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Superradiance in finite quantum systems randomly coupled to continuum
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We study the effect of superradiance in open quantum systems, i.e., the separation of short- and long-living
eigenstates when a certain subspace of states in the Hilbert space acquires an increasing decay width. We use
several Hamiltonian forms of the initial closed system and generate their coupling to continuum by means of
the random matrix theory. We average the results over a large number of statistical realizations of an effective
non-Hermitian Hamiltonian and relate robust features of the superradiance process to the distribution of its
exceptional points. We show that the superradiance effect is enhanced if the initial system is at the point of
quantum criticality.
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I. INTRODUCTION

Imagine a classical system that randomly decays with a
rate γ whenever it passes a certain decay zone in the phase
space. For time �t spent in the zone, e−γ �t is the survival
probability and (1−e−γ �t ) is the probability for the system
to “disappear.” As the phase space is assumed to describe
the composite system and not the constituents into which it
disintegrates, any phase-space probability density gradually
loses its normalization to unity. The accessibility of the de-
cay zone depends on energy E determined by the system’s
Hamiltonian. Minimal and maximal Hamiltonian values of
Emin and Emax within the zone (which is assumed to be com-
pact) determine an energy window in which the system gets
unstable. Assuming ergodicity of classical motions, all states
within the above interval will be characterized by nonzero
decay rates �(E ), which depend on details of dynamics but
are proportional to γ for any fixed energy.

An analogous setup in the quantum world has significantly
different consequences. Consider a simplified model of a
bound quantum system with d-dimensional Hilbert space H
of state vectors. The quantum decay zone is defined as a
certain n-dimensional subspace HD ⊂ H, which couples uni-
formly to an infinite environment with a continuous spectrum.
Consequently, all states within HD have the same decay width
γ = h̄/(2τ ), where τ stands for the mean lifetime (here we
define “energy width” consistently with relation γ τ = 1

2 h̄
instead of a more common definition without factor 1

2 ). Since
any eigenstate of an independently chosen Hamiltonian has
generally a nonvanishing overlap with HD, the whole system
under the Hamiltonian-induced evolution becomes unstable.
One can apply a simple description based on the Feshbach the-
ory [1,2] in which the open system is attributed by an effective
non-Hermitian Hamiltonian Ĥ (γ ) = Ĥ (0) − iγ P̂D with Ĥ (0)

denoting the Hamiltonian of the unperturbed closed system
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and P̂D denoting a projector to HD. The eigenstates |κ (γ )〉 of
Ĥ (γ ) for any finite value of γ have generally nonzero decay
widths �

(γ )
κ = h̄/(2τ

(γ )
k ). If γ grows infinitesimally from zero,

�
(γ )
κ ’s of all eigenstates increase proportionally. However, as

the width γ grows to higher values, the set of eigenstates
eventually splits into two groups: The first one contains n
states whose widths keep growing as �

(γ )
κ ≈ γ . In contrast,

the widths of the remaining (d − n) states in the second group
overcome the initially increasing trend and return back to zero
�

(γ )
κ → 0 with γ → ∞. For a sufficiently high value of γ , the

original real spectrum is reorganized so that it consists of n
very wide and (n − d ) very narrow states with modified but
not too distant real energies. An example of such behavior is
shown in Fig. 1.

The above-described phenomenon was probably for the
first time pointed out in Ref. [3]. Its mechanism was soon
related [4,5] to so-called Dicke superradiance [6] in which
mutual coupling mediated by a common electromagnetic field
in a dense ensemble of atoms leads to a collective enhance-
ment and time squeeze of the spontaneous radiation emitted
from the ensemble. In the case of an open system, the role
of the mediating field is played by mutual coupling of the
unperturbed eigenstates by the decay-inducing part of the
full Hamiltonian, and an analog of the superradiant burst is
the creation of the group of very short-living (superradiant)
states on a background of long-living (subradiant) ones. To
distinguish the latter effect from the original notion of super-
radiance, we call it non-Hermitian superradiance (NHSR),
emphasizing the non-Hermiticity of the model Hamilto-
nian which captures the coupling of its eigenstates to the
continuum.

The NHSR has notable implications in complex many-
body systems, such as nuclei, baryon excitations, atoms,
atomic clusters and molecules, open quantum systems with
gain and loss, etc. [7–17]. Atomic nuclei, in particular, show
neat examples of narrow quasistationary states (such as neu-
tron or proton resonances) coexisting with much broader
structures (various kinds of doorway states or giant reso-
nances), and the above toy model of resonance trapping
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FIG. 1. Trajectories of complex eigenvalues E (λ)
κ = E (λ)

κ −i�(λ)
κ

of Hamiltonian (2) with running parameter γ = −Im λ (its value
is expressed by color) and ε = Re λ = 0 for d = 16 and n = 8.
The initial Hamiltonian Ĥ (0) = Ĥ (0)

HO (where HO stands for harmonic
oscillator) has equidistant spectrum with unit spacing, whereas n
decaying states |φl〉 are samples from random Gaussian orthogonal
ensemble (GOE) eigenvectors (see Sec. II).

provides an elementary background for their description. It
is relevant also in various artificial quantum systems real-
izable with the aid of recent laboratory quantum simulators
[11,13,14,17]. For detailed reviews with additional references,
see Refs. [9,12,13].

Essential insight into the mechanism of the NHSR fol-
lows from the mathematics of so-called exceptional points
(EPs) [18,19]. These represent degeneracies of a Hamiltonian
Ĥ (λ) with a real discrete spectrum depending on parameter
λ in complex-extended domain λ ∈ C, where Ĥ (λ) is non-
Hermitian and its eigenvalues complex. Convergence of EPs
to a point λc on the real parameter axis with an asymptotically
increasing size of the system was shown to trigger quantum
phase transitions (QPTs) [20–23]. In the setup of an open
quantum system, the EPs are responsible for the NHSR-type
redistribution of complex eigenvalues of the Hamiltonian with
a running decay rate γ [12,24,25].

The role of EPs in the NHSR process was studied in
Refs. [12,24,25]. In the present paper, we extend those studies
in several directions: First, we generate the decay-inducing
part of the Hamiltonian by means of the random matrix
theory. Statistical averaging over an ensemble of Hamiltonian
realizations yields robust results, washing out any particu-
lar correlation between the initial eigenbasis and the set of
open states. Second, we investigate the dependence of the
superradiance process on the form of the initial Hamiltonian.
In particular, we connect the two above-mentioned roles of
EPs showing that if the initial Hamiltonian is at the quantum
critical point, the system exhibits sharper NHSR dynamics.

