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Catalystlike role of impurities in speeding layer-by-layer growth
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Molecular self-assembly is usually done at low supersaturation, leading to low rates of growth, in order to
allow time for binding mistakes to anneal. However, such conditions can lead to prohibitively long assembly
times where growth proceeds by the slow nucleation of successive layers. Here we use a lattice model of
molecular self-assembly to show that growth in this regime can be sped up by impurities, which lower the
free-energy cost of layer nucleation. Under certain conditions impurities behave almost as a catalyst in that
they are present at high concentration at the surface of the assembling structure, but at low concentration in the
bulk of the assembled structure. Extrapolation of our numerics using simple analytic arguments suggests that
this mechanism can reduce growth times by orders of magnitude in parameter regimes applicable to molecular
systems.
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I. INTRODUCTION

The difficulty of achieving reliable self-assembly is one
of controlling time scales [1–5]. While it is relatively easy
to design a system in which the desired product is the ther-
modynamic ground state, it is more difficult to ensure that
relaxation to equilibrium happens on observable time scales.
If a structure grows more rapidly than its component pieces
can sample their positional and conformational degrees of
freedom then these components become trapped in nonop-
timal states. This is the case for simple components, such
as colloids, and complex components, such as biomolecules
[6–9]. It is useful to arrange for the free-energy difference
between the desired structure and the starting solution to
be small, so that structures grow slowly enough that their
constituent particles have time to relax to their preferred
configurations [10–17]. A small free-energy difference can
be achieved under conditions of small supercooling or low
supersaturation. However, while such conditions help to avoid
trapped states composed of improperly bound molecules,
they exacerbate another kinetic trap, the long induction time
associated with nucleation [18–21]. This kinetic trap can also
impair growth when growth occurs in a layer-by-layer fashion,
because nucleation is the rate-determining step for each stage
of growth.

In this paper we use computer simulations of growing
three-dimensional (3D) lattice-based structures to show that
impurity particles can dramatically speed up layer-by-layer
growth at low supersaturation, with little effect on the purity
of the grown structure. Impurities are generally regarded as
problematic, because they have the potential to arrest growth
by “poisoning” the growth front [22,23]. However, we find
that impurities can speed nucleation in the layer-by-layer
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growth regime, by lowering the free-energy cost of 2D layer
nuclei and providing extra nucleation sites [24,25]. Impurities
appear in the final 3D structure in low concentration, and in
this respect behave almost as a catalyst.

Simple scaling results explain this catalystlike mechanism,
and suggest that it should be relevant to a wide range of
molecular and nanoscale systems. Let �ε be the energy
difference between a particle-particle bond and a particle-
impurity bond, and let zb and zs ≈ zb/2 be the bulk and surface
coordination numbers of the structure. If the time intervals
between successive nucleation events are long, then a fraction
fs ≈ exp(−βzs�ε) of surface particles will be impurities
[here β ≡ 1/(kBT )]. Impurities can be numerous enough to
lower the barrier to 2D nucleation, and therefore substantially
increase the layer-by-layer growth rate, which scales as the ex-
ponential of this barrier. Impurities near the growth front can
exchange with solution before the front moves away, leading
to a bulk impurity fraction fb ≈ exp(−βzb�ε) < fs. For large
β�ε this effect is akin to that of a catalyst, in that impurities
can be abundant at the growth front, substantially increase
the growth rate, and yet reside in the final structure in much
smaller number. This speedup of growth is reminiscent of the
nucleation enhancement of colloidal clusters by liquid-vapor
critical fluctuations [26], in the sense that impurities serve
as a source of fluctuations that promote a desired ordering
process.

II. MODEL

We demonstrate this effect using a lattice model of two-
component growth introduced previously [27,28]. Lattice sites
can be vacant (white), or occupied by blue or red particles;
these represent crystal and impurity particles, respectively. We
refer to a blue structure as a crystal. Contacts between nearest-
neighbor blue particles contribute a favorable binding energy
−εb < 0, while blue-red and red-red contacts contribute a
less favorable energy −εr < 0 (εb > εr ). White sites carry
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FIG. 1. (a) Layer addition time and representative snapshots and (b) impurity fraction for εb = 2.55, �μ = 0.25. The dashed line in (a) is
the prediction of Eq. (1), and the dashed lines in (b) and (c) are the predictions of Eq. (10) (red) and Eq. (11) (green). For impurity binding
energies εr < 1.9 (φr < 10−2) impurity relaxation is sufficiently fast that the solid composition can be approximated by the equilibrium result
(red), whereas for large binding energies additional impurities become trapped by the advancing growth front (green). (c) Parametric plot of
the data in panels (a) and (b) showing the layer addition time as a function of impurity fraction.

