2, this gives the condition μ2 >

(−μMD−1
M + μ1D−1

1 )/(D−1
1 + D−1

M ). If this is satisfied, fila-
ment 2 participates in the steady state. If it is not, the one
filament-membrane system runs away from filament 2, and
also the remaining filaments.

We repeat this process sequentially, and assuming that the
condition has been satisfied by all filaments up to n − 1, we
add filament n. The requirement for λn > 0 is

μn >
−μMD−1

M + ∑n−1
n′=1 μn′D−1

n′

D−1
M + ∑n−1

n′′=1 D−1
n′′

. (27)

We find a result that, in retrospect, is self-consistent and
physically intuitive: filament n will participate in the steady
state if μn is greater than the steady state membrane veloc-
ity (24) from the system of the n − 1 faster filaments. This
is independent of Dn—the diffusivity of a filament does not
affect whether it can ‘catch up’ with a system in the long term.

Each additional participating filament contributes to in-
creasing vM . We must then sequentially add filaments by
decreasing velocity, until a filament is found that is slower
than vM up to that point. Then, that filament and all lower
velocity filaments do not participate in the steady state, and
the pdf P(x) is constructed from the participating filaments
only. This procedure is illustrated in Fig. 5, where filaments
are sequentially added, and a new vM is calculated on the
addition of each filament.

0 5 10

-5

0

5

10

Membrane steady state
Filaments (participating)
Filaments (not participating)

FIG. 5. Sequentially adding filaments to a system with a mem-
brane with μM = 5, by decreasing velocity. All diffusion parameters
are set to 1 for simplicity. In this example, filament 6 is slower than
the membrane when it is added, so filaments 1–4 form a steady state
and other filaments fall away.

In the case of a large number of identical filaments
D1, . . . , DN = DF , μ1, . . . , μN = μF , we find

vM = −μMD−1
M + NμF D−1

F

D−1
M + ND−1

F

(28)

≈ μF − 1

N

DF

DM
(μM + μF ). (29)

We see that the membrane velocity converges to the filament
drift μF as the number of filaments N → ∞. This specific
case has been previously derived in [6,8].

IV. QUADRATIC POTENTIAL SOLUTION

Until now, we have considered the case where there are no
explicit forces between the filaments or between the filaments
and the membrane. We now introduce interactions between
components of the system that take the form of linear restoring
forces that derive from quadratic interaction potentials. As we
now show, this system is also exactly solvable within the zero-
current ansatz (7) for a subset of all possible interactions of
this type.

To this end, we specify a potential consisting of general
linear and quadratic terms

V (x) = μ
F

· x + 1
2 xT 	x, (30)

where 	 is a symmetric matrix that describes the interaction at
quadratic order. Each diagonal element of the quadratic term
represents a harmonic potential for the separation between a
filament and the membrane. The off-diagonal terms represent
couplings between the different filaments.

Under this potential, the ansatz (7) reads

(μ
M

+ μ
F

+ 	x + S∇ )P(x) = 0. (31)

Given this quadratic form of the potential, we choose as a trial
solution for Eq. (31) the pdf

P(x) = A−1e−λ·x− 1
2 xT Gx. (32)

The exponent in Eq. (32) contains all possible linear and
quadratic combinations of the xn. A is a normalising constant
and G is a symmetric matrix.
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Inserting this trial solution in Eq. (31) yields

μ
M

+ μ
F

+ 	x − S(λ + Gx) = 0. (33)

This condition implies a solution for λ

λ = S−1(μ
M

+ μ
F

), where S−1	 = G. (34)

As G is symmetric, for Eq. (32) to be a valid solution, we
must have S−1	 symmetric, which is not generally the case.
Thus the trial solution (32) does not satisfy the ansatz (7) in
the general case of several filaments. A possible reason for
this is that the xn = 0 zero-current conditions (7) may not
always extend into the bulk. Then, there would be additional
probability currents in the bulk and the filament-membrane
displacements would form a more complex nonequilibrium
steady state.

In light of this, we seek particular systems for which G =
S−1	 is symmetric. With reference to Fig. 3, we address two
cases. First, a system where the filaments are attracted to
the membrane by a restoring spring-like force with strength
κ . Then, we introduce an additional surface tension with
strength ν.

We note that the pdf (32) is a multivariate normal
distribution [40]. As the domain of P(x) is restricted
to the upper orthant xn � 0, the normalization factors∫∞

0 dx1 · · · ∫∞
0 dxN P(x) are challenging to evaluate exactly

for large N [40]. Regardless of this we can still analyze P(x)
and in particular find scaling laws for vM .