The outline of the paper is as follows: We first describe our
statistical model to study the NHSR phenomenon (Sec. II),
demonstrate on it a general effect of EPs (Sec. III), and derive
some overall properties of the complex spectrum (Sec. IV).
We further analyze special properties of the NHSR arising
from criticality of the initial Hamiltonian, in particular, from
its association with the first- and second-order QPT (Sec. V).
At last, we summarize the results (Sec. VI).

II. MODEL HAMILTONIAN

In this section, we introduce a simple model of NHSR used
in our analysis. The model works in a finite, d-dimensional
Hilbert space H in which n ∈ [1, d − 1] orthogonal states are
supposed to be equally coupled to continuum. An example of
the superradiant separation of short- and long-living states for
this model is shown in Fig. 1. Everywhere, we set h̄ = 1.

At first, we consider a general Hamiltonian of the form

Ĥ ({λl }) =
d∑

k=1

E (0)
k |k〉〈k|

︸ ︷︷ ︸
Ĥ (0)

+
n∑

l=1

(εl − iγl )︸ ︷︷ ︸
λl

|φl〉〈φl |, (1)

where the first term Ĥ (0) (the unperturbed initial Hamil-
tonian) describes a closed system with energies E (0)

k ∈ R
and orthonormal eigenvectors |k〉, whereas the second term
(decay-inducing Hamiltonian) defines n decaying states given
by orthonormal vectors |φl〉 with complex energies λl ∈ C,
each composed of a real part εl ∈ R and a non-negative
decay width γl ∈ R. The orthonormality conditions read as
〈k1|k2〉 = δk1k2 and 〈φl1 |φl2〉 = δl1l2 where both vector sets
{|k〉}d

k=1 and {|φl〉}n
l=1 are supposed to be incompatible.

To illustrate physical meaning of the schematic Hamil-
tonian (1), we assume a system of N fermions in a finite
Hilbert space generated by dsp single-particle states in a
mean-field potential well. Out of these states, (dsp − nsp) are
stable, bounded inside the well below the continuum thresh-
old energy, whereas the remaining nsp states are quasistable,
located above the continuum threshold but confined with large
lifetimes in the potential well region due to a barrier. For N
fermions, the total Hilbert space of dimension d = (dsp

nsp
) is

spanned by (dsp − nsp
N ) stable and n = (dsp

N ) − (dsp − nsp
N ) unstable

mean-field configurations. The unstable subspace is generated
by N-body basis vectors {|φl〉}n

l=1 in which, at least, one
fermion is in the unstable single-particle state, and the stable
subspace is generated by the remaining vectors {|φl〉}d

l=n+1.
Now, we assume that all fermions are subject to some residual
two-body interactions acting between all dsp single-particle
states. The real parts of the unperturbed energies and the
residual interaction between individual mean-field states (its
matrix elements can be calculated from wave functions re-
stricted to the domain inside the well) jointly form a Hermitian
Hamiltonian Ĥ (0) which approximately describes the system
without tunneling. The eigenbasis {|k〉}d

k=1 of Ĥ (0) is rotated
relative to the mean-field basis {|φl〉}d

l=1. The decay describing
part of the Hamiltonian consists of projectors to original
unstable states {|φl〉}n

l=1 with complex coefficients expressing
decay widths γl and real-energy corrections εl depending on
the shape of the confining potential barrier. This results in a
non-Hermitian Hamiltonian of the form (1).

In the following, we will use a simplified version of this
Hamiltonian, namely,

Ĥ (λ) = Ĥ (0) + (ε − iγ )︸ ︷︷ ︸
λ

n∑
l=1

|φl〉〈φl |︸ ︷︷ ︸
P̂D

. (2)
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Here, the decay-inducing part of the Hamiltonian λP̂D = Ĥ (λ)
D

is determined by a single projection operator P̂D and all the
decaying states, which form a subspace HD = P̂DH ⊂ H,
have the same complex energy ε − iγ = λ. The imaginary
component γ expresses the decay width of states in HD, and
the real component ε represents their energy shift. We stress
that, although the simplified Hamiltonian (2) restricts direct
applicability of our model to specific systems, it captures es-
sential features of the more complex Hamiltonian (1) whereas
considerably reducing the number of free parameters.

The decay-inducing term of Hamiltonian (2) can be cast
in the form Ĥ (λ)

D = λP̂D + 0P̂⊥ (with P̂⊥ = Î − P̂D) with two
eigenvalues λ and 0. The eigenspace associated with eigen-
value λ coincides with the decaying subspace HD of di-
mension n, whereas the eigenspace with eigenvalue 0 is the
subspace H⊥ = P̂⊥H with dimension n⊥ = d − n. Note that
the cases n = 0 with Ĥ (λ)

D = 0 and n = d with Ĥ (λ)
D = λÎ are

both trivial and we exclude them.
In our analysis, the unperturbed component Ĥ (0) of the

total Hamiltonian (2) is associated with the Lipkin-Meshkov-
Glick model [26]. It is built from quasispin operators
(Ĵ1, Ĵ2, Ĵ3) satisfying the standard angular momentum com-
mutation relations. The conserved quantity Ĵ2 is fixed at the
value of j( j + 1) so that the Hilbert space H spanned by
eigenvectors of Ĵ3 has dimension d = 2 j + 1. To generate the
spectrum of energies E (0)

k , we consider the following three
alternative forms:

Ĥ (0) = Ĥ (0)
HO = s0( j)Ĵ3 + a0( j), (3)

= Ĥ (0)
PT1 = s1( j)

(
Ĵ3 − 3

j
Ĵ2

1

)
+ a1( j), (4)

= Ĥ (0)
PT2 = s2( j)

(
Ĵ3 − 1

2 j
Ĵ2

1

)
+ a2( j), (5)

where si( j) and ai( j) with i = 0, 1, 2 are dimension-
dependent scaling and shift constants ensuring invariant
bounds E (0)

1 = 0 and E (0)
d = d of the unperturbed spectrum

and, therefore, a unit average spacing between neighboring
energy levels in all cases (3)–(5). We introduce cumulants
expressing global properties of the unperturbed spectrum, in
particular, the average E

(0) = 1
d

∑d
k=1 E (0)

k , which represents

a central energy of the spectrum, the variance �2E
(0) =

1
d

∑d
k=1[E (0)

k − E
(0)

]2, which characterizes a squared spread

of the spectrum, and the skewness �3E
(0) = 1

d

∑d
k=1[E (0)

k −
E

(0)
]3, which quantifies an asymmetry of the spectrum with

respect to E
(0)

. We note that all results below are independent
of an overall shift of the spectrum, whereas a change in the
average spacing between levels (spread of the spectrum) can
be compensated by an appropriate rescaling of parameter λ.

