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Anisotropic avalanches and critical depinning of three-dimensional magnetic domain walls
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Simulations with more than 1012 spins are used to study the motion of a domain wall driven through a three-
dimensional random-field Ising magnet (RFIM) by an external field H . The interface advances in a series of
avalanches whose size diverges at a critical external field Hc. Finite-size scaling is applied to determine critical
exponents and test scaling relations. Growth is intrinsically anisotropic with the height of an avalanche normal
to the interface �⊥ scaling as the width along the interface �‖ to a power χ = 0.85 ± 0.01. The total interface
roughness is consistent with self-affine scaling with a roughness exponent ζ ≈ χ that is much larger than values
found previously for the RFIM and related models that explicitly break orientational symmetry by requiring
the interface to be single-valued. Because the RFIM maintains orientational symmetry, the interface develops
overhangs that may surround unfavorable regions to create uninvaded bubbles. Overhangs complicate measures
of the roughness exponent but decrease in importance with increasing system size.
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I. INTRODUCTION

Many disordered systems exhibit critical behavior when
they are driven slowly [1–3]. Evolution occurs through a
scale-free sequence of bursts or avalanches that have a power-
law distribution of sizes. Notable examples of such avalanches
include earthquakes [4], sandpile avalanches [5], Barkhausen
noise in magnetization [6,7], and the jerky advance of an
elastic interface through a medium with quenched disorder
[8]. Here we focus on the last case, which is important
in magnetic domain wall motion [9–17], fluid invasion in
porous media [18–21], contact line motion [21–25], and the
propagation of crack fronts [26–28].

The onset of athermal motion of a driven interface is
called a depinning transition and occurs at a critical driving
force Fc. As F increases towards Fc the interface advances
between stable states in a sequence of avalanches. The size of
avalanches grows as F approaches Fc and can be related to a
diverging correlation length. For F > Fc the interface is never
stable, and avalanches are associated with fluctuations in the
interface velocity. As F increases, these fluctuations become
smaller. The value of Fc is determined by a competition
between the disorder and the elastic cost of deforming the in-
terface. Different universality classes have been identified, de-
pending on whether disorder is large or small [10–16,18–20]
and whether elastic interactions are local or have a long,
power-law tail [25,27].

A magnetic domain wall or fluid interface can have any
orientation in a d-dimensional system, and the driving force
always favors advance perpendicular to the local orientation.
At high disorder, the advancing interface becomes self-similar
with a fractal dimension related to percolation [10–16,18–20].
At low disorder, elastic interactions are able to spontaneously
break symmetry and enforce an average interface orienta-
tion [10–16,18–20]. The interface becomes self-affine, and
fluctuations in height along the average surface normal rise
as �ζ where ζ < 1 is the roughness exponent and � is the
displacement in the d − 1 dimensions along the interface.

Most models of interface motion focus on the self-affine
regime and begin with the assumption that the height is a
single-valued function [29–36]. While this simplifies the ap-
plication of analytical methods, it explicitly breaks the spatial
symmetry of the physical system and may thus change the
universality class. The above models also use an approxima-
tion for the elastic energy that is valid only when derivatives
of the height are much less than unity. These assumptions may
not be self-consistent because the regions of extreme disorder,
which are important to pinning, also create large forces and
therefore large surface slope and curvature [37,38]. Moreover,
motion can be stopped at any field by a single unflippable
spin or uninvadable pore. Such extreme regions need not stop
a fully d-dimensional interface. A multivalued interface can
have overhangs that advance around regions of strong disorder
and merge to create enclosed bubbles that are left behind
the advancing interface. This process is clearly observed in
advancing fluid interfaces [39].

In this paper we examine the critical depinning transition
in a model that does not impose an interface orientation, the
d = 3 random field Ising model (RFIM) [11,14–16]. Simula-
tions with more than 1012 spins are analyzed using finite-size
scaling, and scaling relations between exponents are derived
and tested. While the domain wall between up and down spins
is not single-valued, growth is strongly anisotropic. The corre-
lation lengths along and perpendicular to the interface diverge
near the critical point with different exponents ν‖ and ν⊥,
respectively. Individual avalanches show the same growing
anisotropy, with the height scaling as width to the power χ =
ν⊥/ν‖ = 0.85 ± 0.01. The anisotropy is also consistent with
scaling relations for the distribution of avalanche volumes
and lengths, and for the maximum volume and lengths. The
scaling of the total root mean square (rms) interface roughness
is consistent with ζ = χ . The power law describing changes
in roughness with separation along the interface appears to
approach χ as L increases near the critical field.

These results are quite different from earlier work on the
RFIM. Calculated exponents were consistent with scaling
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relations that assumed χ = 1 [20] but used systems with
linear dimensions more than 40 times smaller [11] for which
we show finite-size effects are significant. Later work [14]
used systems up to four times larger and found χ = 0.9 ± 0.1,
which is still consistent with unity. All earlier work [11,15,16]
concluded that the roughness exponent ζ was consistent with
the mean-field value of 2/3 and less than χ .

Our results show that the ratio of overhang height to
interface width decreases with increasing system size. This
suggests that the RFIM might be in the same universality
class as models that assume the interface is single-valued.
The results are compared to studies of the quenched Edwards-
Wilkinson (QEW) equation, a single-valued interface model
that is often used for domain wall motion [33,35,36,40]. Some
exponents, such as the power law describing the distribution
of avalanche volumes, are nearly the same in both models
[11,35]. However, the anisotropy is quite different.

In Sec. II we describe the implementation of the RFIM
model and different growth protocols used. Results are pre-
sented in Sec. III. In Sec. III A the critical field and corre-
lation length exponent are first identified using the fraction
of avalanches which span the system. Next the divergence of
avalanches as the system approaches the critical field and the
distribution of avalanches at the critical field are calculated
in Secs. III B and III C, respectively. We next look at the
morphology of avalanches in Sec. III D and the scaling of
spanning avalanches in Sec. III E. In Secs. III F and III G
we study the scaling of the interface morphology. Finally,
the contribution of overhangs to the total interfacial width is
discussed in Sec. III H. In Sec. IV we summarize our results
and compare to past work.

II. METHODS

We simulate athermal motion of a domain wall in the RFIM
on a cubic lattice in d = 3 [11,15]. The Hamiltonian of the
system is given by

H =
∑
〈i, j〉

sis j −
∑

i

(ηi + H )si, (1)

where si = ±1 is the state of the ith spin, H is the external
magnetic field, and ηi is the local random field. Interactions
extend only to nearest neighbors, and the coupling strength is
defined as the unit of energy. The nearest-neighbor spacing is
defined as the unit of length. The random local field is taken
to be Gaussian distributed with a mean of zero and a standard
deviation of �.

Previous work has determined that there exists a criti-
cal value of the noise �c ∼ 2.5 separating two universality
classes [15]. In the limit of � > �c, fluctuations in noise
dominate the Hamiltonian such that interactions become irrel-
evant. Therefore, the local orientation of the interface does not
significantly favor a direction of growth, and the problem re-
duces to invasion percolation [11,15,41]. The invaded volume
has a self-similar hull described by percolation theory [42].
In the limit of small noise, � < �c, interactions lead to more
compact, cooperative growth producing a self-affine interface
[11,15]. We have studied systems at a range of � and verified
the transition from isotropic growth above �c to anisotropic
growth below �c. Exponents for several � below �c were
consistent, and we focus on results for � = 1.7 below.

Interfaces are grown with fixed boundary conditions along
the direction of growth and periodic boundary conditions per-
pendicular to growth. The upper and lower boundaries consist
of layers of down and up states, respectively, necessitating the
presence of a domain wall within the bulk. In the periodic
directions, the system has a width of Lx = Ly = L while the
height of the box along the direction of growth is typically
set to Lz = 2L. A larger vertical dimension helps ensure the
upper boundary condition does not interfere with growth for
most simulation runs.

Systems are initialized with all spins in the down state
except for the bottom layer, creating an initially flat domain
wall. Spins are allowed to flip up only if they lie on the
interface, i.e., if at least one of their neighbors is up. This
requirement is motivated by models with a conservation law
such as fluid invasion where fluid must flow along a connected
path to new regions [10,18–20,41]. As down spins adjacent
to the interface flip up, the set of spins defining the interface
evolves. These growth rules ensure that there is a single
domain wall separating the unflipped region at large z from
flipped spins at low z, as is usually assumed in scaling theories
of interface motion through a disordered medium [29–36]. In
contrast, studies of Barkhausen noise in hysteresis loops of the
RFIM allow disconnected spins to flip and this changes things
like the critical disorder �c [7,43,44].

The RFIM considered here has only cubic symmetry, but
past studies show that scaling of interface growth is isotropic
in both the self-affine and self-similar regimes [16,31,45].
Planar growth along facets of the lattice occurs only for a
bounded distribution of random fields at very weak disorder
[16,17]. This is in sharp contrast to models that explic-
itly break symmetry by assuming the interface is a single-
valued function of height [31,33,35,36,40,45]. Some 2 + 1-
dimensional models even have direction-dependent critical
fields and other anisotropic properties [31,45]. Given the
established isotropy of growth in our model we consider the
simplest case where the sides of the box are aligned with
the nearest-neighbor directions and the initial interface has a
(001) orientation.