A. Restoring force between filaments and the membrane

We can incorporate a harmonic potential with strength κ >

0. This is by design an asymmetric interaction with attracts
each filament to the membrane, but not vice versa. We hope
to encapsulate the features of a larger membrane moving in
a viscous medium, and a rapidly evolving network of actins
with a variable rate of association and dissociation [20].

This interaction is incorporated with the diagonal matrix
	nm = κδnm. This linear restoring force is intended to model
effective interactions between the filaments and membrane.
We then find from Eq. (34) that the matrix G = κS−1 is sym-
metric (as required) because S is symmetric—see Eq. (21).
Then the stationary solution P(x) is obtained from Eq. (32) as

P(x) = A−1 exp

(
−1

2
bT S−1b

)
, (35)

where

b = κ
1
2 x + κ− 1

2 (μ
M

+ μ
F

). (36)

As each of the filaments is now in a harmonic trap with
respect to the membrane, one expects all filaments to partici-
pate in the steady state, i.e., none lag behind. In other words,
Eq. (35) approaches zero as any of the xn → ∞. Finally,
note that unlike the linear drift case (18), these quadratic
potential systems contain combinations of the form xnxm in
the pdf, implying that the distribution does not decouple over
filaments.

Velocity scaling law

We now argue that the introduction of a harmonic interac-
tion introduces a κ

1
2 enhancement to the membrane velocity.

2 4 6
0

1

2

3

FIG. 6. Numerically integrated membrane velocity as a function
of κ for four different N = 3 filament systems (a)–(d). For each
of these parameter sets, the gradients indicate a vM ∝ κ

1
2 scaling

relationship for large κ . (a) DM = 1, μM = −1, DF = 1, μ
F

=
(1, 3, 1), ν = 2. (b) DM = 1, μM = 3, D1 = 2, D2 = 1/2, D3 = 3,
μ

F
= (−2, 5, 2), ν = 0. (c) DM = 1/2, μM = 2, D1 = 1/2, D2 =

2, D3 = 1, μ
F

= (1, 2, 1), ν = 0. (d) DM = 1/2, μM = 5, DF = 1,
μ

F
= (2, −1, −1), ν = 1.

The normalization constant A is found by requiring

N∏
n=1

(∫ ∞

0
dxn

)
P(x) = 1. (37)

After a variable change, this is written

A = κ− N
2

N∏
n=1

(∫ ∞

κ
− 1

2 (μM+μn )
dx′

n

)
e− 1

2 x′T S−1x′
. (38)

When κ is large, we can approximate the lower bound of each
of the N integrals to extract the dominant κ-dependence

A ≈ κ− N
2

N∏
n=1

(∫ ∞

0
dx′

n

)
e− 1

2 x′T S−1x′
(39)

≡ Bκ− N
2 . (40)

We define B as a κ-independent constant. We repeat this
method to extract the κ-dependence from the (N − 1)-
dimensional integrals in Eq. (9) to give an overall scaling for
the membrane velocity

vM = −μM + DM

N∑
n=1

⎡
⎢⎢⎢⎣

N∏
m=1
m �=n

(∫ ∞

0
dxm

)
P(x|xn=0)

⎤
⎥⎥⎥⎦

(41)

≈ −μM + Cκ
1
2 . (42)

C is another κ-independent constant. We expect the cor-
rection to approximation (40) to be of order κ−(N+1)/2, corre-
sponding to an O(κ0) correction to Eq. (42). To support this,
we present in Fig. 6 the numerically integrated membrane
velocities against κ

1
2 for four N = 3 filament systems, each

with different sets of diffusion and drift parameters. In all four
cases we observe a κ

1
2 scaling for large κ . In the case −μM =

μ1 = μ2 = · · · = μN , the approximations in Eqs. (40), (42)
become exact, as we saw in Eq. (15).
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B. Surface tension

We now add an attractive interaction between neighboring
filaments. Again, we choose the simplest interaction, which
is one that derives from a harmonic potential. This serves to
equalize the length of neighboring filaments, and thus models
a surface tension in the filament bundle.

This additional interaction leads to a second term appear-
ing in the potential V (x),

V (x) = 1

2
κ

N∑
n=1

x2
n + 1

2
ν

N−1∑
n=1

(xn+1 − xn)2, (43)

where the parameter ν specifies the strength of the surface
tension. The interaction matrix is then

	 =

⎛
⎜⎜⎜⎜⎜⎜⎝

κ + ν −ν · · ·
−ν κ + 2ν −ν · ·
· −ν κ + 2ν · ·

. . .
· · · κ + 2ν −ν

· · · −ν κ + ν

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(44)

Note that we have assumed free boundary conditions: that is,
filaments 1 and N each have only a single neighbor.