All Hamiltonians (3)–(5) can be written, using the
Holstein-Primakoff transformation [27], in terms of a single
pair (q̂, p̂) of conjugate coordinate and momentum operators
satisfying in the classical limit a constraint q2 + p2 � 2 (for
a general discussion of this mapping see, e.g., Ref. [28]).
The Hamiltonian Ĥ (0)

HO represents an equidistant spectrum
composed of d levels with spacing E (0)

k+1 − E (0)
k = 1 associ-

ated with a potential V (q) ∝ q2 + const. Hamiltonians Ĥ (0)
PT1

0

5

10

15
HO PT1 PT2

FIG. 2. Energy spectra of the initial Hamiltonian Ĥ (0) from
Eqs. (3)–(5) for d = 16. Marks “<” indicate doublets of levels.

and Ĥ (0)
PT2 (phase transitional of the first and second kinds)

describe representative d-dimensional spectra of two types
of quantum critical systems: Ĥ (0)

PT1 stands for the first-order
QPT Hamiltonian with an energy spectrum consisting of
parity doublets of levels in a degenerate symmetric double-
well potential V (q) ∝ 3q4 − 5q2 + const. The spacing be-
tween the low-lying states forming the doublets decreases
with dimension as E (0)

k+1 − E (0)
k ∝ e−ckd (where ck is a con-

stant), whereas spacing between states outside the doublets
remains on the order of E (0)

k+2 − E (0)
k+1 ∼ O(1). Ĥ (0)

PT2 represents
a second-order QPT Hamiltonian associated with a quartic
potential V (q) ∝ q4 + const. Its spectrum exhibits a typi-
cal power-law cumulation of low-energy levels according to
E (0)

k+1 − E (0)
k ∝ (k/d )1/3. Energy levels of all the three initial

Hamiltonians are for a moderate dimension shown in Fig. 2.
More details concerning the critical Hamiltonians can be
found in Ref. [23].

The decay-inducing component of Hamiltonian (2) is rep-
resented not by a single fixed operator Ĥ (λ)

D but by a suitable
statistical ensemble of its possible (in some sense equivalent)
realizations. The results are obtained by averaging over a
large number NR (on the order from 101 to 104) of samples
from this ensemble. The orthonormal vectors {|φl〉}n

l=1 and
{|φ⊥l ′ 〉}n⊥

l ′=1 forming in each realization the bases of subspaces
HD and H⊥, respectively, result from a random orthogonal
transformation of the original eigenbasis {|k〉}d

k=1.
To achieve a completely unbiased (isotropic) generation of

these bases, we use the eigenstate components of matrices
from the GOE, which has the equivalence of bases in its
definition [29]. In particular, for each realization, we perform
the following steps: (i) We generate a random d-dimensional
real symmetric matrix ĤGOE ∈ GOE, i.e., a matrix with in-
dependent elements taken from zero-mean Gaussian distri-
butions with σ 2 = 2 or 1 for diagonal or off-diagonal el-
ements, respectively, (ii) we find an orthogonal matrix Ô
transforming ĤGOE to the diagonal form D̂ = ÔTĤGOEÔ,
where ÔT = Ô† = Ô−1 stands for the transpose of Ô, (iii) we
randomly choose n columns of Ô and associate them with the
decaying states {|φl〉}n

l=1. This procedure is repeated until a
large number NR of ĤGOE realizations yields a robust estimate
of the analyzed quantities. The averaging over the random-
matrix ensemble will be further denoted by angular brackets

042119-3



PAVEL STRÁNSKÝ AND PAVEL CEJNAR PHYSICAL REVIEW E 100, 042119 (2019)

〈•〉, which is in contrast to the bar symbol • introduced above
for the “nonstatistical” averages over the energy levels. Note
that orthogonality of the transformation Ô, which is inherent
in the foundations of GOE, guarantees that matrix elements
〈k1|P̂D|k2〉 = ∑n

l=1〈k1|φl〉〈φl |k2〉 = ∑n
l=1 Ok1lOk2l are real so

that we can write: Im〈k1|Ĥ (λ)|k2〉 ∝ Im λ = −γ .

III. BIFURCATION OF DECAY WIDTHS

In the following, we focus on the dependencies of
the eigensolutions of the Hamiltonian (2) on parameter
λ = ε − iγ . The Hamiltonian is a complex matrix sym-
metric under transposition (but not under the full Her-
mitian conjugation) with d generally complex eigenval-
ues E (λ)

κ = E (λ)
κ − i�(λ)

κ . The real parts E (λ)
κ stand for en-

ergies, and the imaginary parts �(λ)
κ � 0 represent de-

cay widths of individual eigenstates enumerated by integer
κ = 1, 2, . . . , d . Because of non-Hermiticity, the eigenstates
of Ĥ (λ) must be distinguished to right eigenstates satis-
fying Ĥ (λ)|κ (λ)

R 〉 = E (λ)
κ |κ (λ)

R 〉 and left eigenstates satisfying
〈κ (λ)

L |Ĥ (λ) = 〈κ (λ)
L |E (λ)

κ . From the transposition symmetry of
Ĥ (λ), it follows that the left eigenvector is just the ma-
trix transpose of the right one. It can be shown that both
types of eigenvectors satisfy the biorthonormality condition
〈κ1

(λ)
L |κ2

(λ)
R 〉 = δκ1κ2 .

We will assume that ε =Re λ is set constant, whereas
γ =−Im λ is varied within the domain γ � 0. We can
obviously write Ĥ (ε−iγ ) = Ĥ (ε−i0) − iγ P̂D where we
explicitly introduce a shifted Hermitian Hamiltonian
Ĥ (ε−i0) = Ĥ (0) + εP̂D and an anti-Hermitian decay-inducing
Hamiltonian Ĥ (0−iγ )

D = −iγ P̂D. Evolutions of decay widths
for several model settings, averaged over a sample of
GOE realizations NR, are depicted in Fig. 3. We see
that the instability expressed by positive decay-widths
�(λ)

κ characterizes all eigenstates of Ĥ (λ) as soon as γ

deviates from zero to infinitesimally small positive values.
Indeed, all eigenstates are expected to have nonzero
overlaps with a randomly generated decaying subspace
HD. Using the Hellmann-Feynman formula, which in the
non-Hermitian context reads d

dλ
E (λ)

κ = 〈κ (λ)
L | d

dλ
Ĥ (λ)|κ (λ)

R 〉, we
derive the following relations: ∂

∂γ
E (λ)

κ = −Im〈κ (λ)
L |P̂D|κ (λ)

R 〉
and ∂

∂γ
�(λ)

κ = Re〈κ (λ)
L |P̂D|κ (λ)

R 〉. These can be used for

an estimation of E (λ)
κ and �(λ)

κ for small values of γ

where eigenvectors |κ (λ)
R 〉 and |κ (λ)

L 〉 roughly coincide with
eigenvectors |κ (ε−i0)〉 of the Hermitian Hamiltonian Ĥ (ε−i0).
We get

E (ε−iγ )
κ ≈ E (ε−i0)

κ + O(γ 2), (6)

�(ε−iγ )
κ ≈ γ Pκ + O(γ 2), (7)

where Pκ = ∑n
l=1 |〈φl |κ (ε−i0)〉|2 is the probability of identi-

fying the eigenstate |κ (ε−i0)〉 with any of the decaying states
|φl〉.