Growth occurs athermally through single spin-flip
dynamics. The external magnetic field is initialized to
the lowest value that will excite a single spin on the interface
to flip up. The stability of neighboring down spins is checked,
and they are flipped up if this lowers the global energy. This
procedure can lead to a chain reaction and is repeated until
all spins are stable along the interface. The “no-passing rule”
[46,47] guarantees that the resulting interface is independent
of the algorithmic order in which spins are flipped. The
magnetic field is then increased to flip the least stable
remaining spin, and the process is repeated until either the
interface reaches the upper boundary or the field is well
above the critical point. Fewer than than 2% of systems of
size L = 1600 hit the boundary at a height of 3200 before
reaching the critical field. The growth algorithm produces
invaded volumes such as the examples in Fig. 1 rendered
using the Open Visualization Tool (OVITO) [48].

Each time the external field is incremented, the resulting
cluster of flipped spins is recorded and grouped as a single
avalanche. The volume and linear dimensions of each
avalanche are calculated. The volume is simply the number of
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FIG. 1. Flipped spins in a sample simulation of size L = 100 are shown for different stages of growth corresponding to (a) H near 1.44579
and (b) H near 1.45853. Contiguous spins are grouped by their associated avalanche and colored accordingly. Along the cross section one can
see more examples of small avalanches at low heights which grew at smaller values of the external field H . At larger heights, growth occurred
at a higher value of H , and larger avalanches are visible. The final avalanche (teal) in panel (a) is an example of a semispanning avalanche that
wraps across a periodic boundary condition and percolates. The final avalanche (blue) in panel (b) is an example of a fully spanning avalanche
that has a footprint of L2 and advances the entire interface. The set of spins which could potentially flip in response to an increase in H in
panel (b) are rendered in panel (c). These unflipped spins can either be on the external interface or contained inside a bubble. Four bubbles
consisting of either six unflipped spins or a single unflipped spin are indicated by arrows. The remaining visible region constitutes the external
interface. Note that it is not a single-valued function of height, and large overhanging regions are visible at the bottom left and right cross
sections. Particles are colored by height for improved visibility.

spins flipped, and the linear dimensions are calculated based
on measures of the width and height defined in Sec. III D.
Because the interactions are short range, all spins in a cluster
are connected. Some avalanches can have a length of L or
larger in the direction perpendicular to growth due to the
periodic boundary conditions. If these avalanches percolate,
colliding with a periodic image of themselves, specifying their
lateral size is ambiguous. We will refer to these avalanches as
spanning avalanches, and two examples are seen in Figs. 1(a)
and 1(b). Due to this ambiguity and changes in scaling dis-
cussed in Sec. III E, we exclude spanning avalanches from
most analyses unless otherwise mentioned. Avalanches which
are truncated by reaching the upper boundary are always
excluded because their growth is artificially restricted.

We further divide spanning avalanches into two classes:
semispanning and fully spanning avalanches. We define the
footprint of an avalanche as the total area of all flipped
spins projected onto the x-y plane. The footprint of any
avalanche is contained in the interval [1, L2] by definition.
We define semispanning avalanches as percolating events that
have a footprint less than L2. A specific example is shown
in Fig. 1(a). Fully spanning avalanches are percolating events
that have a footprint equal to L2 such as the final avalanche
seen in Fig. 1(b). The differences between these two classes
of spanning avalanches are discussed in Sec. III E.

Any unflipped down spin with a neighbor in the flipped
up state is a potential site for an avalanche. However, as seen
in Fig. 1(c), these spins can be sorted into two topologically
distinct regions: the external interface and bubbles. The ex-
ternal interface consists of spins that are connected to the
upper boundary of the cell by an unbroken chain of unflipped
spins. This interface delimits the extent of propagation. Alter-
natively, certain spins with a strong pinning force may become
surrounded by the domain wall and enclosed in a bubble.
While avalanches could still grow in bubbles, they would
be heavily constrained by the geometry of the bubble and

would not contribute to the structure of the external interface.
Therefore they are excluded from all analysis in this paper.
This rule is analogous to the problem of incompressible fluid
invasion where growth within bubbles is not allowed [18,41].
The average fraction of volume behind the external interface
that is in bubbles is quite small and nearly independent of
H and L. The fraction of bubbles does depend on disorder,
dropping from less than 0.02% for � = 2.1 to below 0.001%
for � = 1.7. Since these fractions are low and avalanches
inside bubbles are small, excluding avalanches in bubbles has
little impact on the avalanche statistics, especially for the large
sizes that dominate the critical behavior.

In addition to the growth protocol described above, a
second protocol was also implemented. In this method, the
external field H is set at a fixed value, and unstable spins
are continually flipped until the interface is stable. For each
ensemble, stable interfaces were found for a set of increasing
H . The values of H were chosen to thoroughly sample the ap-
proach to the critical field Hc, which is measured in Sec. III A.
In this protocol, we do not resolve individual avalanches.
This allows for efficient parallelization of the code allowing
simulation of larger system sizes. As referenced before, the
no-passing rule [46,47] guarantees that the resulting interface
does not depend on the parallelization scheme. Using the
primary protocol and tracking individual avalanche growth
we simulate systems up to a size of L = 3 200. With the
alternate protocol we reached system sizes of L = 25 600,
flipping more than 1012 spins. At all system sizes, many
simulations were run with different realizations of disorder,
and results were averaged.

III. RESULTS AND DISCUSSION

A. Determining the critical field

As the external field is increased, the domain wall advances
through a sequence of avalanches. The size of the largest
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FIG. 2. The fraction of volume invaded due to system spanning
avalanches over a small interval of H is calculated for the val-
ues of L indicated in the legend. A dashed vertical line indicates
Hc = 1.46305. The inset shows the collapsed data using the finite-
size scaling procedure described in Eq. (3) with a value of Hc =
1.46305 and ν‖ = 0.79.

avalanche increases with external field, indicating a growing
correlation length. The critical field Hc is defined as the
field where the correlation length diverges and interfaces in
an infinite system will depin and advance indefinitely. In a
finite-size system the depinning transition is broadened. There
is a range of H where the correlation length is comparable to
the system size L. In this range, interfaces in some systems
will remain pinned while others will advance to the top. In
this section we use finite-size scaling methods to determine
Hc and the scaling of the in-plane correlation length ξ‖ from
simulations with different L.

For a self-affine system, correlations may be different for
motion along and perpendicular to the interface. We define a
correlation length along the interface as ξ‖ and a correlation
length in the direction of growth as ξ⊥. Both are expected to
diverge at the critical field in an infinite system with exponents
ν‖ and ν⊥, respectively:

ξ‖ ∼ |Hc − H |−ν‖ ,

ξ⊥ ∼ |Hc − H |−ν⊥ . (2)
We define χ = ν⊥/ν‖ such that ξ⊥ ∼ ξ

χ

‖ .
The total volume invaded over an interval of external field

is defined as the number of spins that become unstable and
flip. For a finite system, a fraction Fs of these flipped spins
will be part of system-spanning avalanches, while the rest are
in smaller avalanches. At very low fields where ξ‖ � L, no
avalanches will span the system and Fs = 0. At very large
fields, H > Hc, Fs → 1 as the system becomes depinned at all
system sizes, and the largest, spanning avalanches dominate
the increase in volume.

Figure 2 shows the change in Fs with H for different system
sizes. For each L, the size of increments in H was chosen to
be small enough to resolve the transition but large enough to
reduce noise. After calculating Fs for each interval, the curves
were further smoothed by applying a rolling average across
all sets of three adjacent intervals. At fields above Hc, many
systems have already reached the top of the box and stopped
evolving. We therefore discarded poorly sampled data points

at large values of H − Hc. The transition from growth by finite
avalanches to spanning avalanches sharpens as L increases.
Using a simulation cell of height 2L ensured that Fs was not
significantly affected by finite system height for fields near
and below Hc.

In finite-size scaling theory one assumes that the only
important length scales in the system are the correlation
lengths, ξ‖ and ξ⊥, and the system size, L. Finite-size effects
are expected when the largest correlation length approaches
L. The simulation cell is taller than it is wide, and we find
ξ⊥ < ξ‖, so ξ‖ dominates the finite-size effects. Functions like
Fs then depend on the dimensionless scaling variable L/ξ‖.
Using Eq. (2), Fs can be expressed in terms of the field as

Fs ∼ f [(H − Hc)L1/ν‖ ], (3)

where the scaling function f should be independent of L.
Given the limiting behavior of Fs, f (x) must approach zero
for x � −1 and one for x 
 1. Note that Eq. (3) gives Fs =
f (0) for all L at H = Hc. Therefore the critical field must cor-
respond to the location where all curves cross in Fig. 2. This
intersection occurs at a value of Hc ∼ 1.46304 ± 0.00003.
Here and below, the error bars do not represent a standard
deviation but indicate the maximum range over which data
collapse within statistical fluctuations. Koiller and Robbins
had previously found Hc for various values of � in this system
[15]. Although the value of Hc was not explicitly determined
for � = 1.7, our result is consistent with interpolations of
their data from nearby values of �.

Equation (3) also implies that all curves should collapse
when plotted against (H − Hc)L1/ν‖ for the correct value of ν‖.
For all scaling collapses in the following plots, we choose to
use a common value of Hc = 1.46305 based on consideration
of the above estimate of Hc and the scaling of other system
properties discussed later in the paper. Table I contains the
values of all scaling exponents used in the plots and the
estimated uncertainties.

The inset of Fig. 2 shows a successful collapse of Fs with a
value of ν‖ = 0.79. Based on the sensitivity of the collapse to
changes in ν‖, the data are consistent with ν‖ = 0.79 ± 0.02.
This value is close to prior estimates of ν‖ = 0.75 ± 0.02
[15] and 0.75 ± 0.05 [11] in the RFIM. References [11] and
[15] used scaling approaches that assume χ = 1, which may
have impacted the reported values. The RFIM with a uniform
instead of Gaussian distribution of random fields is expected
to be in the same universality class and past simulations found
ν‖ = 0.77(4) [17]. For the QEW model of interface growth,
the mean-field value of ν is found to be 3/4 [30]. Arguments in
Ref. [29] suggest 3/4 is a lower bound on the actual exponent.
Epsilon expansions [33] give 0.67 and 0.77 to first and second
order, which suggests that ν could be slightly above the mean-
field value.

