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One-dimensional Coulomb system in a sticky wall confinement: Exact results
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This work investigates a one-component one-dimensional Coulomb system in sticky wall confinement. Sticky
wall is introduced as an alternative and intuitive depiction of charge regulation, the notion that a surface charge
is not a fixed but a fluctuating quantity in dynamic equilibrium with its immediate environment. Emphasis is
placed on intuitive derivation and expressions are obtained by observing that the partition function of a charge
regulated system can be decomposed into a collection of independent equilibriums with different fixed surface
charges. Adsorbed particles behave as ideal-gas particles in a one-dimensional box whose length corresponds
to the parameter of stickiness. Among various scenarios considered are a single- and two-wall confinement
as well as the case of sticky counterions capable of associating into pairs. Exact solutions provide a view of
the role and behavior of surface charge fluctuations, which is an important step in the “beyond-mean-field”
analysis. Consequently, the model serves as a simple paradigm of the mechanism that gives rise to the Kirkwood-
Shumaker interactions detected in real systems.

DOI: 10.1103/PhysRevE.100.042113

I. INTRODUCTION

Recently we studied a sticky-charged wall model [1] as
an intuitive interpretation of the mechanism of charge regu-
lation. In that model, nonelectrostatic short-range interactions
between free ions and the fixed chemical groups of a surface
are represented by the Baxter sticky potential [2]. (Sticky
interactions are incorporated into electrostatics since the mid
1970s and can be found in the work of Blum, McQuarrie, and
Carnie among others [3–12], strictly, therefore, we did not
introduce it but rather revived and considered it in the context
of charge regulation.) In the context of charge regulation,
the sticky interaction represents covalent or van der Waals
bonding between ions in the solution and the chemical groups
of the surface.

Because the Baxter potential is just the well potential in the
limit of the infinitesimal range and infinite depth, molecular
details are suppressed and particles interact with the surface
at direct contact. Adsorption, therefore, is proportional to a
density at a contact with a surface and the parameter of stick-
iness (rather than the equilibrium constant as in the original
description of charge regulation [13], or the surface energy
of adsorption as in [14–18]. However, all these quantities are
related.).

Since its introduction in 1968 [2], the Baxter potential
has been extensively studied and used to model numerous
soft-matter systems. The adhesive hard-sphere model is used
to study gelation phenomena in globular proteins [19,20].
In electrolytes, the sticky-charged spheres capture chemical
association as in weak acid-base reactions [3]. The sticky-
charged wall model that is relevant to the present work has
been considered in various works in the past [4–12].

In Ref. [1], we carried out the mean-field analysis for
different descriptions of an electrolyte in planar geome-
try. This amounted to numerical evaluation of different
modified Poisson-Boltzmann equations [21–23] for modified

boundary conditions. The aim was to determine the depen-
dence of adsorption on different details of the descriptions of
an electrolyte.

In the present work, we consider a sticky wall model of
a very simple system: a one-component Coulomb model in
one dimension [24–29] in confinement between sticky walls.
The one-dimensional Coulomb model has been used in the
past to gain insight about more complex and realistic systems
in higher dimensions. For example, Frydel and Podgornik
investigated a one-dimensional Coulomb system of active
ions to determine how active dynamics affects stationary
distributions [30]. The aim of the present work is to derive
exact expressions that could provide insight into the behavior
of adsorption. Of special interest is a better understanding of
the features “beyond” the mean field such as fluctuations of a
surface charge. These monopolar fluctuations not only modify
the interaction between charge regulated surfaces, but can
give rise to attractive interactions between neutral surfaces
[31–34]. This fluctuation mediated interaction is known as
the Kirkwood-Shumaker interaction [35–37] after the authors
who first described it.