On the other hand, it is clear that for very large values of
γ > 0 the decay-inducing part of the Hamiltonian dominates
so that the eigenvectors of the full Hamiltonian (2) become
approximately those of the second term. Hence, for asymp-
totic γ , only n < d eigenstates (those roughly coinciding

FIG. 3. The evolution of decay widths �(λ)
κ with increasing γ for

Hamiltonian (2) with Ĥ (0) = Ĥ (0)
HO and d = 2n = 16 averaged over a

large number NR (=1200 in the upper panel and 800 in the lower
panels) GOE realizations of the decaying subspace. The upper panel
corresponds to ε = 0, and the lower panels correspond to ε = 4.5
and ε = 16. Each picture consists of NRd tiny curves corresponding
to the evolution of decay widths of all levels in all realizations, so
higher color intensity implies higher probability of the corresponding
value. Samples of these distributions at values of γ corresponding to
the dashed vertical lines are shown in the respective panels of Fig. 6.
The observed behavior can be compared with decay-width evolutions
for a d = 2 model in Fig. 11.

with the set {|φl〉}n
l=1 ∈ HD) will yield non-negligible widths

�(λ)
κ ≈ γ , whereas the rest of the n⊥ = d − n eigenstates

(those approximated by {|φ⊥l ′ 〉}n⊥
l ′=1 ∈ H⊥) will have �(λ)

κ ≈ 0.
Indeed, the Hellmann-Feynman formula gives ∂

∂γ
E (λ)

κ ≈ 0 for

all eigenstates, and ∂
∂γ

�(λ)
κ ≈ 1 or 0, depending on whether

the approximate eigenvectors belong to HD or H⊥, respec-
tively. A more systematic treatment makes use of a trans-
formed Hamiltonian iγ −1Ĥ (ε−iγ ) = P̂D + iγ −1Ĥ (ε−i0) and a
perturbative expansion of its complex eigenvalues in small
parameter γ −1. This yields

E (ε−iγ )
κ ≈ E (ε−i∞)

κ + O(γ −2), (8)

�(ε−iγ )
κ ≈

{
γ + cκγ

−1 + O(γ −3) for |κ (ε−i∞)〉 ∈ HD,

cκγ
−1+O(γ −3) for |κ (ε−i∞)〉 ∈ H⊥,

(9)
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FIG. 4. The evolution of log-log slopes d
d log10 γ

log10 �(λ)
κ of

decay widths from the main (ε = 0) panel of Fig. 3 with increasing γ

for NR = 100 realizations of the decaying subspace (d = 2n = 16).
The picture consists of NRd tiny curves displaying the evolution of
slopes for all levels in all realizations.

where cκ ’s are some coefficients. The log-log dependencies in
Fig. 3 support these conclusions.

Having understood the evolution of the spectrum for very
small and very large values of γ , we ask what drives the
transition between these limiting regimes. The region in
parameter γ where the bifurcation of decay widths takes
place is scrutinized under a specific magnifying glass in
Fig. 4. The vertical axis of this figure shows the log-log slope
χ (λ)

κ = d
d log10 γ

log10 �(λ)
κ = (γ /�(λ)

κ ) d
dγ

�(λ)
κ of individual de-

cay widths from the ε = 0 panel of Fig. 3. The value of χ (λ)
κ =

+1 indicates the �(λ)
κ ∝ γ behavior, whereas χ (λ)

κ = −1 im-
plies �(λ)

κ ∝ γ −1. We observe that the transitional region
between these values is a relatively narrow interval of γ for
the selected values of d and n roughly given by 1 � γ � 20.
In this region, the slopes in Fig. 4 show large fluctuations,
indicating a kind of “turbulent” evolution of individual level
widths. It turns out that the exceptional points play a crucial
role in this evolution.

The EP of a parameter-dependent Hamiltonian Ĥ (λ) is a
point λEP of the complex parameter space where two (or
more) complex eigenvalues E (λ)

κ and E (λ)
κ ′ become degenerate.

In a typical case, the complex degeneracy has a different
character than an ordinary degeneracy of a Hermitian Hamil-
tonian. First, Ĥ (λ) at λ = λEP fails to provide a complete
system of left and right eigenvectors, but the single eigen-
vector associated with both degenerate levels becomes self-
orthogonal: 〈κ (λEP )

L |κ (λEP )
R 〉 = 0. Second, the EP is not just a

conical intersection of the two energy surfaces but a com-
plex square-root singularity. The path in λ ∈ C satisfying
the condition Im E (λ)

κ = Im E (λ)
κ ′ is terminated at λEP where

it smoothly connects to the herefrom issuing path defined by
Re E (λ)

κ = Re E (λ)
κ ′ . On the respective sides of the EP, the real

and imaginary parts of E (λ)
κ − E (λ)

κ ′ bifurcate according to the
square-root dependence, which—with regard to the imaginary
part—hints at the NHSR behavior. A passage in a vicinity of
an EP induces an avoided crossing of complex eigenvalues
(which may include actual crossings of real energies or decay
widths) for a single pair of levels along with fast modifications

of the corresponding eigenvectors. The closer is the EP to
the selected trajectory of parameter λ, the sharper are the
associated changes. Multiple EPs induce a turbulent flow of
eigenvalues with many avoided crossings and ongoing struc-
tural redistributions of eigenvectors, whereas an absence of
EPs near the trajectory implies a laminar flow of eigenvalues
and virtual freeze of eigenvectors.