With this interaction matrix, the matrix G = S−1	 that
appears in the stationary solution (32) is symmetric only if
the N filament diffusivities each take the same value, which
we denote DF . Then,

Gnm = κD−1
F

(
δnm − D−1

F

D−1
M + ND−1

F

)

+νD−1
F (2δnm − δn,m−1 − δn,m+1 − δn1δm1 − δnNδmN ).

(45)

With this form of G, Eq. (32) is the pdf for a system with
inhomogeneous drift terms, a restoring force to the membrane,
and a surface tension.

1. Example: Two filaments with quadratic interactions

To illustrate the previous result, we explicitly calculate
the membrane velocity for the N = 2 filament case, with
both quadratic interactions included. For two filaments with
μM = μ1 = μ2 = 0, the pdf (32) becomes explicitly

P(x) = A−1 exp

(
−ν(x1 − x2)2

2DF

)

× exp

(
−κ

(
x2

1 + x2
2

)
(DF + DM ) − 2DMx1x2

2DF (DF + 2DM )

)
.

(46)

Here, the filaments move towards the membrane by the restor-
ing force only. In this case, the normalization constant A,
obtained by integrating over all x1 > 0 and x2 > 0, has the
exact form

A =
√

DF (DF + 2DM )

κ (κ + 2ν)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

FIG. 7. Analytic membrane velocity as a function of κ , for a
two-filament system at four different surface tension strengths ν.
On increasing ν the filaments become less effective at moving the
membrane, with the limiting case ν → ∞ effectively a one-filament
system (49).

×
[

tan−1

(
DF ν + DM (κ + 2ν)√

κ (κ + 2ν)DF (DF + 2DM )

)
+ π

2

]
,

(47)

where we have used Eq. 4.3.2 in [41] to evaluate the integral.
Then, the membrane velocity follows from (9):

vM =
√

2πDM

√
κ

DF (κ+ν)
κ+2ν

+DM

tan−1
( DF ν+DM (κ+2ν)√

κ (κ+2ν)DF (DF +2DM )

) + π
2

. (48)

For the case ν = 0 (i.e., where there is no surface tension),
we find that the velocity is proportional to κ

1
2 , as claimed

in the previous subsection. This function is plotted in Fig. 7.
For a fixed κ , the membrane velocity decreases as the surface
tension strength increases. The limit of vM as ν → ∞ is

lim
ν→∞ vM = DM√

π

√
2κ

DF /2 + DM
. (49)

In this limit the two filaments are tightly bound and resemble
a single filament (15), with diffusion constant DF /2.

2. More than two filaments

In the case of more than two filaments, it is difficult
to calculate the normalisation constant A in Eq. (32) in a
convenient form. Therefore, to investigate this case, we turn
to numerical evaluation of both the normalising integral and
the integrals that appear in the expression for the membrane
velocity (9). We plot the membrane velocity as a function of
surface tension strength for fixed drift and diffusion rates in
Fig. 8. For all N = 2, 3, 4, we find that the membrane velocity
decreases with surface tension, asymptotically approaching a
constant.

There is a straightforward physical interpretation of this
result. The ratcheting mechanism means that only a single
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0 1 2 3 4 5 6 7 8 9 10
0

1

2

FIG. 8. Membrane velocity as a function of surface tension
strength ν for up to N = 4 filaments, calculated by numerical inte-
gration of the pdf (32). While increasing N increases vM , the velocity
decreases with ν for all three systems as they become less effective
at moving the membrane.

filament need be in contact with the membrane in order to
force it to move right. By introducing a surface tension,
there will always be a force on the closest filament from its
neighbours that pulls it away from the membrane, making the
filament network as a whole less efficient at ratcheting the
membrane.

V. SUMMARY AND OUTLOOK

In this work we have derived the steady-state distribution
of a pure ratcheting system of N heterogeneous filaments,
constricted by a membrane. This model exhibits ratcheting,
whereby a membrane moves at a velocity different to its
inherent drift, solely due to thermal fluctuations and steric
interactions between it and the filaments. This provides a more
comprehensive, general formalism than earlier continuum
models [6,8]. Our solution relies on the zero-current condition
which reduces the drift-diffusion problem to first order equa-
tions. We have found that the zero-current condition holds
for a variety of systems including physically relevant cases
of fixed filament drift (linear filament-membrane interaction
potentials) and quadratic filament-membrane and quadratic
filament-filament interaction potentials.