The maximum distance a depinning avalanche can advance
the interface is set by the box height. One might wonder
whether this artificial threshold could affect the scaling of
Fs. As an alternative measure, we considered the footprint of
an avalanche, the projected area in the x-y plane of all spins
flipped by an avalanche. This measure is independent of how
far an avalanche propagates in the ẑ direction. Over an interval
of H , avalanches will cumulatively advance the interface over
a region equal to the sum of their footprints. Note that some
avalanches may overlap such that certain regions may advance
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FIG. 3. The fraction of volume invaded due to semispanning
avalanches over a small interval of H is calculated for the values
of L indicated in the legend and scaled according to a finite-size
scaling procedure similar to Eq. (3). The collapse uses values of
Hc = 1.46305 and ν‖ = 0.79.

more than once. In analogy to Fs, one can then define the
fraction of the area advanced by spanning avalanches, Fa.
We find Fa scales in the same manner as Fs with consistent
estimates of Hc and ν‖. This verifies that the results of Fs
are not affected by alternative scaling behavior of spanning
avalanches.

Another useful measure is Fss, the fraction of growth in
semispanning avalanches. Figure 3 shows that Fss obeys a
scaling relation like (3) with the same Hc and ν‖ but a different
scaling function fss(x). For each L, Fss rises from zero at small
H to a maximum below Hc and then drops as fully spanning
avalanches begin to dominate growth. From Figs. 2 and 3, we
see that semispanning and fully spanning avalanches begin
to be important when Hc − H is smaller than about 10L1/ν‖

and 5L1/ν‖ , respectively. This is useful in estimating the region
where ξ‖ < L.

Note that f (0) has a value of about 0.97 that is very close
to unity. This implies that almost all the incremental growth
near Hc is due to spanning avalanches. Spanning avalanches
also make up roughly 75% of the cumulative invaded vol-
ume from the initial flat interface to Hc. The importance of
large avalanches is related to the power-law distribution of
avalanche sizes that we discuss in the next two sections.

B. Divergence of avalanches near Hc

As noted above, spanning avalanches are more related to
depinning above Hc than the approach to Hc from below.
In addition, their height is bounded only by the arbitrary
height of the simulation box. In contrast, the vertical growth
of nonspanning avalanches is naturally correlated to their
lateral extent. Thus in the next three sections we focus on
nonspanning avalanches, providing a discussion of spanning
avalanches in Sec. III E. Nonspanning avalanches that grow
close to Hc, after the appearance of spanning avalanches, are
included because they exhibit the same scaling as avalanches
grown prior to the first spanning avalanche. Including them
improves statistics without changing the exponents.

We define a normalized probability distribution of non-
spanning avalanche volumes S, P(S, H, L), which depends
on both the current value of the field H and the size of the
system L. At the critical point, the distribution of avalanches
is expected to decay as a power law with an exponent
τ, P(S, Hc,∞) ∼ S−τ . Away from the critical point the power
law will extend to a maximum volume, Smax, that reflects the
influence of a limiting length scale �. In general this will be
the smaller of the system size L and the correlation length ξ‖.
The maximum volume will scale as power of this length, �α ,
where α is another critical exponent.

Having defined the behavior of the distribution, we can
determine how statistical moments of avalanches depend on
Smax. The mth moment of the avalanche volume is calculated
by integrating the distribution up to the maximum avalanche
cutoff Smax:

〈Sm〉 =
∫

P(S, H, L)SmdS, (4)

〈Sm〉 ∼
∫ Smax

Sm−τ dS. (5)

For values of m > τ − 1, this integral is dominated by the
largest avalanches and scales as

〈Sm〉 ∼ Sm−τ+1
max . (6)

Alternatively, if m < τ − 1, the integral is dominated by the
smallest avalanches and will not diverge as a power of Smax

but instead saturate. As shown next, the integral diverges for
m = 1 but not for m = 0. This implies that 1 < τ < 2 and that
P(S, H, L) is independent of H and L for small S.

We will focus on the average size 〈S〉 (m = 1) as the lowest
moment that gives information about Smax. We define the
variable �H ≡ Hc − H as the distance to the critical field
from below. To study the variation of 〈S〉 with �H, S is
averaged over all nonspannning avalanches that nucleated in
an interval of field. The width of the interval is chosen to
decrease as the logarithm of �H for ξ‖ < L to minimize
changes in Smax over the interval. A fixed width is used for
�HL1/ν‖ < 2, where ξ‖ 
 L.

Figure 4(a) shows the increase in 〈S〉 with decreasing �H
at different L. For each L, 〈S〉 shows a power-law divergence,
〈S〉 ∼ �H−φ , and then saturates at a value of �H that shrinks
with increasing L. In the power-law regime where L > ξ‖, we
can use Eq. (6) and Smax ∼ ξα

‖ to determine a scaling relation:

φ = ν‖α(2 − τ ). (7)

In the saturated region, ξ‖ > L, Smax ∼ Lα and 〈S〉 ∼ Lφ/ν‖ .
Given the above scaling behavior we can construct a finite-

size scaling ansatz similar to Eq. (3):

〈S〉 ∼ Lφ/ν‖g(L1/ν‖�H ), (8)

where g(x) is a new scaling function. In the asymptotic limit
of x 
 1, g(x) will scale as x−φ to reproduce the power law
in Eq. (6). Alternatively, when x � 1, g(x) must approach a
constant such that 〈S〉 ∼ Lφ/ν‖ .

Finite-size scaling holds only near the critical point. Close
examination of Fig. 4(a) shows that the slopes of curves for
all L change for �H > 10−2. This is consistent with later
results in the main text and Appendix A that show critical
behavior only for �H < 10−2. Thus we include only fields
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FIG. 4. (a) The average volume of an avalanche 〈S〉 calculated
at different values of �H for systems with size L indicated in the
legend. Note that the slope characterizing changes in 〈S〉 drops
slightly for �H > 10−2. (b) Scaling collapse for Eq. (8) with val-
ues of φ = 1.64 and ν‖ = 0.79. Only data near the critical point,
�H < 10−2, are included. Dashed lines in both panels indicate
power-law scaling with φ = 1.64.

within this range in finite-size scaling collapses. Note that 〈S〉
has saturated at �H > 10−2 for L = 100. Results for L = 25
and 50 saturated even farther from the critical regime, and we
do not include results for these small systems in this paper.

Figure 4(b) shows a scaling collapse of curves for different
L using ν‖ = 0.79 and φ = 1.64. Testing the sensitivity of
the collapse to these parameters, we estimate uncertainties
of ν‖ = 0.79 ± 0.02, consistent with Fig. 4, and φ = 1.64 ±
0.04. A direct measure of φ from Fig. 4(a) also yields 1.64 ±
0.04. Within error bars, this is consistent with the result from
Ref. [11], φ = 1.71 ± 0.11.

A similar scaling procedure could also be performed on
larger moments. However, the higher moments do not depend
on any additional exponents, and they have increased sensitiv-
ity to the largest events, which are the hardest to sample.

C. Avalanche distribution

Having seen how the maximum avalanche volume Smax

depends on H and L, we next focus on the regime near Hc,
where ξ‖ > L, and calculate the distribution of S in order
to isolate the exponents τ and α. In this limit, Smax will no
longer be limited by ξ‖ but rather by L. We select avalanches
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FIG. 5. (a) The probability distribution of the volume of
avalanches is calculated for the system sizes indicated in the
legend at �H sufficiently close to the critical point such that
ξ‖ > L, corresponding to �H < 10L−1/ν‖ . The dashed line repre-
sents a power law with τ = 1.28. (b) The same data are collapsed
by scaling with system size according to Eq. (9) with exponents
τ = 1.28 and α = 2.84. Avalanches of S < 103 are excluded from
the scaling.

that nucleated sufficiently close to the critical point such that
ξ‖ > L and designate the distribution as P(S, L), dropping
the dependence on field. Based on the length of the plateau
in Fig. 4(b), we consider all nonspanning avalanches in the
range 0 < �H < 10L−1/ν‖ . This is consistent with the range
where spanning avalanches dominate growth in Figs. 2 and 3.
Consistent scaling results were obtained for half and one tenth
of this range.

To calculate P(S, L), avalanches are logarithmically binned
by size, and the number of events in each bin is divided
by the size of the bin before normalizing the distribution.
The resulting distributions, seen in Fig. 5(a), have a clear
power-law regime followed by a cutoff at a value of Smax

that grows with increasing system size. As noted above, the
fact that P(S, L) is constant at low L implies τ > 1. This is
consistent with a direct evaluation of the slope, which gives
τ = 1.28 ± 0.01. More accurate values are obtained by finite-
size scaling.

The cutoff seen in Fig. 4(b) will depend only on the ratio
of S to Smax, allowing us to write an expression for the
distribution as

P(S, L) ∼ L−ατ fp(S/Lα ), (9)
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where fp(x) is another universal scaling function. For x 
 1,

fp goes to zero, while for x � 1 one must have fp(x) ∼ x−τ

in order to recover the power-law scaling with S. This scaling
should apply only for sufficiently large S and L. In the pre-
vious section we found changes in behavior for �H < 10−2.
Here we see evidence of deviations from scaling in avalanches
with S < 103. The next section shows the discreteness of
the lattice is important for these small avalanches, and thus
they are excluded from finite-size scaling collapses. Including
them does not significantly affect our best-fit estimates for
exponents but affects the quality of the collapse.