Features of EPs are usually first elucidated on 2 × 2 matri-
ces. We sketch such a trivial d = 2 version of our model in the
Appendix (cf. Ref. [24]). It is shown that setting ε = Re λEP

so that the path with increasing γ crosses the EP of the
Hamiltonian at γ = |Im λEP|, we observe a sudden bifurcation
of the widths �

(λ)
1 and �

(λ)
2 from a common value equal to 1

2γ

to distinct—decreasing and increasing—components. This is
a nonanalytic realization of the NHSR in the d = 2 system. If
we increase the distance of ε from Re λEP, the decay widths of
both levels differ already at small γ so that the ratio between
the widths of short- and long-living states increases with
|ε − Re λEP|. At the beginning, for γ not exceeding |Im λEP|,
both widths grow proportionally to γ . However, for larger
γ , somewhere at γ � |Im λEP|, the smaller of both widths
turns back and starts decreasing as γ −1. This is a smooth but
still clear realization of the NHSR effect. Examples of these
scenarios, depicted in Fig. 11, can be compared to less trivial
but rather analogous behavior for d > 2 shown in Fig. 3.

Focusing on these d > 2 cases, we first note that a sym-
metric matrix of dimension d depending linearly on parameter
λ ∈ C has, in general, 1

2 d (d − 1) pairs of complex-conjugate
EPs. However, in the case of Hamiltonian (2), a large part of
EP pairs migrates to infinity, whereas at finite values of λ, we
observe a reduced number of pairs,

1
2 NEP = n(d − n). (10)

This is �50% of the full number of pairs (the maximal
fraction is reached for n = 1

2 d ). Figure 5 shows distributions
of these EPs in λ ∈ C for the three initial Hamiltonians
(3)–(5) and for various sizes of the decaying subspace HD.
The distribution is averaged over a large number of GOE
realizations of HD.

The Hilbert space dimension in Fig. 5 is rather moderate
d = 16, but the distributions of EPs remain qualitatively
similar for larger dimensions except an overall scaling of |λ|.
The essential fraction of the EP distribution is expected to be
located within a domain defined by

|λ| � Sd2

√
n(d − n)

∝
{

d3/2 for n � d or n⊥ � d,

d for n ≈ n⊥ ≈ d/2,
(11)

where S = (�2E
(0)

/d2)1/2 is the linear spread of the un-
perturbed spectrum divided by the dimension (e.g., for H (0)

HO

and H (0)
PT2 with unit average spacings, we get S ≈ 0.3). The

scaling formula (11) follows from the analysis of Ref. [23]
(cf. Ref. [19]) which showed that a maximum of the EP
distribution for a general perturbed Hamiltonian Ĥ (0) + λV̂
is achieved when spectral variances (spreads of the spectra) of
both terms H (0) and λV̂ are approximately equal to each other.
The formula is also confirmed by our numerical simulations.

Let us proceed to the discussion of the impact of the EP
distribution on the NHSR dynamics. We saw in Fig. 3 (the
lower right panel) that two distinct groups of states with
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FIG. 5. Distributions of EPs on the complex plane of parameter
λ for Hamiltonians (2) with the unperturbed term Ĥ (0) equal to the
forms (3)–(5) (the columns HO, PT1, and PT2, respectively) and the
decaying subspace dimensions set to n = 1, n = 1

2 d , and n = d − 1
(the rows). In all cases, d = 16. Outer areas in all distributions and
the central regions in the HO and PT2 distributions have low EP
densities (colder colors). Central regions in the PT1 distributions
and ring-like intermediate structures in the HO and PT2 distributions
have high EP densities (warmer colors). Each panel comprises a total
number of NEPNR ≈ 106 of generated EPs [the respective NR follows
from Eq. (10)].

shorter and longer lifetimes can exist already long before the
superradiant transition takes place, i.e., below the γ value
where the longer-living group turns back to the � → 0 path.
So, in the investigation of the NHSR, we have to distinguish
a static bimodality (existence of two peaks in the distribution
of decay widths which both move with increasing γ to the
increasing � direction) from a dynamic bimodality (exis-
tence of two peaks moving to opposite � → 0 and � → ∞
directions). The EPs play an important—although not fully
deterministic—role in the description of both these features.
The static bimodality is achieved if the value of ε either
exceeds the upper peripheral region of the EP distribution
projected to the Re λ axis, or undershoots its lower peripheral
region. Analogously, the dynamic bimodality occurs when the
value of γ passes the upper periphery of the EP distribution
projected to the Im λ axis. However, it needs to be stressed
that details of the formation of both kinds of bimodalities for
λ located still within the principal part of the EP distribution
are certainly beyond the above simplified description.

To support the claims from the previous paragraph, we
show in Fig. 6 several transient distributions of decay widths
for the same model setup as used in the middle row of Fig. 5
(d = 2n = 16). Each panel depicts a distribution of widths
averaged over a large number of GOE realizations for a
fixed parameter point λ = ε − iγ together with arrows, which
indicate the direction in which a given part of the distribution

-3 -2
0

1

2

3

-1 0
0

1

2

3

-3 -2

-1 0
0

1

2
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-1 0 -4 -3 -2
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 PT1
 PT2

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. Distribution of decay widths for the model (2) with
d = 2n = 16 at various values of λ = ε − iγ indicated in each panel
in parentheses [ε, γ ] (some panels correspond to vertical lines in
Figs. 3 and 4). Averaging over NR ≈ 106/d of GOE realizations is
performed. The density P is normalized so that

∫
Pd (log10 �) = 1.

Panel (a) corresponds to λ ≈ 0 (δ = 0.01), panels (b) and (c) are as-
sociated with |λ| ≈ 3.2, panels (d)–(f) are associated with |λ| ≈ 4.5,
and panels (g)–(i) represent |λ| > 6 cases. The arrows indicate
the direction of motions of the respective parts of the distribution
with increasing γ (dots denote parts that are just at the start of
motion). The three choices of initial Hamiltonian are distinguished
by different line types. For the corresponding distributions of EPs,
see the medium row of Fig. 5.

evolves with increasing γ . Note that some of the distributions
represent γ = const cuts of Figs. 3 and 4. The fixed parameter
points in Fig. 6 are organized so that panel (a) is associated
with λ close to zero, whereas the pair of panels (b) and (c) and
further the triples (d)–(f) and (g)–(i) correspond to increasing
distance from the origin in various directions of the λ ∈ C
plane. We see that the panels within the same group show a
comparable degree of splitting of the spectrum to short- and
long-living states, but the bimodality has the static character
if γ is not large enough. The dynamic bimodality is triggered
only when γ passes the upper periphery of the projected EP
distribution.