Maggs and Podgornik have previously considered charge
regulation in a one-dimensional Coulomb system [31], where
the partition function was transformed into functional integral
representation [38,39] and then solved by mapping the path
integral representation into the Schrödinger formulation. In
the present work, we refrain from path integral transforma-
tions and other methods of statistical field theory and rely
on intuitive procedures similar to those introduced in [40,41]
and based on ordering of particles in permanent sequences
and by excluding permutations. In the context of the one-
dimensional Coulomb system, this transforms a system into
a “pseudo-one-body” problem in which each “ideal particle”
feels different external potential.

This work is organized as follows. In Sec. II, we introduce
a one-dimensional Coulomb model and evaluate the partition
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function for a single charged (nonsticky) wall system. In
Sec. III, we evaluate the partition function for a single sticky-
charged wall system using the solution for a nonsticky wall.
In Sec. IV, we consider a two-wall confinement with a single
sticky wall; then in Sec. V we consider confinement between
two sticky walls. In Sec. VI, we briefly consider the case
of sticky counterions. Conclusive remarks are provided in
Sec. VII.

II. THE MODEL AND A SINGLE-WALL CASE

A one-dimensional (1D) Coulomb model consists of par-
ticles moving on a line and interacting via the pair potential

βu(xi, x j ) = −|xi − x j |
λ

, (1)

where xi and x j are the positions of particles i and j, and the
length λ determines the interaction strength.

The linear pair potential implies constant force (apart for
a singularity at xi = x j , where the force abruptly changes
direction). As long as particles do not exchange their relative
positions and retain fixed order, the forces acting on each par-
ticle remain constant. This constraint effectively transforms a
many-body problem into a “pseudo-one-body” one.

For a single charged wall confinement, with a wall at x = 0
and mobile ions confined to a half space x > 0, the external
potential acting on a single ion k is

βuext (xk ) = xk

λ
. (2)

For a one-component system of n particles, the interaction
between pair of ions is

βu(xk, xl ) = −|xk − xl |
nλ

, (3)

where the factor 1/n ensures the system neutrality: if all
particles are at the location of a wall at x = 0, the total
potential at any point outside a wall is zero. In the limit
n → ∞ the system is described exactly by the mean-field
approximation, where interactions are not dominated by any
particular pair interaction but are determined by the average
density of all ions.

To facilitate calculations and eliminate absolute brackets in
Eq. (3), we assume that free ions are permanently ordered as

0 � x1 � x2 � · · · � xn−1 � xn < ∞. (4)

Using Eq. (3), the potential acting on a particle k due to
interactions with other particles is

βuint
k (x) = −1

λ

k−1∑
i=1

(x − xi ) + 1

λ

n∑
i=k+1

(x − xi ). (5)

This is rearranged into

βuint
k (x) =

(
n − 2k + 1

nλ

)
x +

[
1

nλ

( k−1∑
i=1

xi −
n∑

i=k+1

xi

)]
.

(6)

Since the second term is a constant that does not affect the
interaction force fk = − ∂uint

k
∂x , it is enough to write

βuint
k (x) =

(
n − 2k + 1

nλ

)
x. (7)

The final expression of the potential must include the external
potential of a confining wall in Eq. (2), leading to

βuk (x) =
(

2n − 2k + 1

nλ

)
x. (8)

The forced ordering of the particle allows us to write the
partition function as

Zn = 1

�n

n∏
k=1

∫ xk+1

0
dxk e− (2n−2k+1)xk

nλ , (9)

where the upper limit for the last particle is xn+1 = ∞, as
that particle is not bounded from above. � is the length
scale required to make Z dimensionless, otherwise there is no
physical significance attributed to it.

The limits of the multi-integral in Eq. (9) ensure that
all configurations are sampled, while precluding sequence
permutations. For the position of a particle k, these limits are
xk ∈ (0, xk+1]. As permutations are precluded, there is no need
for the Gibbs factor 1/n! normally required for describing a
liquid state.

An interesting feature of the system represented by the
partition function in Eq. (9) is its similarity to an ideal-gas
model due to an apparent absence of particle-particle interac-
tions. What sets it apart from the ideal-gas model is that each
particle, in addition to being confined by its nearest neighbors,
experiences different “external” potential: particles closer to
a wall experience stronger attraction. The “pseudo-one-body”
character of the system raises the expectation that it is trivially
solved. But as shown below, obtaining an analytical solution
turns out not to be so trivial.