an energy penalty of μ. The quantity �μ ≡ 3εb − μ, which
we call the supersaturation, is the bulk free-energy difference
between an all-white state and an all-blue state; when �μ > 0
there exists a thermodynamic driving force to grow a crystal
from solution. We carried out Monte Carlo simulations of
this model on a 3D cubic lattice of 12 × 12 sites in the
xy plane. Periodic boundary conditions were applied in this
plane, and the crystal was seeded with three blue layers. The
other direction, z, is the growth direction.

We evolved the model using the discrete-time Monte Carlo
dynamics considered previously [27,28] (reproduced for com-
pleteness in the Appendix). To allow access to long time scales
we carried out an additional set of simulations in which we
imposed a solid-on-solid (SOS) restriction [29,30]: for sites
with given values of (x, y) we proposed Monte Carlo moves
only at two sites, the occupied site with the largest value of z
and its neighboring unoccupied site. This restriction reduces
the number of moves required to observe growth by a factor
of order the length of the system (see the Appendix). It also
artificially prevents vacancies within the solid, leading to a
restricted equilibrium in which bulk vacancies do not exist
[31]. However, in the regime studied here the equilibrium
vacancy concentration is very small [32] and, as a result, the
differences between our results in the presence and absence of
the SOS constraint are negligible (see the Appendix). Here we
present results obtained with the constraint.

III. IMPURITIES SPEED GROWTH

In Fig. 1 we show the mean time to grow one layer of
the crystal, and the impurity fraction in the bulk, for vari-
ous values of the impurity interaction εr (the impurity-free
case corresponds to the limit εr → −∞). Simulations were
stopped when 20 layers were deposited [we define a layer as
an (x, y) plane in which at least half the sites are occupied
by colored particles]. The growth time is defined as the
average number of Monte Carlo moves required to complete
a layer. The impurity fraction is defined as the number of red
particles divided by the number of colored particles. We see

that the growth time (eventually) decreases as the impurity
binding energy increases, and the grown structure contains an
increasing number of impurities. As we shall show, by varying
conditions it is possible to have the growth time decrease more
rapidly than the impurity fraction increases.

To estimate the growth time of the crystal we focus our
discussion on the layer-by-layer growth regime at low temper-
ature, where growth is limited by the nucleation of new layers
on the crystal surface. When the time for 2D nucleation is
much longer than the time for the resulting postcritical cluster
to grow to completion, the layer growth time τ scales as

τ ∼ exp(Gmax), (1)

where Gmax is the free energy of the critical 2D cluster
(here and subsequently we work in units such that kBT = 1).
Equation (1) is valid when the layer completion time is short
compared to the nucleation time, the regime on which we
focus (more generally, see [29]). To estimate Gmax we consider
a k × k cluster on a flat blue surface [33]. Each particle incurs
a chemical potential cost μ, so the chemical potential cost of
the cluster is k2μ = 3εbk2 − k2�μ. Each of the k2 particles in
the cluster makes one bond with the layer below it, and there
are 2k(k − 1) in-plane bonds. Thus the total bonding energy
is (−εb) × (3k2 − 2k). Adding to this the chemical potential
cost gives the energy cost for making a k × k square:

G(k) = 2kεb − k2�μ. (2)

For nonzero supersaturation this function has a maximum
at k� = εb/�μ. The critical cluster therefore contains k2

� =
(εb/�μ)2 particles, and the corresponding energy barrier is
G(k�) = ε2

b/�μ.
To understand how this result changes in the presence

of impurities (red particles), consider the following simple
argument. Let a lattice site be surrounded by z blue particles
and 6 − z white particles, and let p be the probability that an
isolated particle is a crystalline one as opposed to being an
impurity (in simulations we model an equimolar mixture of
crystal and impurity particles, and so set p = 1/2). At that
lattice site, in a mean-field approximation, the thermal weight
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FIG. 2. Impurities are incorporated in each layer and gradually anneal to a more ordered structure. Snapshots of the annealing of a
representative layer (in that layer only, blue particles are colored light blue, and red particles are colored yellow) (a) shortly after nucleation,
(b) upon completion of the layer, and (c) after the growth front has moved away. Subsequent layers have been omitted for clarity. (d) Time
progression of the impurity content in a layer (averaged over ten simulations). The decay of the impurity fraction after reaching a peak value
(at t = tmax) approaches the estimate Eq. (11) (dashed line).