Figure 5(b) shows a finite-size scaling collapse based on
Eq. (9). Based on the quality of the fit we estimate the values
and uncertainties of the exponents as τ = 1.280 ± 0.005 and
α = 2.84 ± 0.02. As noted above, this value of τ is between
1 and 2 and is consistent with direct evaluation of the slope
in Fig. 5(a) and the value found for the RFIM in Ref. [11],
τ = 1.28 ± 0.05. From Eq. (7), our values of τ and α predict
φ = 1.62 ± 0.05, which is in agreement with the directly
measured value.

The above results can be used to describe the amount of
volume, dV , invaded over an interval of external field dH .
As shown in Appendix A, the rate of avalanche nucleation is
proportional to the interfacial area A and A ∝ L2 sufficiently
close to Hc and for sufficiently large L. This is expected for
interface motion since the interface moves into new regions
of space and the no-passing rule is obeyed [20,29] and was
verified for the case of fluid invasion [20]. Note that very
different behavior has been observed for critical behavior
in sheared systems where the entire system is perturbed by
internal avalanches and they produce stresses that are not
positive definite. In these systems the rate of avalanches rises
less rapidly than the system size [49–52].

If the rate of avalanches scales as L2, then the total volume
invaded over an interval dH scales as dV ∝ L2〈S〉A. Here 〈S〉A

indicates an average over all avalanches including spanning
avalanches. Since the largest avalanches dominate 〈S〉A for
τ < 2, spanning avalanches contribute most to dV . This ex-
plains why Fs is near unity close to Hc (Fig. 2). If the system
is at fields below the onset of finite-size effects or spanning
avalanches, then 〈S〉A = 〈S〉. In this limit, the total volume
invaded per unit area scales as

〈V 〉/L2 ∼
∫

〈S〉dH ∼
∫

�H−φdH ∼ �H−φ+1. (10)

As shown in Appendix A, this relation is valid sufficiently
close to Hc and for large L.

D. Morphology of avalanches

The above measurement of the exponent α allows us to
estimate the anisotropy of correlations in the system. In d
dimensions, the largest avalanches will span an area ξ d−1

‖ and
reach a height ξ⊥. From Eq. (2) and the definition of χ , this
implies α = d − 1 + χ . Previous scaling relations assumed
that χ = 1 [11,19] or the roughness exponent ζ [29]. Our
numerical data imply χ = 0.84 ± 0.03 in three dimensions,
which is midway between unity and previous measurements
of ζ ∼ 2/3 [11,15]. This would imply that χ is a distinct
exponent and there is a novel anisotropy in the RFIM not

previously seen in other depinning systems. To test this, we
next consider the morphology of individual avalanches.

In order to define the width �‖ and height �⊥ of an
avalanche, we define a second moment tensor with com-
ponents lαβ , where α and β represent the directions x, y,
or z. Given an avalanche with a center of mass located at
(xcm, ycm, zcm), we define the tensor components as

lαβ = 1

S

S∑
i=1

(αi − αcm )(βi − βcm ), (11)

where the summation over i corresponds to a sum over all
S spins flipped by the avalanche. For avalanches that cross a
periodic cell boundary, the positions of spins are unwrapped
across the boundaries such that their position is measured
relative to the original nucleation site.

Since periodic boundary conditions force the global motion
to proceed in the ẑ direction, avalanches will align with this
orientation on average. However, an individual avalanche may
nucleate and grow along a locally sloped region of the surface.
In these instances, the avalanche’s normal vector may not
correspond to ẑ. To avoid biasing the results by assuming
a local growth direction, we considered the eigenvalues of
the second moment tensor, a method used in Ref. [14]. We
associate �2

⊥ with the smallest eigenvalue and �2
‖ with the

geometric average of the largest two eigenvalues [53]. This
decision is based on both the fact that ξ⊥ < ξ‖ and the fact that
growth is promoted along the local interfacial orientation due
to the destabilizing effect of flipped neighbors. This definition
will minimize the ratio �⊥/�‖ and therefore will also minimize
estimates of χ .

The corresponding eigenvectors of the second moment
tensor indicate the direction of growth. At small scales, the
orientation of the interface is arbitrary, and the directions of
the eigenvector v̂min associated with the smallest eigenvalue
also varies. For self-affine surfaces the orientation is more
sharply defined at large scales. Consistent with this, we find
v̂min becomes more aligned with ẑ as the size of the avalanche,
S, increases relative to the size of the system. We quantify
this alignment by the polar angle θ defined as cos θ = v̂min · ẑ.
For L = 3200, avalanches with S ∼ 108 have a root mean
square (rms) deviation in angle from ẑ of ∼6◦. In contrast,
the rms angular deviation grows to ∼39◦ for small avalanches
consisting of 103 spins.

We also studied measures of �′
‖ ≡ √

lzz and �′
⊥ ≡ (lxxlyy)1/4

that measure anisotropy relative to the periodic boundaries.
The scaling behavior is similar but not as good. There appears
to be a slight upwards shift in the height �′

⊥ of avalanches with
increasing system size, particularly for smaller avalanches.
As described in the following section, a larger system will
ultimately reach a rougher final interface. This will increase
the apparent �′

⊥ by mixing in �′
‖. We therefore focus on the

principal component definition as it produced cleaner results.
Values of �‖ and �⊥ were calculated for avalanches which

nucleated sufficiently close to the critical point such that the
largest avalanches were limited by system size rather than the
correlation length. As in the previous subsection, the range
was set to 0 < �H < 10L−1/ν‖ . In Fig. 6(a), �⊥ is plotted as a
function of �‖ for a representative set of avalanches grown in a
system of L = 3200. There is a broad spread among individual
avalanches, but �⊥ clearly grows sublinearly with �‖, implying
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FIG. 6. (a) Sizes of individual avalanches along and perpendicu-
lar to the interface in systems of L = 3200 near Hc. Lines indicate
power laws corresponding to χ = 1 (dotted, red), 0.84 (dashed,
blue), and 2/3 (solid, green). (b) Mean avalanche heights as a
function of width for the system sizes indicated in the legend for
0 < �H < 10L−1/ν‖ . Avalanches are binned by their width, and the
average height is calculated for the system sizes indicated in the
legend. The dashed line has a slope of χ = 0.85. In the inset, data
for different L with �‖ > 5 are collapsed by scaling the avalanche
width by L and the height by Lχ for χ = 0.85.

χ < 1 and thus that avalanches become proportionately flatter
as they grow in size. The power-law rise is also clearly larger
than previously measured values of the roughness exponent,
ζ = 0.67, and consistent with our estimate of χ = 0.84 at the
start of this section.

To accurately measure χ , we binned avalanches by �‖ and
calculated the average value of �⊥ for systems of a given L.
Figure 6(b) shows that the mean height of an avalanche grows
as a power of the width before being cut off due to finite-size
effects. Note that the apparent power law changes for very
small avalanches. The height can vary only in discrete steps
of unity, and this will affect the scaling of avalanches with
small �⊥. Based on the change in slope in Fig. 6(b) and the
lack of scaling for L < 100, we include only avalanches with
�⊥ > 2 in scaling collapses. This corresponds to �‖ � 5 and
S � 103, which is consistent with the cutoff used in scaling
P(S, L).

In the critical region, results for �‖ and �⊥ should col-
lapse when each is scaled by an appropriate power of the

system size L. The maximum width of an avalanche is lim-
ited by L due to the finite box size and the restriction that
an avalanche is nonspanning. The corresponding maximum
height an avalanche can attain must scale as Lχ . The inset
in Fig. 6(b) shows that curves for different L collapse when
each length is scaled by its maximum value. Varying χ , we
find a collapse is achieved for the range of χ = 0.85 ± 0.02.
Alternatively, one could bin by �⊥ and average �‖. This
process produces similar values of χ .

As for the distribution of avalanche volumes, one can
also define the probability for a given linear dimension at
a given H and L, P(�, H, L) where � is either �‖ or �⊥.
These distributions are expected to decay as a power law
with an exponent τ‖ or τ⊥. This power law will persist only
up to a maximum cutoff set by either the correlation length
or the system size. As in Fig. 5(a), we focus on the critical
distribution P(�, L) at H close enough to the critical point that
avalanches are limited by the finite system size rather than
the correlation length. Figures 7(a) and 7(b) show P(�‖, L)
and P(�⊥, L), respectively. The distributions are seen to decay
with different exponents before being cut off at a threshold
that grows with L.

Following Eq. (9), one can construct finite-size scaling
equations for the distributions of the heights and widths of
avalanches. As demonstrated in Fig. 6(b), the maximum width
of an avalanche will scale in proportion to L, and the maxi-
mum height will scale in proportion to Lχ . Thus α in Eq. (9)
is replaced by 1 or χ for �‖ and �⊥, respectively. Figures 7(c)
and 7(d) show finite-size scaling collapses for both quantities.
By varying the choice of exponents we determined the data
are consistent with τ‖ = 1.79 ± 0.01, τ⊥ = 1.94 ± 0.02, and
χ = 0.85 ± 0.01. In both collapses, we exclude avalanches
with length scales �‖ < 5 or �⊥ < 2. At smaller length scales,
the measurements are affected by the discreteness of the lat-
tice, and they do not follow the power-law scaling in Fig. 6(a).