Before evaluating the partition function in Eq. (9), we make
one last simplification and rescale the integration variables as
yk = xk/nλ, where yk is a dimensionless variable, resulting in
a simpler integral,

Zn =
(

nλ

�

)n n∏
k=1

∫ yk+1

0
dyk e−(2n−2k+1)yk . (10)

To evaluate the above integral, we introduce the recursion
relation

f n
m(y) =

∫ y

0
dy′ e−(2n−2m+1)y′

f n
m−1(y′), (11)

where the subscript 0 � m � n indicates the number of recur-
sions, and the superscript indicates the total number of parti-
cles. The recursion is initiated by f n

0 (y) = 1. Alternatively, the
recursion equation can be expressed as a differential equation,

df n
m(y)

dy
= e−(2n−2m+1)y f n

m−1(y). (12)

Using the recursion in Eq. (11), the partition function in
Eq. (10) can be expressed simply as

Zn =
(

nλ

�

)n

lim
y→∞ f n

n (y). (13)
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The functions f n
m(y) can be considered as building blocks in

constructing different solutions. And as these functions are not
standard, we need a procedure for evaluating them.

To this end, we use the Laplace transform, where the
Laplace transformed functions are

f̃ n
m(z) =

∫ ∞

0
dy f n

m(y)e−zy, (14)

and the initial function f n
0 (y) = 1 transforms into

f̃ n
0 (z) = 1

z
. (15)

The remaining functions are transformed using the recursion
relation in Eq. (11). Using the relations

∫ ∞

0
dy

[
df n

m(y)

dy

]
e−zy = z f̃ n

m(z) (16)

and ∫ ∞

0
dy

[
f n
m(y)e−αy

]
e−zy = f̃ n

m(z + α), (17)

the recursion equation in Laplace space becomes

f̃ n
m(z) = f̃ n

m−1[z + 2(n − m) + 1]

z
. (18)

We use this relation to obtain f̃ n
1 (z),

f̃ n
1 (z) = 1

z(z + 2n − 1)
. (19)

By continuing the recursion up to an arbitrary m � n, we find

f̃ n
m(z) = 1∏m

k=0[z + 2k(n − m) + k2]
. (20)

The last step involves transforming f̃ n
m(z) back into physical

space. This is done using the inverse Laplace transform,

f n
m(y) = 1

2π i

∫ c+i∞

c−i∞
dz

ezy∏m
k=0[z + 2k(n − m) + k2]

, (21)

given by the complex integral, where z represents the complex
variable. [The constant c is a real number and is introduced to
ensure that the contour path of integration is in the region of
convergence of f̃ n

m(z).]
The complex integral in Eq. (21) is conveniently solved

using the residue theorem, which requires identification of the
poles and their order, and where fn(y) can be represented as a
sum of residues at all poles zk ,

f n
m(y) =

∑
{zk}

Res
(

f̃ n
m, zk

)
. (22)

From Eq. (21), we know that all the poles lie on the negative
branch of the real axis including zero, zk = −k2 − 2k(n − m)
for k = 0, 1, . . . , m. As none of the poles are repeated, there
are, in total, m + 1 simple poles. The residue of f̃ n

m at a simple
pole zk is given by

Res
(

f̃ n
m, zk

) = lim
z→zk

(z − zk ) f̃ n
m(z). (23)

Obtaining all the residues, the function f n
m(y) becomes

f n
m(y) = (2n − 2m)!

m!(2n − m)!

+
m∑

k=1

(−1)k (2n − 2m + k)! e−k2ye−2k(n−m)y

k!(m − k)!(2n − m + k)!