The distribution of EPs in Fig. 5 for n = 1
2 d , which is

the case corresponding to Fig. 6, is approximately symmetric
under rotations around λ = 0. However, the distributions for
n = 1 and n = d − 1 with H (0) = H (0)

PT1 and H (0)
PT2 exhibit

strong asymmetries under rotations and even under the mirror
transformation ε ↔ −ε. In these cases, the NHSR dynamics
sensitively depends on the sign of ε. This is illustrated in Fig. 7
where we show the decay-width distributions at two points
with Re λ = ±ε and Im λ small for H (0)

PT2. Both points belong
to the regions within the principal parts of the EP distributions
in the rightmost column of Fig. 5. We see that in the n = 1
and n = d − 1 cases the decay width distributions have signif-
icantly different forms for both ±ε values, in agreement with
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FIG. 7. Distribution of decay widths for H (0) = H (0)
PT2 at

ε = ±4.5 (the full and dashed curves) and γ = δ = 0.01. The cal-
culation is performed for d = 16 with NRd ≈ 106. The three panels
correspond to (a) n = 1, (b) n = 8, and (c) n = 15; cf. the EP
distributions in the last column of Fig. 5.

the observed asymmetries of the respective EP distributions.
In both these cases, the width distribution corresponding to
the ε value closer to the main maximum of the EP distribution
shows a more developed static bimodality. However, the width
distributions for ±ε differ also in the n = 1

2 d case for which
the EP distribution is roughly symmetric. This indicates that
initial stages of the static bimodality formation transcend the
description based on the overall EP distribution, which does
not reflect links of individual EPs to specific pairs of levels
(cf. Ref. [23]).

IV. GLOBAL PROPERTIES OF THE
COMPLEX SPECTRUM

Employing the trace-based method described, e.g., in
Ref. [23] (see also Ref. [30]), one can derive expressions
for cumulants of the whole eigenvalue spectrum of a general
(parameter-dependent) Hamiltonian Ĥ (λ). In particular, the
average of all eigenvalues is determined from

E (λ) ≡ 1

d

d∑
κ=1

E (λ)
κ = 1

d
Tr Ĥ (λ), (12)

and the eigenvalue variance is given by

�2E (λ) ≡ 1

d

d∑
κ=1

[
E (λ)

κ − E (λ)]2

= 1

d
Tr Ĥ (λ)2 − 1

d2
Tr2Ĥ (λ). (13)

For the non-Hermitian Hamiltonian (2), the averages and
variances related to complex energies E (λ)

κ should be evaluated
separately for real and imaginary parts. From Eq. (12), we get
easy formulas for both types of averages,

E
(ε−iγ ) − E

(0) = n

d
ε, (14)

�
(ε−iγ ) = n

d
γ , (15)

and from Eq. (13), we obtain the following slightly more
complicated relations for the variances:

�2E
(ε−i0) − �2E

(0) = 2ε
n

d
A + ε2 n

d

(
1 − n

d

)
, (16)

where A = 1
n

∑d
k=1(E (0)

k − E
(0)

)〈k|P̂D|k〉 and

�2E
(ε−iγ ) − �2E

(ε−i0) = �2�
(ε−iγ ) − γ 2 n

d

(
1 − n

d

)
. (17)

Formulas (14) and (15) imply linear dependences of the
average real energy and the average decay width on ε and γ ,
respectively. Formula (16) expresses a quadratic dependence
of the real energy variance on ε for γ = 0, whereas formula
(17) captures a specific relation between the variances of real
energies and decay widths for variable γ and constant ε.

The linear term of the quadratic dependence of the real
energy variance in Eq. (16) is proportional to the coefficient
A, which quantifies an asymmetry of the unperturbed energy
spectrum with respect to the decaying subspace. It is evaluated
as an average of the energy displacement (E (0)

k − E
(0)

) calcu-
lated with normalized weight factors wk = 1

n

∑n
l=1 |〈φl |k〉|2

proportional to the overlap probability of the respective un-
perturbed eigenstate with HD. This asymmetry determines
the point εmin = −Ad/(d − n) of a minimal quadratic spread

�2E
(ε−i0)

of the real spectrum along the real λ axis, i.e., the
point of maximal compression of the spectrum. This point
should roughly correspond to the projection of the “center of
mass” of the EP distribution to the real λ axis. The coeffi-
cient A depends on the statistical realization of the decaying
subspace as well as on the energy spectrum of the initial
Hamiltonian. The GOE average is obviously 〈A〉 = 0, but an
analytic evaluation of the higher cumulants is hindered by
nontrivial correlations of weight factors wk for various k’s.
Nevertheless, we can infer that 〈�2A〉 and 〈�3A〉 are corre-

lated with the respective cumulants �2E
(0)

and �3E
(0)

of the
unperturbed energy spectrum. This qualitatively explains the
above-mentioned ε ↔ −ε asymmetries of EP distributions in
Fig. 5 for H (0) = H (0)

PT1 and H (0)
PT2, whose spectra are apparently

skewed (cf. Fig. 2).
We now turn to the consequences of Eq. (17) for the NHSR

dynamics. The left-hand side of this formula represents the
change in variance of the real spectrum between γ = 0 and
γ > 0 points with the same ε. The right-hand side is the
difference between the actual variance of the decay widths
at λ = ε − iγ and the variance of a two-component ensemble
consisting of n widths equal to γ and n⊥ = d − n widths equal
to 0. According to Ref. [30], the spectrum of Hamiltonian (2)
satisfies the following inequalities:

E (ε−i0)
1 � Re E (ε−iγ )

κ = E (ε−iγ )
κ � E (ε−i0)

d , (18)

0 � −Im E (ε−iγ )
κ = �(ε−iγ )

κ � γ . (19)

The bounds E (ε−i0)
1 and E (ε−i0)

d in (18) are the lowest and
the highest eigenvalues of Ĥ (ε−i0), and, similarly, 0 and
γ in Eq. (19) are the lowest and highest eigenvalues of
γ P̂D. Inequality (19) implies that the right-hand side of
Eq. (17) is seminegative. The limiting zero value corresponds
to γ = 0, whereas for increasing γ we expect negative
values that remain of order ∼O(1) even in the asymptotic
case. Hence, we see that the increase in the decay rate γ

always reduces the spread of the real energy spectrum.
This reduction is correlated with the increase in the spread
of decay widths of individual eigenstates and survives the
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FIG. 8. Decrease of the squared spread (variance) of the real

energy spectrum �2E
(λ)

with increasing γ for ε = 0. The picture was
obtained by averaging over NR = 64 realizations for d = 2n = 256.
The variance is normalized to the value at λ = 0. The inset shows
the asymptotic value of the relative variance as a function of n/d ,

which closely follows an empirical formula �2E
(0−i∞)

/�2E
(0) ≈

1 − 2 n
d (1 − n

d ).