The τ exponents are not independent and can be related to
each other as derived in Ref. [14]. In Fig. 6(a) one can see that,
on average, individual avalanches exhibit the same anisotropy
as the correlation lengths, typically �⊥ ∼ �

χ

‖ . Thus we assume
this scaling will hold when considering the statistics of many
avalanches. For length scales �‖ < ξ‖ and �⊥ < ξ⊥ we can
equate the probability that avalanches are in a range with cor-
responding values of �‖ and �⊥: P(�‖)d�‖ ∼ P(�⊥)d�⊥. Using
this expression, one can derive a scaling relation relating the
exponents τ‖ and τ⊥ to χ :

χ = ν⊥
ν‖

= 1 − τ‖
1 − τ⊥

. (12)

Using our estimates of τ‖ and τ⊥, this yields an estimate of
χ = 0.84 ± 0.02, again consistent with our findings. Simi-
larly, one can relate the rate of avalanches over a small interval
of volumes, dS, to the rate of avalanches over a small interval
of widths, d�‖, and derive a relation between τ for the volume
distribution and τ‖ [14]:

τ = d − 2 + χ + τ‖
d − 1 + χ

. (13)

Plugging in our values for τ‖ and χ we find a prediction of
τ = 1.28 ± 0.01 in strong agreement with the value directly
measured in Fig. 5.
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FIG. 7. The probability distributions of the (a) width and (b) height of avalanches for values of L indicated in the legend of panel (c) that
grew at fields near the critical regime 0 < �H < 10L−1/ν‖ . The distributions in panels (a) and (b) are collapsed by scaling with system size
using exponents χ = 0.85, τ‖ = 1.79, and τ⊥ = 1.94 in panels (c) and (d), respectively. Data for �| < 5 or �⊥ < 2 are excluded from scaling.
Dashed lines in each panel indicate the power law determined from finite-size scaling.

One other scaling relation is implied by our results. As
noted in the previous section and Appendix A, the ratio
〈V 〉/L2 ∝ �H−(φ−1) near Hc. This is proportional to the
average height of the external interface because the volume
left behind in bubbles is a small constant fraction of the total
volume. The average height of the interface should be at
least as big as the height of the largest avalanches. Since �⊥ ∝
�H−ν⊥ , this implies φ − 1 � ν⊥. Within our error bars, our
directly measured values of φ − 1 = 0.64 ± 0.04 and ν⊥ =
0.67 ± 0.02 are consistent with this relation and suggest that

φ = 1 + ν⊥. (14)

The numerical results in Refs. [11,19] were consistent with
χ = 1, and they tested a scaling relation φ = 1 + ν that is
equivalent to Eq. (14) in that limit.

Overall, in these past two sections we proposed and tested
a theory of avalanches that accounts for the anisotropy in
correlation lengths. From these results, we identified several
measures of χ confirming it is distinct from both 1 and the
previously measured roughness exponent. Next we explore
how this scaling changes for spanning avalanches.

E. Spanning avalanches

Defining the morphology of a spanning avalanche is com-
plicated. Having percolated, each flipped spin has different
paths connecting it to a nucleation site in any periodic image.

There is no longer a well-defined reference point to define
the lateral position (x, y) of a flipped spin. Therefore, nei-
ther the second moment tensor lαβ nor its eigenvalues are
uniquely defined. However, the height of an avalanche can
still be estimated using the metric �′

⊥ = √
lzz because the

calculation of lzz is not affected by the periodicity of the
lateral boundary conditions. As discussed above, this is not
an ideal measure of the height for small avalanches. However,
spanning avalanches are large and sample the global slope of
the interface. Therefore spanning avalanches are expected to
closely align with ẑ such that �′

⊥ is a reasonable measure of
their height.

From the definition of χ and Eq. (2), the height of the
typical nonspanning avalanche is expected to grow as a power
of S with exponent χ/α ≈ 0.3. Since spanning avalanches
detect the finite boundaries there is no guarantee that they will
obey the same scaling.

To test for deviations from scaling, we calculate �′
⊥ and

S for all avalanches nucleated close to the critical point for
L = 3200. As above, we considered fields in the range 0 <

�H < 10L−1/ν‖ such that ξ‖ > L. In Fig. 8, �′
⊥ is plotted as

a function of S for a sample of avalanches of size S > 106.
Data are colored by the degree of spanning for each avalanche.
Although there is a large amount of scatter for S < 5×109, �′

⊥
is seen to grow as a power of S. These data are consistent with
the predicted exponent of χ/α. Above this scale, the height
starts to grow in proportion to S. This threshold approximately

042121-9



JOEL T. CLEMMER AND MARK O. ROBBINS PHYSICAL REVIEW E 100, 042121 (2019)

S

Type of avalanche
Non−spanning
Semi−spanning
Fully−spanning

101

102

103

107 109108106 1010

A
va

la
nc

he
 h

ei
gh

t

FIG. 8. Height of an avalanche in the ẑ direction, �′
⊥, as a func-

tion of volume. Nonspanning avalanches are red triangles, semispan-
ning avalanches are green squares, and fully spanning avalanches are
blue circles. Straight lines have a slope of χ/α ≈ 0.3 (dotted) and
1.0 (solid).

corresponds to the division between semi- and fully spanning
avalanches.

The distinct scaling of fully spanning avalanches seen in
Fig. 8 can be understood in the context of their definition.
Once an avalanche grows to have a footprint of L2, the width
of the avalanche is fixed at the box size. Growth in the total
volume must then be proportional to an increase in height. As
seen in Fig. 1, a fully spanning avalanche can have a much
larger aspect ratio of height to width than a semispanning
avalanche. One might also anticipate this change in scaling
due to similarities of fully spanning avalanches to depinning.
Once an avalanche grows to have a footprint L2, flipped spins
cover the entire cross section. Although it is still possible for
some parts of the multivalued interface to be pinned, they
are usually left behind in bubbles, and the external interface
is totally renewed. Thus, fully spanning avalanches are more
representative of motion above the depinning transition, and
their scaling is not relevant to the behavior at H < Hc of
interest in this paper.

This interpretation is verified in Appendix B where we
analyze the finite-size scaling of the probability distribution
of S including semispanning as well as all avalanches. In
a system of linear size L, we find the largest semispanning
events scale as Lα implying that their height scales as Lχ with
the same exponents found for nonspanning events. In contrast,
the largest fully spanning events scale as L3 implying their
height scales as L, which is consistent with Fig. 8. Note that
this scaling is affected by our growth protocol. Avalanches are
censored if their growth is interrupted by hitting the top of the
box of height 2L. This produces an artificial maximum height
that scales with L. Thus the observation that the height of
fully spanning avalanches scales as L is consistent with them
representing depinning events that are related to growth above
Hc and they could sweep out much larger volumes if growth
was allowed to continue.

F. Total interface roughness

Having identified a distinct anisotropy in avalanches,
we now explore how this impacts the morphology of the
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FIG. 9. (a) The rms height variation of the external interface WT

as a function of external field is shown for the values of L indicated
in the legend. A dashed line of slope ν⊥ = 0.67 is shown. (b) The
same data are shown after scaling the axes with powers of system
size using χ = 0.85 and ν‖ = 0.79.

advancing interface. One can study the statistical properties of
stable interfaces without resolving all preceding avalanches.
Therefore, we were able to use our alternative growth protocol
where we simply flip spins until a stable interface is reached
at a fixed field. The no-passing rule guarantees that this stable
interface is independent of the growth rules, and efficient par-
allelization of the code allows us to study larger system sizes,
up to L = 12 800. In the following we identify the interface
position with the set of flipped spins on the external interface
that are adjacent to unflipped spins. Using the unflipped spins
gives nearly identical results, particularly at large scales.

We first explore the total interface roughness, WT (L,�H ),
defined as the root mean squared (rms) variation in the height
h(x, y) of all interfacial spins on the external interface. Note
that the height is multivalued, and all spins at a given x and
y are included in calculating WT . Figure 9(a) shows how WT

grows as H approaches Hc for different L. The interface starts
as a flat plane with WT = 0 at large �H . As �H decreases,
the interface advances and roughens. For each L, WT grows as
an inverse power of �H and then saturates. Saturation occurs
at a larger roughness and smaller �H as L increases.

WT is expected to grow at least as rapidly with decreasing
�H as the height of the largest avalanches, i.e., ξ⊥. Smaller
or larger variations could be observed if successive events
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were anticorrelated or correlated on scales of order ξ‖ to
spread or concentrate growth. Assuming there are no such
correlations, we predict WT ∼ �H−ν⊥ from Eq. (2). Fitting
the power-law region in Fig. 9(a) gives ν⊥ = 0.67 ± 0.02.
Given our measured value of ν‖ this implies χ = 0.85 ± 0.04
in close agreement with our other results for χ .

The finite-size saturation of WT in Fig. 9(a) can be un-
derstood in terms of the scaling of the maximum height of
an avalanche with L. The maximum height of a nonspanning
avalanche is seen in Fig. 7 to grow in proportion to Lχ . This
would suggest WT will saturate at a value proportional to Lχ .
Close to Hc, fully spanning avalanches will also contribute
to the structure of the interface. As discussed above, fully
spanning avalanches have a height that scales as L. However,
as seen in Fig. 1, the height of a fully spanning avalanche
is not necessarily correlated with the interface width. If the
entire interface is advanced a fixed distance, it does not change
the width of the interface. Only the external topology of a
fully spanning avalanche is relevant to WT . Assuming fully
spanning avalanches do not alter the scaling with L, we
propose the following scaling ansatz for WT :

WT ∼ ξ⊥ fW (L/ξ‖), (15)

where fW (x) is a new scaling function. To satisfy the limiting
scaling behavior, fW (x) goes to a constant for x � 1 and
scales as xχ for x 
 1.