× 2n − 2m + 2k

2n − 2m + k
. (24)

The result does not possess a simple form that we might have
hoped for, but at least it is analytic. To evaluate the partition
function in Eq. (10), we only need f n

n (y), which is

f n
n (y) = 1

n!n!
+ 2

n∑
k=1

(−1)ke−k2y

(n + k)!(n − k)!
, (25)

and, in the limit y → ∞, it further reduces to a single term,

lim
y→∞ f n

n (y) = 1

n!n!
, (26)

and the partition function in Eq. (13) becomes

Zn =
(

nλ

�

)n 1

n!n!
. (27)

This is a rather trivial result compared to the procedure that
produced it. We compare this result to the partition function
of noninteractive particles attracted to a wall by the same
external potential, that is, u(xk ) = xk

λ
as in Eq. (2),

Z id
n = 1

�n

n∏
k=1

∫ xk+1

0
dxk e− xk

λ .

This evaluates to

Z id
n =

(
λ

�

)n 1

n!
,

where the preclusion of positional permutations, generates
the Gibbs factor 1/n!. Using the Sterling approximation n! ≈
nne−n, Eq. (27) for an interactive system can be written as

Zn ≈
(

eλ

�

)n 1

n!
.

This suggests that interactions effectively reduce the strength
of external potential such that λ → eλ, which might be re-
garded as a screening effect.

III. STICKY SINGLE WALL

In this section, we consider a system where a confining
wall is charged and sticky. The sticky potential is represented
using the Baxter potential us(x) obtained from the square-well
potential [1,2],

βuwell(x) =
{ −ε for 0 < x < a

0 for x > a,
(28)

in the limit a → 0 and ε → ∞, such that aeε = ls. The
Boltzmann factor of the Baxter potential is given by

e−βus (x) = 1 + lsδ(x), (29)
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where the length ls defines the strength of the surface stick-
iness. The zero range of interactions implies that the sticky
potential interacts with particles only when at direct contact
with a wall.

We first write the partition function without the assumption
of a fixed positional order,

Zs = 1

n!�n

∫ ∞

0
dx1· · ·

∫ ∞

0
dxn e−βuel

n∏
i=1

e−βus (xi ), (30)

where

βuel(x1, . . . , xn) = −1

2

n∑
i, j

|xi − x j |
nλ

+
n∑

i=1

xi

λ
(31)

is the total electrostatic contribution to the interactions. Ap-
plying Eq. (29), the partition function is written as

Zs = 1

n!�n

∫ ∞

0
dx1 . . .

∫ ∞

0
dxn e−βuel

n∏
i=1

[1 + lsδ(xi )]. (32)

The systematic way of evaluating the above partition function
requires expanding it and then organizing the terms into
expansion in powers of ls. The same result, however, can be
obtained using an alternative intuitive procedure. We note that
adsorbed ions behave as ideal-gas particles in a 1D box of
length ls, in which case the partition function of m adsorbed
particles is

Z id
m =

(
ls
�

)m 1

m!
. (33)

The parameter of stickiness in this case takes on the role of the
box size. The larger the box, the more likely to find a particle
inside it and, consequently, more likely is the adsorption.

The partition function of the remaining n − m free ions is
provided by Eq. (27),

Zel
n−m =

(
nλ

�

)n−m 1

(n − m)!(n − m)!
. (34)

Note that the interaction strength nλ does not change with
the number of adsorbed particles; the parameter nλ was
introduced to ensure that the total charge of counterions is
independent of the total number of ions.

The partition functions for m adsorbed ions, combining the
two subsystems, is

Ztot = Z id
m Zel

n−m. (35)

The complete partition function must account for all redistri-
butions of ions. This leads to

Zs =
n∑

m=0

Z id
m Zel

n−m, (36)

and the explicit result is

Zs =
(

nλ

�

)n n∑
m=0

(
ls
nλ

)m 1

(n − m)!(n − m)!m!
. (37)

The resulting partition function recalls a grand canonical
ensemble with the fugacity of adsorption ls/λ, or the chemical

FIG. 1. Probabilities pm, defined in Eq. (38), for n = 20 and for
three different values of the stickiness: (a) ls/λ = 0.1, (b) ls/λ = 1,
and (c) ls/λ = 10. The solid lines are guides to the eye.

potential of adsorption βμs = ln(ls/λ). It represents a system
comprised of a number of contributing equilibriums.