γ → ∞ limit. As shown in Fig. 8, the maximal contraction
of the real energy spectrum, reaching the asymptotic value
of 50% of the squared spread of the original spectrum
(≈71% of the linear spread), is obtained for n = 1

2 d .

V. EFFECTS OF CRITICALITY

As seen in Fig. 6, the distributions of decay widths for
various choices (3)–(5) of the initial Hamiltonian Ĥ (0) are
rather close to each other for moderate dimensions d . How-
ever, the differences get much more significant as d grows.
In Fig. 9, we show an analog of Fig. 6 for d = 1024. In
comparison to the previous figure, the parameter coordinates
[ε, γ ] corresponding to panels (a)–(i) were scaled roughly
according to Eq. (11). We immediately see that the choice of
Ĥ (0) plays a substantial role. In general, the first- and second-
order QPT Hamiltonians Ĥ (0)

PT1 and Ĥ (0)
PT2 result at various fixed

values of λ in much more developed bimodal structures of the
width distribution than the harmonic oscillator Hamiltonian
Ĥ (0)

HO. Interestingly, comparing pairs of panels (c) and (c′),
(f) and (f ′), and (i) and (i′) in Fig. 9, we observe clear
differences between decay width distributions for both critical
Hamiltonians at mirror-conjugate values of Re λ. These again
reflect the −ε ↔ +ε asymmetries discussed in connection
with Fig. 7(b) and Eq. (16).

The differences in decay width distributions in Fig. 9 may
indicate that for the critical Hamiltonians the NHSR dynamics
is more advanced than for the noncritical one. However, as
shown above, the NHSR is not defined by a static separa-
tion of short- and long-living states at a given γ but more
substantially relies on the reversed evolution of both modes
as γ grows to large values and on the convergence of the
long-living mode to � = 0. Whether the criticality of Ĥ (0)

implies some enhancement of the latter process is studied in
Fig. 10.
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FIG. 9. Distribution of decay widths at various points [ε, γ ] for d = 2n = 1024. The number of realizations NR ≈ 103. Compared to Fig. 6,
the parameter values [ε, γ ] in panels (a)–(i) are enlarged by a factor roughly equal to the fraction of dimensions 1024/16, cf. formula (11).
Additional panels (c′), (f ′), and (i′) show width distributions for negative values of ε at mirror-imaged places with respect to panels (c), (f), and
(i), respectively.
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FIG. 10. Comparison of the minimal decay widths in the whole
set of levels for Ĥ (0) = Ĥ (0)

HO and Ĥ (0)
PT2 at [ε, γ ] = [0, 16d]. The

dimension d is varied, and n = 1
2 d . The inset shows both minimal

widths separately, and the main panel depicts their ratio. The dots
represent GOE averages obtained in NR ≈ 6.5 × 104/d realizations,
and the error bars indicate 1σ standard deviations.

This figure compares the smallest decay-widths �
(λ)
min(HO)

and �
(λ)
min(PT2) obtained by minimization over the entire set

of all d levels for the harmonic oscillator Hamiltonian Ĥ (0)
HO

and the second-order QPT Hamiltonian Ĥ (0)
PT2. The imaginary

part of λ is taken very large γ = 16d so that we are far above
the superradiant transition to decreasing width regime, the real
part of λ is set to ε = 0. Results are displayed for several
Hilbert space dimensions ranging from d = 4 to d = 8192,
the dimension of the decaying subspace being always n = 1

2 d .
The minimal decay widths and their ratios were averaged
over several GOE realizations, yielding the dots in Fig. 10.
The error bars indicate standard deviations of the distributions
obtained. Note that the numbers of realizations NR decrease
with d for computability reasons, but they are sufficient for
the purposes of the present paper. The numerical precision,
however, prevents us from performing the same calculation
for Ĥ (0)

PT1 for which the parity doublets of levels become too
close with increasing d .

We see in the inset of Fig. 10 that for d � 210 both
GOE averages of the minimal decay width scale roughly as
�

(λ)
min ∝ d . This is consistent with the choice γ = 16d since,

with respect to the scaling formula (11), the pattern in Fig. 3
remains roughly invariant under the change in dimension if
variables γ and � are replaced by γ /d and �/d , respectively.

The most important information follows from the ratio
between both widths for large d . A plot of the GOE av-
erage 〈�(λ)

min(PT2)/�(λ)
min(HO)〉 at λ = 0 − i(16d ) is shown in

the main panel of Fig. 10. It suggests that the asymptotic
value of the average ratio is roughly equal to 0.55. Since in
the large-γ domain the evolution of widths is described by
Eq. (9), hence �

(λ)
min ≈ cminγ

−1, the above numerical value is
assigned also to the average ratio 〈cmin(PT2)/cmin(HO)〉 of
the respective coefficients. It is clear that the particular value
of 0.55 would not apply to other choices of ε (cf. Fig. 9),
but the NHSR process is generally more advanced for the

second-order critical system than for the noncritical harmonic
oscillator.

Let us stress that all initial Hamiltonians in this paper have
the same spread of spectra (average spacing of levels), so the
discussed effect reflects some tinier differences in the distri-
butions of levels. Indeed, Hamiltonian Ĥ (0)

PT2 with the quartic
potential exhibits a strong (increasing with d) accumulation
of levels near the lowest energy, so a higher occurrence of
small spacings between levels. Therefore, some EPs appear
closer to λ = 0, and some of the levels exhibit the crossover
to the �(λ)

κ ∝ γ −1 regime sooner than in the case of the
harmonic oscillator. This explains the observed acceleration
of the NHSR process for the second-order QPT Hamiltonian.
There is no doubt that a similar (even stronger) effect would
be observed for the first-order critical Hamiltonian Ĥ (0)

PT1 if it
is made available for large-d numerical simulations.

VI. SUMMARY

We summarize our main results in the following items:
(i) The non-Hermitian superradiance (i.e., splitting of en-

ergy eigenstates of an open quantum system with increasing
coupling of a certain subset of states to continuum into the
groups of short- and long-living states with decay-widths �→
∞ and �→0) is a universal effect, qualitatively independent
of the form of the initial Hamiltonian and the choice of the
decaying subspace. The effect is in a rudimentary form present
already in a two-level system (Fig. 11), which contains the
essence of more complicated dependencies for larger dimen-
sions.

(ii) The initial (small-coupling) and asymptotic (large-
coupling) stages of the NHSR evolution are understood from
elementary perturbative expressions. In log-log plots (such as
Fig. 3), we observe laminar flows of real energies and decay
widths described by the respective pair of equations (6) and
(7) or (8) and (9).