of a red particle is (1 − p)ezεr , the thermal weight of a blue
particle is pezεb , and the thermal weight of a vacancy is eμ.
Thus the equilibrium fraction of colored particles is

f1 = (1 − p)ezεr + pezεb

(1 − p)ezεr + pezεb + eμ
= Gpezεb

Gpezεb + eμ
, (3)

where G ≡ 1 + (p−1 − 1)e−z�ε and �ε ≡ εb − εr . The corre-
sponding expression in the absence of impurities is

f2 = pezεb

pezεb + eμ
. (4)

Comparison of f1 and f2 indicates that G functions as an
effective degeneracy for blue particles. Alternatively, we can
consider that the effective blue-particle interaction energy in
the presence of impurities is larger than in their absence, i.e.,
ezεeff = Gezεb , giving

εeff = εb + 1

z
ln[1 + (p−1 − 1)e−z�ε]. (5)

The argument leading to (2) can now be modified, by re-
placement of εb with εeff in the bond-energy reward term,
to estimate the energy cost Geff (k) = G(k) + �G(k) required
to make a k × k cluster in a solution of particles and
impurities:

�G(k) = k(2 − 3k)

z
ln[1 + (p−1 − 1)e−z�ε]. (6)

To estimate the mean coordination number z as a function of
k, note that in a k × k cluster we have (k − 2)2 particles with
four in-plane bonds, 4(k − 2) particles with three in-plane
bonds, and four corner particles with two in-plane bonds.
Each particle makes one extra bond with the substrate. Thus
the average coordination number is z(k) = 5 − 4/k. Inserting
z(k) into (6) gives

�G(k) = −k2(3k − 2)

5k − 4
ln[1 + (p−1 − 1)e−�ε(5−4/k)]. (7)

The right-hand side of (7) describes the impurity-induced
reduction in the energy cost of a k × k cluster (we recover the
no-impurity case in the limit �ε → ∞). For small �μ the
function Geff (k) will take its maximum at a value of k � 1. In
this regime we can expand (7) to get Geff (k) ≈ 2kεb − k2μeff ,
which has the same form as the impurity-free expression (2)
but with effective supersaturation,

�μeff = �μ + 3
5 ln[1 + (p−1 − 1)e−5�ε]. (8)

The free-energy barrier to layer nucleation in the presence of
impurities can then be estimated as

Gmax ≈ ε2
b

�μeff
. (9)

Note that the reduction to the nucleus free energy enters
through the bulk term, not the surface term as is typical in
models of heterogeneous nucleation at a surface.

We next consider the fraction of impurities involved during
growth (in the parameter regime in which this fraction is
small). For a lattice site surrounded by z blue particles, the
equilibrium fraction of red particles is

φ(z) = (1 − p)ezεr

(1 − p)ezεr + pezεb
= 1 − p

1 − p + p ez�ε
. (10)

This fraction is smaller in the interior of the crystal, where the
impurity makes zb = 6 blue contacts, than at the surface.

As the completed layer becomes covered by new par-
ticles, it will evolve toward the bulk defect concentration.
The time scale for this relaxation, τr, is the time scale for a
fivefold-coordinated particle at the surface to unbind, and so
we estimate τr ∝ e5εr . Provided the layer addition time τ is
longer than this, we estimate the impurity fraction in a newly
completed layer as

φr ≈ φ(5)e−τ/τr + φ(6). (11)
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FIG. 3. Ratio of the growth time τ in the presence of impurities
to that in the impurity-free case, τ∞, as a function of (a) supersatu-
ration and (b) binding energy. The beneficial effect of impurities is
most pronounced in the presence of small supersaturation and large
binding energies. In both panels, parameters are chosen so that the
bulk equilibrium impurity fraction is always 1%. The dashed lines
are the predictions of Eq. (1).

This annealing process is illustrated in Fig. 2. The snapshots
(a)–(c) and time-trace (d) show that impurity particles are
present at higher concentration at the growth front than in the
bulk of the structure. The relaxation of the impurity fraction
from the surface to the bulk equilibrium concentration occurs
in a manner consistent with (11); see panel (d).