For these cases, one can find explicit expressions for the
distribution of filament displacements [e.g., Eqs. (18) and (22)
for the constant drift case] and from these one can derive
expressions for the membrane velocity. In the case of an
arbitrary number N of heterogeneous filaments, each with its
own fixed drift and diffusion constant, we have obtained an
explicit and transparent expression (24) for the membrane
velocity vM , and in Eq. (42) a scaling law for when the
filaments are also attracted to the membrane by a restoring
force. Equation (24) reveals inter alia how the ratcheting
mechanism is enhanced by greater membrane diffusion.

For the case of constant-drift filaments, the pdf (18) de-
couples among each of the N filaments. However, a subtlety
arises in that it is not obvious as to whether a collection of
filaments will actually form a steady state. A new filament will
only participate if its velocity is greater than the prior mem-
brane velocity. Conversely, one new high-velocity filament
can disrupt a pre-existing steady state, by pulling the system
away from other lower velocity filaments. Which filaments
participate is a collective outcome of the set of filaments, and
may be determined by considering the filaments in decreasing
order of drift velocity (Fig. 5).

For the case of a linear restoring force, all filaments will
participate in the steady state. While it is a challenge to
normalise the pdf (32) for large N we find in Eq. (42) that a
harmonic attraction to the membrane increases the velocity by
an amount proportional to the square root of the force constant
κ , to leading order. It is physically intuitive that the velocity
would increase as the attractive force increases, however the
exponent of 1/2 in Eq. (42) is less obvious.

Finally, we have introduced a surface tension element
between neighboring filaments, and shown that vM decreases
as a result. Intuitively, a surface tension will always pull
the right-most filament away from the membrane, giving the
membrane more space to freely move left. This suggests that
the filament network most efficiently moves the membrane
when each filament moves independently of one another.

An interesting problem that arises from this work is that
some particular parameter combinations have zero probability
current in the bulk, and some do not. In these non-ansatz-
satisfying systems, one should expect circulatory—perhaps
oscillatory—flows of probability current in the bulk. A natural
progression from the work presented here would be to further
probe these more complex systems, and how the tuning of
these parameters gives rise to additional bulk currents.

This system is exactly solvable and the expressions for the
membrane velocity vM are analytic, for an arbitrary number
of filaments. In contrast, the discrete case of Fig. 2 does not
permit a separable solution. To more closely resemble the
dynamics of real actin networks, and to extend beyond the
pure ratchet model considered here, it would be desirable
to encode some type of direct contact force between the
filaments and membrane beyond hard-core exclusion [42].
The challenge is that for any non-instantaneous contact (such
as tethering filaments to the membrane [10]), the zero-current
boundary conditions no longer hold. More generally, the zero-
current condition is characteristic of a nonequilibrium steady
state, that is, one that is maintained through a constant input
and subsequent dissipation of energy and for which a general
theoretical formalism remains elusive [43].
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APPENDIX A: CONTINUUM LIMIT OF LATTICE BROWNIAN RATCHET

We derive the diffusion equation (5) and boundary conditions (6), from the recurrence relations (1) and (2) that describe the
lattice Brownian ratchet.
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1. Diffusion equation

With reference to Fig. 2, define a as a lattice spacing on this discrete system, such that x = (x1, x2, . . . , xN ) = ai. With this
included, the master equation (1) becomes

0 = −
[

2m + l +
N∑

n=1

(2qn + rn(xn))

]
P(x) + mP(x − a1) + (m + l )P(x + a1)

+
N∑

n=1

qnP(x − an̂) +
N∑

n=1

[qn + rn(xn + a)]P(x + an̂). (A1)

Now, we treat x as a continuous vector and Taylor expand P around x to second order. We find

0 ≈ −
[

2m + l +
N∑

n=1

(2qn + rn(xn))

]
P(x) + m

(
1 − a

N∑
n=1

∂n + 1

2
a2

N∑
n=1

N∑
k=1

∂n∂k

)
P(x)

+ (m + l )

(
1 + a

N∑
n=1

∂n + 1

2
a2

N∑
n=1

N∑
k=1

∂n∂k

)
P(x) +

N∑
n=1

qn

(
1 − a∂n + 1

2
a2∂2

n

)
P(x)

+
N∑

n=1

(
qn +

[
1 + a∂n + 1

2
a2∂2

n

]
rn(xn)

)(
1 + a∂n + 1

2
a2∂2

n

)
P(x),

where we have used the shorthand ∂n ≡ ∂/∂xn. This simplifies to

0 ≈ a

(
N∑

n=1

[∂nrn(xn) + (rn(xn) + l )∂n]P(x)