(iii) The intermediate stages of the NHSR evolution are
strongly influenced by the distribution of EPs of an effective
non-Hermitian Hamiltonian. At these stages, the real ener-
gies and decay widths evolve in a turbulent way, showing
numerous collisions (actual or avoided crossings) and large
fluctuations of log-log slopes (see Fig. 4).

(iv) Essential information follows from projections of the
EP distribution (cf. Fig. 5) to real and imaginary axes of the
coupling parameter λ = ε − iγ . Considering trajectories on
the λ plane with fixed ε, we distinguish two basic ESQPT
scenarios (see Fig. 3): First, if ε is within the support of the
projected EP distribution on the real axis, the decay widths of
individual levels for small γ form a single-mode distribution.
As γ increases, the distribution moves to increasing values
of � and eventually splits into the increasing and decreasing
branches when γ gets outside the support of the projected
EP distribution on the imaginary axis. Second, if ε is outside
the support of the real projection of the EP distribution, the
decay-width distribution is bimodal already at small values of
γ . However, the splitting into the increasing and decreasing
branches again happens only when γ gets out of the imagi-
nary projection of the EP distribution. These conclusions are
supported by examples of � distributions in Figs. 6, 7, and 9
but must be taken only as raw simplifications.
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(v) Squared spreads of the spectra of real energies and
decay widths are mutually correlated [see Eq. (17)]. The
opening of the system always leads to narrowing of the real-
energy spectrum (see Fig. 8).

(vi) Details of the NHSR dynamics depend on the structure
of the real-energy spectrum of the γ = 0 Hamiltonian. First,
the formation of bimodal structures in the decay-width distri-
bution depends on the value of ε in a way that goes beyond
the overall EP distribution (see examples in Fig. 7). Second,
even the asymptotic-γ behavior carries traces of the γ = 0
energy spectrum. In particular, the presence of small spacings
between energy levels is equivalent to a closer approach of
some of the EPs to the real λ axis, which shifts the crossover
of some states to the � → 0 stage of evolution to smaller
values of parameter γ and makes the stabilization process of
these states more advanced (see Fig. 10). In this sense, one can
observe a speedup of the NHSR effect. This applies especially
to systems at quantum critical points, which contain closely
located levels by definition.

ACKNOWLEDGMENT

We acknowledge funding by the Charles University under
Project No. UNCE/SCI/013.

APPENDIX: TWO-DIMENSIONAL MODEL

Hamiltonian (2) in the d = 2 case reads

Ĥ (λ) =
(

E (0)
1 0
0 E (0)

2

)
︸ ︷︷ ︸

Ĥ (0)

+ (ε − iγ )︸ ︷︷ ︸
λ

(
cos2 ϑ cos ϑ sin ϑ

sin ϑ cos ϑ sin2 ϑ

)
︸ ︷︷ ︸(cos ϑ

sin ϑ

)
(cos ϑ sin ϑ )

, (A1)

where ϑ (assumingly �=0, π since these special values would
yield trivial solutions) is an angle determining the single
decaying state |φ1〉. Note that for d = 2 only the case of n = 1
is nontrivial. Two complex eigenvalues,

E (λ)
1,2 ≡ E (λ)

1,2 − i�(λ)
1,2

= E (0)
1 + E (0)

2 + λ

2

±

√√√√(
E (0)

1 − E (0)
2

2

)2

+
(

λ

2

)2

+ λ
E (0)

1 − E (0)
2

2
cos 2ϑ

(A2)

become degenerate for λ equal to

λEP± = −(
E (0)

1 − E (0)
2

)
e±2iϑ . (A3)

These are complex conjugate EPs of the matrix (A1),
which both represent square-root singularities of the func-
tion E (λ)

1 − E (λ)
2 = √

(λ − λEP+)(λ − λEP−). At λ = λEP±, the
Hamiltonian can undergo a similarity transformation to the
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FIG. 11. Bifurcations of decay widths for d = 2 model (A1)
with E (0)

2 − E (0)
1 = 1 and ϑ = π/4 for various values of ε. The inset

shows the corresponding evolution of real energies. The case ε = 0
corresponds to the direct passage through the EP, whereas the pairs
of curves with ε = 0.3 and 1.5 represent the effect of the EP on
increasingly distant λ ∈ C trajectories.

Jordan form

Ĥ (λEP± ) →
(
EEP± 1

0 EEP±

)
, (A4)

where EEP± = E (λEP± )
1 = E (λEP± )

2 . This means that two right
eigenvectors |1(λ)

R 〉 and |2(λ)
R 〉 associated with the eigenvalues

E (λ)
1 and E (λ)

2 for λ �= λEP± contract to a single one |1(λEP± )
R 〉

at the EP, and the same happens to left eigenvectors. The
unique eigenvector at the EP is self-orthogonal in the sense
〈1(λEP± )

L |1(λEP± )
R 〉 = 0.

Setting the real part ε of parameter λ to Re λEP± = (E (0)
2 −

E (0)
1 ) cos 2ϑ and varying the imaginary part along a half-line

γ ∈ [0,∞), we proceed in opening the system along a trajec-
tory passing the EP located in the lower complex half-plane
of λ. It follows from Eq. (A2) that for γ increasing from zero
towards the EP absolute value, the widths �

(λ)
1 and �

(λ)
2 are

both equal to 1
2γ , whereas the real energies E (λ)

1 and E (λ)
2 dif-

fer and collapse, according to the square-root formula, to the
EP degeneracy as γ → |Im λEP±| = |(E (0)

2 − E (0)
1 ) sin 2ϑ |.

For γ increasing further from |Im λEP±|, the real energies
stay degenerate whereas the decay widths exhibit the square-
root bifurcation to a short- and long-living asymptotic forms
�

(λ)
short = γ and �

(λ)
long ∝ γ −1. This critical (nonanalytic) form

of the superradiant scenario is illustrated in Fig. 11 for model
settings in which λEP± = ±i.

For an increasing distance of ε from Re λEP±, the sharpness
of the NHSR transition decreases, but its principal features
remain preserved. These cases are also illustrated in Fig. 11.
We see that shorter- and longer-living states exist already
at small values of γ where their widths increase linearly.
The ratio between the larger and smaller widths grows with
the distance from Re λEP±. As γ reaches values near or above
γ ≈ |Im λEP±|, one of the widths makes a crossover to the
∝γ −1 behavior. At the same time, evolution of real energies
with γ increasing across the EP region for ε �= Re λEP± shows
a smooth reduction of the spacing |E (λ)

1 − E (λ)
2 |.
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