From the partition function, we can obtain the probability
for m adsorbed particles,

pm = 1

c

n!n!

(n − m)!(n − m)!m!

(
ls
nλ

)m

, (38)

where c is the normalization constant that ensures
∑n

m=0
pm = 1. The probability in Eq. (38) does not correspond to
any of the usual discrete probability distributions. It bears
some resemblance to the Fisher’s noncentral hypergeometric
distribution pf

m used for models of biased sampling, where
pm/pf

m = m!c f /c.
Figure 1 shows the distribution pm for different parameters

of stickiness for n = 20. The distribution shifts toward higher
m for larger stickiness of a wall. The variance is largest if the
distribution finds itself in the central location of the interval
m ∈ [0, n].
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FIG. 2. Probabilities pm, defined in Eq. (38), as a function of the
fraction of adsorbed particles for ls/λ = 1 and different number of
particles, n = 10, 20, 40.

In Fig. 2, we plot the distributions pm as a function of
the fraction of adsorbed particles, m/n, for a single value of
stickiness ls/λ = 1, but for different number of counterions
n. The purpose is to illustrate the effect of the number of
particles on fluctuations in the number of adsorbed particles.
Fluctuations, defined as δm/n = (m − 〈m〉)/n, are suppressed
as the number of particles increases. The limit n → ∞ re-
covers the mean-field behavior, that is, the system is exactly
described by the mean-field theory. The convergence toward
the mean-field limit, however, is slow where the fluctuations
decay like

〈δm2〉
n2

∝ 1

n
. (39)

The mean adsorption 〈m〉/n and fluctuations 〈δm2〉/n2 are
plotted in Fig. 3 as a function of ls/λ for different n corre-
sponding to the three distributions in Fig. 2. The average ad-
sorption is effectively unaffected by the change in the number
of particles, suggesting that the mean-field approximation can
be relied on in its prediction. The fluctuations, on the other
hand, are highly dependent on n.

The fact that a realistic description of charge regulated
surfaces is more accurately represented by a distribution pm

rather than the mean value 〈m〉 suggests a dynamic picture of
charge regulation. The dynamic connection can be seen if we
consider the response of adsorption to system parameters. If
we define the average number of adsorbed particles as

〈m〉 = ls
∂ ln Zs

∂ls
, (40)

then the variation of 〈m〉 with ls can be found to be related to
fluctuations as

∂〈m〉
∂ls

= 〈δm2〉
ls

; (41)

therefore, the larger the fluctuations, the larger the response
of a system to changes in the environment. Alternatively, the
system response to the variation in λ is

∂〈m〉
∂λ

= −〈δm2〉
λ

. (42)

FIG. 3. (a) The average fraction of adsorbed particles and (b) the
average fluctuations as a function of ls/λ for varying number of
particles, n = 10, 20, 40.

Variation of a sticky surface

The intuitive procedure used to obtain the partition function
for a system with an adsorbing wall can be modified in a
straightforward manner to provide different characterization
of an adsorbing wall. If we substitute the ideal-gas partition
function in Eq. (33) with the partition function of the Tonks
gas given by

Z tonks
m =

(
ls − ma

�

)m 1

m!
, (43)

which represents particles as cylinders of length a moving on a
line, we can incorporate the overcrowding effect of adsorption
by reducing the effective size of a system,

ls → ls − ma = ls

(
1 − m

ns

)
, (44)

or an effective stickiness which depends on the number
of adsorbed particles. The quantity ns = ls/a represents the
maximum number of adsorbed particles. The total partition
function becomes

Z ′
s =

(
nλ

�

)n n∑
m=0

(
ls
nλ

)m (1 − m/ns)m

(n − m)!(n − m)!m!
. (45)

The surface is now characterized by three parameters: λ, ls,
and ns. In the limit ns 
 n, the above result recovers the
partition function in Eq. (37).