Figure 9(b) shows a finite-size scaling collapse of the data
in Fig. 9(a). As before, we restrict data to �H < 10−2 because
the lower fields do not represent critical behavior. Good
scaling collapses are obtained for χ = 0.85 ± 0.01 and ν‖ =
0.79 ± 0.02. These values are consistent with those found
above. It is worth noting that WT saturates at �H ≈ 10L1/ν‖

for different L. This onset of finite-size saturation in WT

occurs at about the same field as the onset of finite-size effects
in 〈S〉 shown in Fig. 4(b). This is evidence that fully spanning
avalanches do not alter the scaling of the total interfacial width
as assumed by the ansatz in Eq. (15).

G. Test of self-affine scaling

The anisotropy in avalanches and the fact that WT grows
sublinearly with L are consistent with self-affine scaling. For
a self-affine surface, the rms variation in height W over an �

by � square in the x-y plane scales as

W (�, H, L) ∼ �ζ , (16)

where ζ is the roughness or Hurst exponent [54]. For a
finite system, one expects the total roughness to scale as Lζ ,
implying ζ = χ from the results above. This is inconsistent
with past values of ζ , and we now test this scaling.

One complication is that the surface height h(x, y) is not
a single-valued function, as usually assumed for self-affine
surfaces. In order to circumvent regions of strong pinning, the
system is capable of lateral growth that produces overhangs in
the external interface. Previous studies have shown that these
overhangs have a characteristic size that diverges as � → �c

[15]. We focus on � = 1.7 to reduce their size but found
similar behavior for � = 2.1, 2.0, 1.5, and 1.0.

To calculate W , the periodic x-y plane was divided into
square cells of edge �. For each cell, all interfacial sites

contained in the projected area were used to calculate the rms
variation in height over the cell. Taking an average over N�

cells of size �×� gives the scale dependent roughness:

W (�,�H, L) = 1

N�

∑
i

√
〈(z − 〈z〉)2〉, (17)

where the summation is across all N� cells and the angular
brackets represent averages within each cell [55].

Figure 10(a) shows how W (�,�H, L) evolves during
growth for L = 12 800. The curves rise more slowly with �

below a lower scale �min. This is associated with the size of
the overhangs mentioned above, which lead to a finite width
even for � = 1. For both single and multivalued interfaces
we find different scaling with � below �min ∼ 25. For larger
�, W appears to rise as a power law before saturating at a
roughness that grows as H approaches Hc. This asymptotic
value corresponds to WT (L,�H ) (Fig. 9).

Closer inspection shows that the power-law rise in W with
� is of limited range and has a power-law exponent that
depends on � and �H . To reveal this, W is multiplied by �2/3

and replotted in Fig. 10(b). This would produce horizontal
lines if ζ had the mean-field value of 2/3 [56]. For small
�H (L1/ν�H < 10), there may be a factor of 30 over which
the curves are straight and thus follow a power law. However,
there is a steady rise in the slope with �H . Figure 10(c) shows
similar scaled plots of W at the critical field for different L.
Once again there is a power-law region that grows with L but
no clear saturation in slope that would indicate an approach
to the limiting ζ . For �H = 10−6 and L = 12 800, the slope
has risen to about 0.75, which is substantially above the mean-
field exponent but well below χ (straight dashed line).

The results in Fig. 10 imply either that growing interfaces
are still affected by finite system size or that the interfaces
are not simply self-affine. Some growth processes produce
multiaffine surfaces where different moments of the height
variation produce different scaling exponents [54]. To test
this, we studied the scaling of the mean absolute value of
height changes and the fourth root of the fourth power of
height variations. The same scaling behavior was observed as
for the rms height change. We also examined the scaling of
single-valued interfaces corresponding to the highest spin at
a given x, y or the average spin height at each x, y. Similar to
past results [15,57,58], we see the roughness differs slightly at
small �. However, the single-valued interfaces show the same
shift in power law with �H and L, with similar exponents.

Another possibility is that depinning avalanches erase
memory of the initial interface orientation and that subsequent
growth is self-affine relative to the new local orientation. To
test this we used a technique like that used in finding the
normal component of avalanches. For each interface section
of size �×� normal to the global growth direction, the moment
tensor was calculated, and the smallest eigenvalue was taken
as the height variation. This approach maximizes the apparent
ζ because it reduces the roughness at small � and has little
effect at large �. We found that the range of power-law scaling
was smaller using this metric and that the exponent showed a
similar increase with decreasing �H and increasing L. The
largest value of the apparent slope increased only to 0.79,
which is still smaller than χ .
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FIG. 10. (a) The rms fluctuation in height W (�,�H, L) is calcu-
lated for a system of size L = 12 800. Values of �HL1/ν‖ , rounded
to two significant digits, are indicated in the legend. A dashed line
is drawn with a slope of 2/3. (b) The same values of W are divided
by the mean-field power law �2/3. A line is included that corresponds
to ζ = 0.85. (c) The variation of W with � at �H = 10−6 for the
indicated values of L. Once again W is divided by the mean-field
behavior, and the line corresponds to ζ = 0.85.

The origin of the change in apparent exponent seems to be
the variation in roughness at small � with increasing L and
decreasing �H . Growing interfaces often follow the Family-
Vicsek relation [59]. At each position, the roughness grows as
�ζ and then saturates. The value of � where saturation occurs
grows as the interface advances, as does the total roughness.
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FIG. 11. (a) The roughness at � equal to the values indicated in
the legend is calculated as a function of L at a field of �H = 10−6.
(b) The values of W and L in panel (a) are normalized by �χ and �,
respectively.

Figure 10 shows similar behavior with decreasing �H with
one important difference. The value of W at points before
saturation rises steadily as the interface advances, while
Family-Vicsek scaling assumes that the small � roughness is
unchanged.

Figure 11 shows how the roughness at a fixed � varies
with L close to the critical point (�H = 10−6). The previ-
ous section showed that WT = W (� = L,�H = 0, L) ∝ Lχ .
If W (�,�H = 0, L) ∝ �χ with no dependence on L, then
one would have W (L, 0, L)/W (�, 0, L) ∝ (L/�)χ , and the
plots in Fig. 10 would be power laws with the same slope.
However, W (�, 0, L) grows with L, and this decreases the
ratio W (L, 0, L)/W (�, 0, L) and thus the apparent exponent.
If W rose as a power of L, there would be a persistent
difference between ζ and χ . However, the linear-log plot in
Fig. 11 shows that the growth in W is slower than logarithmic.
This supports the conclusion that ζ converges to χ in the
thermodynamic limit, and the variation with L in W at small
� is large enough to explain the apparent difference of ∼0.1
between ζ and χ for our system sizes.

It is interesting to compare our results to previous studies.
Past simulations for the RFIM [11,15] were consistent with
ζ = 0.67 ± 0.3 but used L � 768 and saw scaling only to
about � = 300. Our results for comparable L give similar
apparent slopes, but data for larger L reveal that this slope
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FIG. 12. The average overhang height is calculated at different
values of the external fields for the indicated L. A line of logarithmic
growth is included for comparison.

is not the limiting value. Studies of models with explicitly
broken symmetry and single-valued interfaces have found
ζ = 0.753 ± 0.002 using systems with L � 400 [34]. It is
possible that breaking symmetry leads to a reduction in ζ ,
but it would be interesting to verify this with larger simula-
tions. Indeed, epsilon expansion calculations for single-valued
models yielded ζ = 0.67 and 0.86 at first and second order
and estimated a converged value of 0.82 ± 0.1 [33]. It is
interesting that the last prediction is close to the value of χ

found here.

H. Overhangs

In the above section, we found that the interface continues
to roughen on length scales � < ξ‖ as H increases, compli-
cating measurement of the roughness exponent. This section
quantifies the contribution of overhangs to the roughness
as systems approach the critical point and shows that their
contribution to the surface roughness becomes irrelevant as
L → ∞.

To identify multivalued locations on the interface, we
first find the minimum and maximum height of the interface
at each (x, y), hmin(x, y) and hmax(x, y), respectively. The
interface is multivalued wherever the difference dh(x, y) ≡
hmax(x, y) − hmin(x, y) is nonzero.

Looking at Fig. 1 one sees that dh(x, y) can be nonzero
where there is a vertical cliff or a true overhang with unflipped
spins below. If N (x, y) is the number of interface spins at
(x, y), then there will be a cliff with no overhangs where
N (x, y) = dh(x, y) + 1. The total number of unflipped spins
that are part of one or more overhangs at (x, y) is �z(x, y) =
dh(x, y) − N (x, y) + 1.

Close to the critical field, approximately an eighth of the
projected area of the interface consists of overhangs for � =
1.7 as seen in Fig. 18 in Appendix C. This suggests that they
could impact the scaling of interface roughness. However, the
average of the total height in overhangs at a given position,
〈�z〉, grows slowly. As seen in Fig. 12, 〈�z〉 appears to di-
verge logarithmically as H → Hc before saturating at a value
that increases roughly logarithmically with L. Reference [15]
found a similar slow growth in dh, which is always greater
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FIG. 13. The distribution P(�z) as a function of [�z/WT (L)]0.5

for the indicated L. The data are sampled at �H = 10−6. WT (L) is
approximated as 0.13Lχ for χ = 0.85.

than �z. Because of the slow growth, the ratios 〈�z〉/Lχ and
〈dh〉/Lχ go to zero as L → ∞ and H → Hc when � < �c.

Next we consider the probability distribution of individual
values of �z, P(�z). We find the distribution is well approxi-
mated by a stretched exponential with an exponent near 0.5 as
shown in Fig. 13. Log-linear plots of P(�z) versus �z1/2 in
Fig. 13 at �H = 10−6 follow straight lines until the statistical
errors become too large. To reveal the scaling of overhangs
with L, �z1/2 is normalized by a fit to WT (L) from Fig. 9,
WT (L) ≈ 0.13Lχ with χ = 0.85.