)
+ a2

((
m + 1

2
l

) N∑
n=1

N∑
k=1

∂n∂kP(x)+
N∑

n=1

[(
qn + 1

2
rn(xn)

)
∂2

n + 1

2
∂2

n rn(xn)

]
P(x)

)

(A2)

since all O(a0) terms cancel.
We now define a set of diffusion and drift rates, first for the membrane (subscript M)

μM = l, μ
M

≡
N∑

n=1

μMn̂, DM = am. (A3)

For the filaments, we define

∂nV (x) = rn, Dn = aqn (A4)

writing the drift ∂nV (x) in terms of a potential gradient. We then rewrite Eq. (A2), retaining leading-order terms only:

0 =
N∑

n=1

∂n

[
(∂nV (x) + μM )P(x) +

(
DM

N∑
k=1

∂k + Dn∂n

)
P(x)

]
(A5)

which is the diffusion equation (5).

2. Boundary conditions

Starting from the master equation (2) that applies when a filament is in contact with the membrane, we can follow a similar
sequence of steps to obtain a boundary condition on the diffusion equation. This time we do not get full cancellation at O(a0),
so we need only expand to first order to obtain

0 ≈

⎡
⎢⎢⎢⎣−

⎛
⎜⎜⎜⎝m + qk +

N∑
n=1
n �=k

(2qn + rn(xn))

⎞
⎟⎟⎟⎠P(x) + (m + l )

(
1 + a

N∑
n=1

∂n

)
P(x)

+
N∑

n=1
n �=k

qn(1 − a∂n)P(x) +
N∑

n=1

(qn + [1 + a∂n]rn(xn))(1 + a∂n)P(x)

⎤
⎥⎥⎥⎦

xk=0

(A6)
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which simplifies to

0 ≈
[

(l + rk (xk ))P(x) + a

(
qk∂k +

N∑
n=1

[∂nr(xn) + (m + l + rn(xn))∂n]

)
P(x)

]
xk=0

. (A7)

Now, on using the above definitions of the drift and diffusion rates, we ultimately find

0 =
[(

μM + ∂kVk (xk ) + Dk∂k +
N∑

n=1

DM∂n

)
P(x)

]
xk=0

(A8)

which, for all k = 1, 2, . . . , N is the set of boundary conditions (6). This is a first order equation, reflective of the deterministic
dynamics on contact with the boundary.

3. Membrane velocity formula

We now show in detail how to obtain Eq. (9), the formula for the mean continuum membrane velocity, vM , as a function of
the various parameters in the system. We begin from a simple expression for the velocity in the discrete case, which we take a
continuum limit of.

In the discrete system, the membrane will move at an average velocity −l when no filaments are in contact with it, and at
velocity +m in any configuration i(c) where one or more filaments are in contact (see Fig. 2):

vM = −l (1 − Pcontact ) + mPcontact (A9)

= −l + (m + l )
∑
i(c)

Pi. (A10)

By convention, vM is positive if the membrane is moving to the right. Here, Pcontact is the overall probability of the membrane
being in contact with any filament, i.e., a sum over all configurations i(c) where one or more filament contacts the membrane.
With the parameters in Eq. (3), we obtain from Eq. (A10) in the continuum limit

vM = − l (1 − Pcontact ) + mPcontact (A11)

≈ − l + (m + l )
N∑

n=1

⎡
⎢⎢⎢⎣

N∏
m=1
m �=n

(∑
m�0

)
P (i|in=0)

⎤
⎥⎥⎥⎦ (A12)

≈ − μM +
(

DM

a
+ μM

) N∑
n=1

⎡
⎢⎢⎢⎣

N∏
m=1
m �=n

(∫ ∞

0

dxm

a

)
aNP (x|xn=0)

⎤
⎥⎥⎥⎦. (A13)

where P (x|xn=0) is the pdf evaluated at xn = 0. We have neglected any configurations where two or more filaments make contact:
any such configurations would make an O(a) contribution to the velocity in Eq. (A13), as these terms will comprise fewer than
(N − 1) integrals in dxm/a. In the limit a → 0, then, these terms will vanish. Taking this limit we recover Eq. (9),

vM = −μM + DM

N∑
n=1

⎡
⎢⎢⎢⎣

N∏
m=1
m �=n

(∫ ∞

0
dxm

)
P (x|xn=0)

⎤
⎥⎥⎥⎦.