IV. IDENTIFYING THE PARAMETER REGIME
IN WHICH IMPURITIES ARE OF MOST BENEFIT

The preceding analysis confirms that impurities speed layer
nucleation, via (1), (8), and (9), and make the equilibrium
solid less pure, via (10). Impurities are most beneficial when
the former effect is as large as possible, and the latter effect
as small as possible. To make the bulk equilibrium impu-
rity concentration (10) small we want �ε large; we then
want �μ small, so that the second term in (8) remains
significant.

In Fig. 3 we show that these predictions are consistent
with our simulations: a crystal of a certain impurity fraction

grows more rapidly than its impurity-free counterpart, and
this effect is much enhanced as supersaturation is reduced.
Our predictions also suggest that impurities can be orders
of magnitude more effective in parameter regimes that are
inaccessible to our simulations but which describe molecular
systems.

V. CONCLUSIONS

Impurities are often considered to be problematic
when attempting to grow crystals, but we have shown that
layer-by-layer growth can be dramatically sped up by impuri-
ties with little impact on the quality of the final structure. Our
computer simulations and simple scaling arguments suggest
that this effect will be most pronounced under conditions of
low supersaturation and low temperature. Such conditions are
often required for the crystallization of highly anisotropic
molecules, for which the probability of crystalline (or pro-
ductive) binding is small. For example, proteins must sample
an ensemble of 	 104–105 states in order to find the crys-
tallographic state [34–36]. Given many ways of misbinding,
growth must be slow (and so supersaturation must be low)
in order to allow time for error correction. Furthermore, a
large binding energy is needed to offset the entropic advantage
of the disordered ensemble [37]. This combination of large
binding energies and low supersaturation leads to high surface
tension and long nucleation times, precisely the region in
which impurities are expected to be beneficial [Fig. 3(b)].
Indeed, this mechanism may provide an explanation for the
utility of nonspecific binding enhancers in protein crystalliza-
tion [38–40], such as depletants, in the layer-by-layer growth
regime.
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APPENDIX: LATTICE MODEL
MONTE CARLO DYNAMICS

The unrestricted Monte Carlo protocol proceeds as follows.
At each step of the simulation a site was chosen at random. If
the chosen site was white then we proposed with probability
p (respectively 1 − p) to make it blue (respectively red). If
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the chosen site was red or blue then we proposed to make it
white. No red-blue interchange was allowed. These proposals
were accepted with probabilities

R → W : min(1, (1 − p) exp(−�E ));

W → R : min(1, (1 − p)−1 exp(−�E ));

B → W : min(1, p exp(−�E ));

W → B : min(1, p−1 exp(−�E )), (A1)

where �E is the energy change resulting from the proposed
move. This change was calculated from the lattice energy
function

E =
∑

〈i, j〉
εC(i)C( j) +

∑

i

μC(i). (A2)

The first sum runs over all distinct nearest-neighbor interac-
tions. The second sum runs over all sites. The index C(i)
describes the color of site i and is W (white), B (blue),
or R (red); εC(i)C( j) is the interaction energy between colors
C(i) and C( j) (this is zero if either site is white); and the
chemical potential μC(i) is μ, ln p and ln(1 − p) for W, B,
and R, respectively. In the main text we set p = 1/2 in
order to model an equimolar mixture of crystal and impurity
particles.

In the main text we describe a solid-on-solid (SOS) re-
stricted protocol in which Monte Carlo moves are performed
only at the growth front. This protocol, which does not allow
vacancies to become incorporated into the 3D structure, re-
sults in a different equilibrium than the unrestricted protocol.
However, in the parameter regime we probe the difference
is slight, because few vacancies appear in the unrestricted
protocol (Fig. 4), and the presence or absence of the restriction
does not qualitatively affect our conclusions.

FIG. 4. The growth time (a) and average fraction of vacancies
(b) in the bulk as a function of impurity binding energy. In (a),
the SOS restriction (red) reduces the number of moves required
to observe growth (by a factor of order the length of the system)
compared with the unrestricted Metropolis Monte Carlo simulation
(blue). (b) Fraction of vacancies in the bulk, averaged over 100 sim-
ulations, in the absence of the SOS restriction. These small vacancy
fractions show that the effect of imposing the SOS restriction (which
eliminates vacancies) is slight.
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