Because successive lines in Fig. 13 shift to the left with
increasing L, overhangs shrink relative to the total rms in-
terface roughness WT (L) as L increases. The distribution of
fluctuations in the width of the interface from the mean
is roughly Gaussian, suggesting the largest overhangs are
comparable to the maximum local fluctuations in the height
for small L. In comparison, at large L the largest overhangs
are only a fraction of the rms roughness and much less than
the maximum fluctuations in height. We therefore conclude
that overhangs can lead to significant finite-size effects in
small systems but are an irrelevant contribution to the surface
morphology in the thermodynamic limit. However, overhangs
may still be relevant in growth due to their role in overcoming
extreme pinning sites.

IV. CONCLUSION

Finite-size scaling studies of systems with linear dimen-
sions from 100 to 25 600 spins were used to determine
critical behavior at the onset of domain wall motion in the
3D RFIM. Most interface growth models force the interface
to be a single-valued function and fix the mean direction of
growth. In contrast, an interface in the RFIM can move in
any direction, and the driving force is always perpendicular to
the local surface. Nonetheless, the interface breaks symmetry
and locks in to a specific growth direction when the rms
random field is small enough, � < �c ≈ 2.5. Results are
presented for � = 1.7, but similar scaling was observed for
� = 1.0, 1.5, 2, and 2.1. Critical exponents are summarized
in Table I.

042121-13



JOEL T. CLEMMER AND MARK O. ROBBINS PHYSICAL REVIEW E 100, 042121 (2019)

TABLE I. Summary of critical exponents found here for the
RFIM and prior results for the RFIM and QEW equation with
corresponding references. Prior studies of the RFIM were consistent
with ν⊥ = ν‖ and χ = 1. Scaling relations involving these exponents
are found in Eqs. (7), (12), (13), and (14). Uncertainties in the last
digit are indicated in parentheses.

Values Prior RFIM QEW Predictions

ν‖ 0.79(2) 0.75(5) [11] 0.80(5) [60] 0.77 [33]
0.77(4) [17]
0.75(2) [15]

ν⊥ 0.67(2)
α 2.84(2)
τ 1.280(5) 1.28(5) [11] 1.30(2) [35]

1.25(2) [36]
τ‖ 1.79(1)
τ⊥ 1.94(2)
φ 1.64(4) 1.71(11) [11]
ζ � 0.75 0.67(2) [11] 0.75(2) [60] 0.86 [33]

2/3 [15] 0.753(2) [34]
χ 0.85(1)

In an infinite system there is a transition at Hc from motion
through unstable jumps between stable states to steady motion
at a nonzero velocity. In a finite system the transition occurs
over a finite range of fields. Near Hc there is a growing
probability that avalanches may span the system and even
advance the entire system (fully spanning avalanches). Finite-
size scaling of the fraction of volume invaded by spanning
and fully spanning avalanches was used to determine Hc and
the in-plane correlation length exponent ν‖ (Fig. 2). Past
studies used either the fraction of sites invaded in a cubic
system [11] or the probability of spanning a cubic system [15].
This overestimates Hc because growth is anisotropic and the
typical height of the interface at Hc is only of order Lχ . The
correlation length exponent is also affected.

As H approaches Hc from below, the mean volume of
avalanches grows as 〈S〉 ∼ �H−φ until it saturates due to the
finite system size. The value of φ and an independent measure
of ν‖ are obtained by scaling results for different L [Fig. 4
and Eq. (5)]. At Hc the probability distribution of S decreases
as S−τ up to a maximum size that scales as Lα (Fig. 5). The
values of α and τ were determined by scaling the distributions
for different L. Independently determined exponents agreed
with the scaling relation given in Eq. (7).

The mean height and width of avalanches and their dis-
tributions must obey analogous scaling relations. Finite-size
scaling collapses in Sec. III D test these relations and reveal a
clear anisotropy in growth (Fig. 7). The height of avalanches
�⊥ diverges as H → Hc with an exponent ν⊥ that differs
from ν‖. The height and width of individual avalanches are
related by �⊥ ∼ �

χ

‖ with χ = ν⊥/ν‖ (Fig. 6). The divergence
of the mean height of the interface is consistent with the
growth in the size of the largest avalanche: ν⊥ = 1 − φ

[Eq. (14)].
Table I contrasts results obtained here with past studies

of the RFIM and related models. References [11] and [15]
assumed χ = 1. This leads to a reduced set of scaling relations
that were consistent with their exponents. Note that their

values of ν‖, τ , and φ are consistent with our results but
have much larger error bars because of the smaller system
sizes available. Slightly larger systems in Ref. [14] gave an
indication that χ was less than unity but could not rule out
χ = 1.

The largest difference from past work on the RFIM is
the value of ζ . References [11,15] considered the scaling
of roughness with � at a given L and found results were
consistent with the mean-field value of 2/3. As seen in
Sec. III F, this measure is strongly affected by system size.
The slope on log-log plots rises continuously as H goes to Hc

and as L increases. Results for L ∼ 1000 are consistent with
ζ ≈ 2/3, but values up to 0.75 are observed for L = 12 800
(Fig. 10). These changes appear to be related to overhangs
that lead to growing roughness at small scales as L increases.
The results in Sec. III H support the conclusion that these
changes become irrelevant at the critical point. We find that
the total rms roughness is not significantly affected by over-
hangs and scales as Lχ with χ = 0.85 ± 0.02 for all L � 100
(Fig. 9).

Table I also includes results for the evolution of single-
valued interfaces governed by the QEW equation. Estimates
of the avalanche distribution exponent τ [35,36] are consis-
tent with the value measured in Sec. III C for the RFIM.
The roughness exponent ζ found in the QEW equation is
consistent with our lower bound for ζ although it is distinct
from χ [34]. Interestingly, results from two-loop functional
renormalization group analysis indicate ζ = 0.86 [33]. This
prediction for ζ is even closer to the exponent χ identified in
this paper. Finally, scaling relation results from simulations
[60] of ν‖ = 0.80 ± 0.05 and the two-loop renormalization
group result [33] of ν‖ = 0.77 cannot be distinguished from
our measurement of ν‖ for the RFIM.

Comparing numerically measured exponents for the RFIM
and QEW equation, one cannot conclusively determine
whether they are distinct. However, our measure of ζ is a
lower bound, which we anticipate will approach χ = 0.85
with increasing L, while simulations of the QEW give the
smaller value of ζ = 0.75 [60]. This difference suggests the
RFIM resides in a different universality class than the QEW
equation. Note that the QEW exponents are believed [29,30]
to obey an additional relation ν‖ = 1/(2 − ζ ). Our exponents
are not consistent with this relation and others that follow
from it if ζ = χ . Furthermore, although the morphology of
overhangs becomes irrelevant in the thermodynamic limit, the
ability of a fully d dimensional interface to grow laterally
is still important and fundamentally changes the system’s
response to extreme pinning sites. We find more than 10%
of the projected area consists of overhangs indicating lateral
growth is an important mechanism in the propagation of
RFIM domain walls.

The anisotropy of individual avalanches has not yet been
measured in the d = 2 + 1 QEW equation; however, Rosso
et al. [35] measured the maximum size of avalanches in
d = 1 + 1 and found it scales as ξ 1+ζ . The anisotropy of
avalanches has also been directly studied in single-valued
models of directed percolation depinning (DPD) in d = 2 +
1, producing results consistent with χ = ν⊥/ν‖ = ζ where
ζ = 0.58 ± 0.03 [61]. It is interesting that χ = ζ in DPD,
although it is important to note that DPD resides in a distinct
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universality class described by the quenched Kardar-Parisi-
Zhang equation [31,32].

The studies presented here show that finite-size effects
remain important until very large system sizes and small
�H . Given recent conclusions about the importance of rare
events in the QEW model [38], it would be interesting to
extend past QEW studies to the much larger sizes studied
here. Further studies on the RFIM and QEW models are
also needed to clarify the relation between χ and ζ . This
work clearly identifies an anisotropy exponent χ = 0.85 in
several independent measures that have not been applied to the
QEW. While the roughness exponent measured for individual
interfaces approaches χ , it remains significantly below χ even
for L = 12 800. An important topic for future work will be to
confirm that ζ approaches χ as predicted by current scaling
theories or show that ζ remains distinct from χ , implying new
theories are needed.
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APPENDIX A: VOLUME INVADED

In Sec. III B the scaling of the average volume of an
avalanche 〈S〉 was determined. Here the analysis is extended
to develop a scaling relation for the divergence of the total
integrated volume. Over a small increase in external field from
H to H + dH , the interface will advance a volume dV :

dV ∼ 〈S〉AA(H, L)R(H, L) dH, (A1)

where A is the number of spins on the external interface and
the nucleation rate R is the number of avalanches nucleated
per spin per change in field. Here 〈S〉A indicates an average
over all avalanches including spanning avalanches. Since
the largest avalanches dominate 〈S〉A for τ < 2, spanning
avalanches contribute most to dV . This explains why Fs is near
unity close to Hc (Fig. 2). We begin by studying how A and R
evolve with increasing H and L.

The area A is defined as the number of flipped spins that
are on the external interface and adjacent to unflipped spins.
One could also count the number of unflipped spins adjacent
to these flipped spins or the number of bonds between flipped
and unflipped spins. These measures differ by less than 0.1%
for all H and L and thus give the same scaling behavior.