[1] M. v. Smoluchowski, Phys. Z. 13, 1069 (1912).
[2] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman

Lectures on Physics, Vol. I: The New Millennium Edition:
Mainly Mechanics, Radiation, and Heat (Basic Books, New
York, 2011).

[3] M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).

[4] J. Bang, R. Pan, T. M. Hoang, J. Ahn, C. Jarzynski, H. T. Quan,
and T. Li, New J. Phys. 20, 103032 (2018).

[5] C. S. Peskin, G. M. Odell, and G. F. Oster, Biophys. J. 65, 316
(1993).

[6] C. L. Cole and H. Qian, Biophys. Rev. Lett. 6, 59 (2011).
[7] A. Perilli, C. Pierleoni, G. Ciccotti, and J.-P. Ryckaert, J. Chem.

Phys. 148, 95101 (2018).

042122-11

https://doi.org/10.1103/PhysRevLett.71.1477
https://doi.org/10.1103/PhysRevLett.71.1477
https://doi.org/10.1103/PhysRevLett.71.1477
https://doi.org/10.1103/PhysRevLett.71.1477
https://doi.org/10.1088/1367-2630/aae71f
https://doi.org/10.1088/1367-2630/aae71f
https://doi.org/10.1088/1367-2630/aae71f
https://doi.org/10.1088/1367-2630/aae71f
https://doi.org/10.1016/S0006-3495(93)81035-X
https://doi.org/10.1016/S0006-3495(93)81035-X
https://doi.org/10.1016/S0006-3495(93)81035-X
https://doi.org/10.1016/S0006-3495(93)81035-X
https://doi.org/10.1142/S1793048011001269
https://doi.org/10.1142/S1793048011001269
https://doi.org/10.1142/S1793048011001269
https://doi.org/10.1142/S1793048011001269
https://doi.org/10.1063/1.5001124
https://doi.org/10.1063/1.5001124
https://doi.org/10.1063/1.5001124
https://doi.org/10.1063/1.5001124


WOOD, BLYTHE, AND EVANS PHYSICAL REVIEW E 100, 042122 (2019)

[8] J. Valiyakath and M. Gopalakrishnan, Sci. Rep. 8, 2526
(2018).

[9] J. Whitehouse, R. A. Blythe, M. R. Evans, and D. Mukamel,
Phys. Rev. Lett. 121, 058102 (2018).

[10] A. Mogilner and G. Oster, Biophys. J. 84, 1591 (2003).
[11] A. E. Carlsson, Biophys. J. 81, 1907 (2001).
[12] A. E. Carlsson and D. Sept, Methods Cell Biol. 84, 911 (2008).
[13] R. K. Sadhu and S. Chatterjee, Phys. Rev. E 97, 032408 (2018).
[14] R. K. Sadhu and S. Chatterjee, Eur. Phys. J. E 42, 15 (2019).
[15] D. K. Hansda, S. Sen, and R. Padinhateeri, Phys. Rev. E 90,

062718 (2014).
[16] R. Wang and A. E. Carlsson, New J. Phys. 16, 113047 (2014).
[17] D. Das, D. Das, and R. Padinhateeri, New J. Phys. 16, 063032

(2014).
[18] K. Tsekouras, D. Lacoste, K. Mallick, and J.-F. Joanny, New J.

Phys. 13, 103032 (2011).
[19] D. A. Lauffenburger and A. F. Horwitz, Cell 84, 359 (1996).
[20] T. Svitkina, Cold Spring Harb. Perspect. Biol. 10, a018267

(2018).
[21] R. Andorfer and J. D. Alper, Wiley Interdiscip. Rev.: Nanomed.

Nanobiotechnol. 11, e1553 (2019).
[22] R. H. Insall and L. M. Machesky, Dev. Cell 17, 310 (2009).
[23] T. Pujol, O. du Roure, M. Fermigier, and J. Heuvingh, Proc.

Natl. Acad. Sci. USA 109, 10364 (2012).
[24] A. Kawska, K. Carvalho, J. Manzi, R. Boujemaa-Paterski, L.

Blanchoin, J.-L. Martiel, and C. Sykes, Proc. Natl. Acad. Sci.
USA 109, 14440 (2012).

[25] T. D. Pollard, J. Cell Biol. 103, 2747 (1986).
[26] J. V. Small, G. Isenberg, and J. E. Celis, Nature 272, 638 (1978).

[27] T. D. Pollard and G. G. Borisy, Cell 112, 453 (2003).
[28] T. M. Svitkina, A. B. Verkhovsky, K. M. McQuade, and G. G.