The area of the interface is initially equal to L2. As the
interface advances and roughens, A increases. Even a single-
valued rough interface defined on the cubic lattice will have
A > L2 because of discrete steps in height on the lattice. If the
interface steps up by n sites, there will be n spins on the in-
terface at the same x, y. Overhangs, as discussed in Sec. III H
and Appendix C, produce a further increase in A because there
may be multiple horizontal interfaces at each x, y.

To remove the trivial dependence of area on L2, we define
the relative area AR(H, L) ≡ A(H, L)/L2. Figure 14 shows
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FIG. 14. The surface area of the external interface normalized
by L2 is shown as a function of external field for L given in the
legend. Inset: Collapse of data in main panel for �H < 10−2 using
Eq. (A2) for AR,Lim = 2.05, ψ = 0.23 and ν‖ = 0.79. Data were gen-
erated using the alternative growth protocol where spins are flipped
until a stable interface is reached at a fixed value of the external
field.

how AR grows as H approaches Hc. For each L, the value
of AR saturates as �H decreases. The onset of saturation
occurs at the same �H as other quantities discussed in the
main text and is associated with ξ‖ reaching L. In contrast to
other quantities, the limiting value of AR remains finite. Since
Fig. 14 is a linear-log plot, one can see that AR grows less
than logarithmically with increasing L. The inset of Fig. 14
shows that the data are consistent with convergence to a finite
limiting value AR,Lim = 2.05 as L ∼ ∞. Data for all L and
�H < 10−2 are collapsed by assuming a power-law approach
to AR,Lim with an exponent ψ :

AR,Lim − AR(H, L) ∼ L−ψ/ν‖ fA(�HL1/ν‖ ), (A2)

where fA(x) is a new scaling function that saturates for
x � 1 and scales as fA(x) ∼ xψ for x 
 1. The quality of
the collapse is consistent with ψ = 0.23 ± 0.05 and AR,Lim =
2.05 ± 0.05. Due to the dependence on many parameters, it is
difficult to get more accurate estimates of these values.

The value of AR,Lim increases with the strength of the noise
�. For � = 2.1, we find AR,Lim = 3.52 ± 0.05 with the same
value of ψ within our error bars. In the self-similar regime
(� > �c), the surface area of the invaded volume will scale at
least as rapidly as LD f , where D f > 2 is the fractal dimension.
Therefore, we expect AR,Lim to diverge as � approaches �c,
but we do not study this transition here.

We now turn our focus to the rate R(H, L) at which
avalanches nucleate per spin per increment of external field.
The rate R is calculated by tallying the number of avalanches,
both spanning and nonspanning, nucleated over an interval of
field and then dividing the total by the duration of the interval
and the surface area. Intervals are evenly spaced on an axis
of log �H . As seen in Fig. 15, R does not depend on L and
becomes independent of �H for �H < 10−2. This is part
of the evidence used in the main text to determine that the
critical region is limited to �H < 10−2. Figure 15 confirms
that sufficiently close to the critical point the nucleation rate
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FIG. 15. The rate of avalanche nucleation R(H, L) over logarith-
mically spaced intervals of H for values of L indicated in the legend.

is constant and extensive with the surface area. As noted in
the main text, this is expected for interface motion but not for
sheared systems [49–52].

Equipped with these results, we now derive an expression
for the total volume invaded in an infinite system where
〈S〉A = 〈S〉. Equation (A1) can be rewritten as

dV ∼ 〈S〉L2AR(H, L)R(H, L) dH. (A3)

From Eq. (6), 〈S〉 ∼ �H−φ diverges as H approaches Hc. For
�H small enough that AR and R are approximately constant,
Eq. (A3) can be integrated to yield Eq. (10).

Figure 16 shows V/L2 as a function of H and L. A dashed
line indicates the expected power-law divergence using the
value of φ = 1.64 from Sec. III B. The data appear to fol-
low the expected scaling for about a decade from 5×10−5

to 5×10−4. Finite-size effects set in at smaller �H . As
shown above, the variation in AR remains significant down to
�H ∼ 5×10−4.
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FIG. 16. The total volume invaded normalized by L2 is calcu-
lated as a function of H for values of L indicated in the legend. A
power law with exponent 1 − φ = −0.64 is overlaid for comparison
and follows the data for about a decade.
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FIG. 17. The probability distribution of avalanche volumes is
calculated including (a) nonspanning and semispanning avalanches
and (b) all avalanches for values of L given in the legend. Data
are rescaled using the scaling relation in Eq. (9) with exponents
τ = 1.28 and α = 2.84. The dashed lines show a power-law decay
with τ = 1.28.

APPENDIX B: DISTRIBUTION OF AVALANCHES
INCLUDING SPANNING EVENTS

In this Appendix, we expand on the discussion of semi-
and fully spanning avalanches in Sec. III E. Semispanning
avalanches were argued to behave more like nonspanning
avalanches while fully spanning avalanches were argued to
be more representative of depinning motion. To confirm this
finding, we extend the definition of the the probability dis-
tribution of avalanche volumes defined in Sec. III C, P(S, L),
to include semispanning avalanches, PSS (S, L), as well as all
avalanches, PA(S, L). These distributions are calculated using
the same method used in Fig. 5(a). In Fig. 17, (a) PSS (S, L)
and (b) PA(S, L) are scaled using the scaling ansatz in Eq. (9).

These collapsed curves both resemble those of P(S, L) in
Fig. 5(b) for S/Lα � 10−2. Above this scale, the distributions
deviate due to the inclusion of spanning avalanches. The upper
cutoff for PSS (S, L) is seen to collapse in Fig. 17(a). Therefore,
the maximum volume of semispanning avalanches grows as
Lα . This is in agreement with the behavior seen in Fig. 8
where semispanning avalanches scale in the same manner as
nonspanning avalanches.

However, the maximum volume of fully spanning
avalanches no longer scales as Lα . As seen in Fig. 17(b),
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from the critical field at the L indicated in the legend. A horizontal
dashed line indicates 0.124. Inset: The data in the main panel are
collapsed using a similar finite-size scaling ansatz to Eq. (A2) where
�FO = 0.124 − FO and ψ = 0.3. A dashed line with slope 0.3 is
overlaid on the data.

PA(S, L) has two drops at large S. The first scales as Lα and
reflects the limiting size of semispanning avalanches. The sec-
ond drop occurs at a threshold scaling as L3 and is due to fully
spanning avalanches. Avalanches are ultimately limited by the
finite volume of the box that scales as L3. As a fully spanning
avalanche has a width of L, this scaling implies the maximum
height scales in proportion to L, the maximum height of the
box. This agrees with the scaling seen in Fig. 8 and further
suggests fully spanning avalanches are more closely related to
behavior above the depinning transition.

APPENDIX C: ADDITIONAL OVERHANG STATISTICS

In Sec. III H overhangs were defined as multivalued regions
of the projected interface, and their heights were character-
ized. In this Appendix, we provide additional information on
the number of overhangs and spatial clustering of overhangs.

The fraction of the projected interface that contains an
overhang, FO, is just the fraction of (x, y) where �z is nonzero.
Figure 18 shows how FO evolves with �H and L. Initially,
the interface is flat and FO is zero for all L. As the system
approaches the critical point, FO grows for all L before sat-
urating at a field �H that decreases with increasing L. The
saturating percentage rises more slowly than logarithmically
with L and appears to approach an asymptotic limit between
12 and 13% as L → ∞. Assuming that the difference �FO

from the asymptotic value decays as �H−ψ ′
, one can derive a

scaling relation analogous to Eq. (A2). As shown in the inset
of Fig. 18, the data can be collapsed fairly well with ψ ′ =
0.3 ± 0.05 and a limiting fraction of 0.124 ± 0.005. Note that
the fraction of the surface where cliffs occur is roughly twice
FO and that both fractions increase as � rises towards �c.
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FIG. 19. The probability distribution of the volume V of aggre-
gated overhangs is calculated at values of �HL1/ν‖ indicated in the
legend for L = 12 800. Note that �H < 0.01 for all curves. A dashed
line indicates a power law of exponent 1.87. Inset: The data in the
primary panel are collapsed using Eq. (C1) and values of η = 1.3
and τO = 1.87.

Overhangs are not isolated features, and one expects there
to be lateral correlations. To account for lateral structure,
we clustered adjacent (x, y) locations where �z > 0 into
aggregated overhangs and calculated the total volume V of
each aggregated overhang. The volume is simply defined as
the sum of all the clustered values of �z. The probability
distribution of V decays as a power of V with an exponent
consistent with τO ∼ 1.87 ± 0.05 as seen in Fig. 19. This
power law extends to an upper cutoff Vmax that increases as
H → Hc. Assuming Vmax ∼ �H−η with η a new exponent,
we propose the following scaling ansatz:

P(V ) ∼ �HητO gO(V �Hη ), (C1)

where gO(x) is a universal scaling function which scales as
x−τO for x � 1 and rapidly decays to zero for x 
 1. This
relation will hold only before the onset of finite-size effects at
�HL1/ν‖ ≈ 10. Using this relation, the data in Fig. 19 are col-
lapsed in the inset. Based on the sensitivity of the collapse, we
estimate η ∼ 1.3 ± 0.1 and τO ∼ 1.87 ± 0.05. The relation of
these exponents to others is currently unknown.

The exponent τO < 2, and so the arguments used in
Sec. III C imply that the volume of the largest overhangs
will dominate the average volume. Figure 19 implies that the
maximum volume diverges as H → Hc, so the characteristic
volume of an aggregated overhang will also diverge. However,
this divergence is considerably slower than the divergence
of the volume of the largest avalanche, which scales as
�H−ν‖α ∼ �H−2.25. Thus as with other results in Sec. III H,
the nontrivial scaling of overhangs may lead to interesting
finite-size effects but becomes irrelevant at the critical field
in infinite systems.
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