Borisy, J. Cell Biol. 139, 397 (1997).
[29] P. Matsudaira, Seminars in Cell Biology (Elsevier, New York,

1994), Vol. 5, pp. 165–174.
[30] T. P. O’Connor and D. Bentley, J. Cell Biol. 123, 935 (1993).
[31] P. K. Mattila and P. Lappalainen, Nat. Rev. Mol. Cell Biol. 9,

446 (2008).
[32] L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, and J. Plastino,

Physiol. Rev. 94, 235 (2014).
[33] M. Gardel, J. H. Shin, F. MacKintosh, L. Mahadevan, P.

Matsudaira, and D. Weitz, Science 304, 1301 (2004).
[34] O. Lieleg, M. M. Claessens, and A. R. Bausch, Soft Matter 6,

218 (2010).
[35] M. A. Wear, D. A. Schafer, and J. A. Cooper, Curr. Biol. 10,

R891 (2000).
[36] S. Franceschi and K. Raschel, arXiv:1703.09433 (2017).
[37] S. Franceschi and I. Kourkova, Stoch. Syst. 7, 32 (2017).
[38] K. Schulten and I. Kosztin, Lectures in Theoretical Biophysics

(University of Illinois, Illinois, 2000).
[39] M. S. Bartlett, Ann. Math. Stat. 22, 107 (1951).
[40] A. Genz and F. Bretz, Computation of Multivariate Normal and

t Probabilities (Springer Science & Business Media, New York,
2009), Vol. 195.

[41] E. W. Ng and M. Geller, J. Res. Natl. Bur. Stand. B 73, 1 (1969).
[42] R. Ananthakrishnan and A. Ehrlicher, Int. J. Biol. Sci. 3, 303

(2007).
[43] M. R. Evans and R. A. Blythe, Physica A (Amsterdam) 313,

110 (2002).

042122-12

https://doi.org/10.1038/s41598-018-20259-7
https://doi.org/10.1038/s41598-018-20259-7
https://doi.org/10.1038/s41598-018-20259-7
https://doi.org/10.1038/s41598-018-20259-7
https://doi.org/10.1103/PhysRevLett.121.058102
https://doi.org/10.1103/PhysRevLett.121.058102
https://doi.org/10.1103/PhysRevLett.121.058102
https://doi.org/10.1103/PhysRevLett.121.058102
https://doi.org/10.1016/S0006-3495(03)74969-8
https://doi.org/10.1016/S0006-3495(03)74969-8
https://doi.org/10.1016/S0006-3495(03)74969-8
https://doi.org/10.1016/S0006-3495(03)74969-8
https://doi.org/10.1016/S0006-3495(01)75842-0
https://doi.org/10.1016/S0006-3495(01)75842-0
https://doi.org/10.1016/S0006-3495(01)75842-0
https://doi.org/10.1016/S0006-3495(01)75842-0
https://doi.org/10.1016/S0091-679X(07)84029-5
https://doi.org/10.1016/S0091-679X(07)84029-5
https://doi.org/10.1016/S0091-679X(07)84029-5
https://doi.org/10.1016/S0091-679X(07)84029-5
https://doi.org/10.1103/PhysRevE.97.032408
https://doi.org/10.1103/PhysRevE.97.032408
https://doi.org/10.1103/PhysRevE.97.032408
https://doi.org/10.1103/PhysRevE.97.032408
https://doi.org/10.1140/epje/i2019-11773-3
https://doi.org/10.1140/epje/i2019-11773-3
https://doi.org/10.1140/epje/i2019-11773-3
https://doi.org/10.1140/epje/i2019-11773-3
https://doi.org/10.1103/PhysRevE.90.062718
https://doi.org/10.1103/PhysRevE.90.062718
https://doi.org/10.1103/PhysRevE.90.062718
https://doi.org/10.1103/PhysRevE.90.062718
https://doi.org/10.1088/1367-2630/16/11/113047
https://doi.org/10.1088/1367-2630/16/11/113047
https://doi.org/10.1088/1367-2630/16/11/113047
https://doi.org/10.1088/1367-2630/16/11/113047
https://doi.org/10.1088/1367-2630/16/6/063032
https://doi.org/10.1088/1367-2630/16/6/063032
https://doi.org/10.1088/1367-2630/16/6/063032
https://doi.org/10.1088/1367-2630/16/6/063032
https://doi.org/10.1088/1367-2630/13/10/103032
https://doi.org/10.1088/1367-2630/13/10/103032
https://doi.org/10.1088/1367-2630/13/10/103032
https://doi.org/10.1088/1367-2630/13/10/103032
https://doi.org/10.1016/S0092-8674(00)81280-5
https://doi.org/10.1016/S0092-8674(00)81280-5
https://doi.org/10.1016/S0092-8674(00)81280-5
https://doi.org/10.1016/S0092-8674(00)81280-5
https://doi.org/10.1101/cshperspect.a018267
https://doi.org/10.1101/cshperspect.a018267
https://doi.org/10.1101/cshperspect.a018267
https://doi.org/10.1101/cshperspect.a018267
https://doi.org/10.1002/wnan.1553
https://doi.org/10.1002/wnan.1553
https://doi.org/10.1002/wnan.1553
https://doi.org/10.1002/wnan.1553
https://doi.org/10.1016/j.devcel.2009.08.012
https://doi.org/10.1016/j.devcel.2009.08.012
https://doi.org/10.1016/j.devcel.2009.08.012
https://doi.org/10.1016/j.devcel.2009.08.012
https://doi.org/10.1073/pnas.1121238109
https://doi.org/10.1073/pnas.1121238109
https://doi.org/10.1073/pnas.1121238109
https://doi.org/10.1073/pnas.1121238109
https://doi.org/10.1073/pnas.1117096109
https://doi.org/10.1073/pnas.1117096109
https://doi.org/10.1073/pnas.1117096109
https://doi.org/10.1073/pnas.1117096109
https://doi.org/10.1083/jcb.103.6.2747
https://doi.org/10.1083/jcb.103.6.2747
https://doi.org/10.1083/jcb.103.6.2747
https://doi.org/10.1083/jcb.103.6.2747
https://doi.org/10.1038/272638a0
https://doi.org/10.1038/272638a0
https://doi.org/10.1038/272638a0
https://doi.org/10.1038/272638a0
https://doi.org/10.1016/S0092-8674(03)00120-X
https://doi.org/10.1016/S0092-8674(03)00120-X
https://doi.org/10.1016/S0092-8674(03)00120-X
https://doi.org/10.1016/S0092-8674(03)00120-X
https://doi.org/10.1083/jcb.139.2.397
https://doi.org/10.1083/jcb.139.2.397
https://doi.org/10.1083/jcb.139.2.397
https://doi.org/10.1083/jcb.139.2.397
https://doi.org/10.1083/jcb.123.4.935
https://doi.org/10.1083/jcb.123.4.935
https://doi.org/10.1083/jcb.123.4.935
https://doi.org/10.1083/jcb.123.4.935
https://doi.org/10.1038/nrm2406
https://doi.org/10.1038/nrm2406
https://doi.org/10.1038/nrm2406
https://doi.org/10.1038/nrm2406
https://doi.org/10.1152/physrev.00018.2013
https://doi.org/10.1152/physrev.00018.2013
https://doi.org/10.1152/physrev.00018.2013
https://doi.org/10.1152/physrev.00018.2013
https://doi.org/10.1126/science.1095087
https://doi.org/10.1126/science.1095087
https://doi.org/10.1126/science.1095087
https://doi.org/10.1126/science.1095087
https://doi.org/10.1039/B912163N
https://doi.org/10.1039/B912163N
https://doi.org/10.1039/B912163N
https://doi.org/10.1039/B912163N
https://doi.org/10.1016/S0960-9822(00)00845-9
https://doi.org/10.1016/S0960-9822(00)00845-9
https://doi.org/10.1016/S0960-9822(00)00845-9
https://doi.org/10.1016/S0960-9822(00)00845-9
http://arxiv.org/abs/arXiv:1703.09433
https://doi.org/10.1287/16-SSY218
https://doi.org/10.1287/16-SSY218
https://doi.org/10.1287/16-SSY218
https://doi.org/10.1287/16-SSY218
https://doi.org/10.1214/aoms/1177729698
https://doi.org/10.1214/aoms/1177729698
https://doi.org/10.1214/aoms/1177729698
https://doi.org/10.1214/aoms/1177729698
https://doi.org/10.6028/jres.073B.001
https://doi.org/10.6028/jres.073B.001
https://doi.org/10.6028/jres.073B.001
https://doi.org/10.6028/jres.073B.001
https://doi.org/10.7150/ijbs.3.303
https://doi.org/10.7150/ijbs.3.303
https://doi.org/10.7150/ijbs.3.303
https://doi.org/10.7150/ijbs.3.303
https://doi.org/10.1016/S0378-4371(02)01035-X
https://doi.org/10.1016/S0378-4371(02)01035-X
https://doi.org/10.1016/S0378-4371(02)01035-X
https://doi.org/10.1016/S0378-4371(02)01035-X