042113-5



DEREK FRYDEL PHYSICAL REVIEW E 100, 042113 (2019)

Another alternative is to use, in place of an ideal-gas
partition function, a lattice-gas entropy,

Z lg
m =

(
ls
�

)m ns!

m!(ns − m)!
, (46)

and the complete partition function becomes

Z ′
s =

(
nλ

�

)n n∑
m=0

(
ls
nλ

)m ns!

m!(n − m)!(n − m)!(ns − m)!
.

(47)

IV. TWO-WALL CONFINEMENT: ONE STICKY WALL

Next we consider the two-wall confinement with walls at
x = 0 and x = L. To proceed by steps, we first consider the
case where only a wall at x = 0 is charged and sticky, while
the sole role of a neutral and nonsticky wall at x = L is to
confine ions. The partition function can still be represented
by the general form Zs = ∑n

m=0 Z id
m Zel

n−m; however, the part
representing free ions needs to take into account the finite size
of the confinement. This is represented by

Zel
n−m =

(
nλ

�

)n−m

f n−m
n−m

(
L

nλ

)
, (48)

and the complete partition function becomes

Zs =
(

nλ

�

)n n∑
m=0

(
ls
nλ

)m 1

m!
f n−m
n−m

(
L

nλ

)
, (49)

where the function f n−m
n−m (y) is defined in Eq. (25).

In the limit λ → ∞, which effectively switches off particle
interactions, the above expression reduces to the ideal-gas
system,

lim
λ→∞

Zs =
n∑

m=0

(
ls
�

)m(
L

�

)n−m 1

m!(n − m)!
, (50)

with n particles variously distributed between two boxes of
size ls and L. Another limit that recovers an ideal-gas behavior
is L → 0. In this case the partition function reduces to

lim
L→0

Zs =
(

ls
�

)m 1

n!
, (51)

where all particles exist in an adsorbed state.
The partition function in Eq. (49) can be used to obtain the

probability for m adsorbed particles,

pm = 1

c

(
ls
nλ

)m 1

m!
f n−m
n−m

(
L

nλ

)
, (52)

or in exclusive form,

pm = 1

c

(
ls
nλ

)m 1

m!

[
1

(n − m)!(n − m)!

+
n−m∑
k=1

2(−1)ke−k2L/nλ

(n − m + k)!(n − m − k)!

]
, (53)

where c is the normalization constant.
In Fig. 4, we plot the distributions pm for different de-

grees of confinement, L/λ = ∞, 1, 0.5. The smaller the space

FIG. 4. Probabilities pm defined in Eq. (53), for n = 20, ls/λ =
1 and three different confinements: (a) L/λ = ∞, (b) L/λ = 1, and
(c) L/λ = 0.5. The solid lines are guides to the eye.

available to ions, the greater adsorption, which shifts the
distributions toward m/n = 1. In the limit L/λ → 0, all ions
must be adsorbed.

It is expected that if more particles are adsorbed, the
weaker is the pressure, whose thermodynamic definition is

βP = ∂ ln Zs

∂L
. (54)

For a nonadsorbing system, pressure is expected to diverge
in the limit L → 0 as βP ≈ nL−1. The onset of adsorption
eliminates such divergence as all the particles exist in an
adsorbed state, leading to a different limiting behavior,

lim
L→0

βP = n

ls
, (55)

which is the pressure of n ideal particles inside a box of size
ls. The nonzero pressure indicates that particles, even if all of
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them are adsorbed, continue exerting pressure as the result of
their tendency to dissociate.

We next consider a two-wall system with a wall at x = 0
charged (but nonsticky) and a wall at x = L sticky and
neutral. The general form of the partition function Zs =∑n

m=0 Z id
m Zel

n−m still applies to this situation. However, the
ideal-gas part is slightly modified and is expressed as

Z id
m =

(
ls
�

)m e−m2L/nλ

m!
(56)

because the potential at a wall at x = L does not vanish as is
the case of a wall at x = 0. The Boltzmann factor e−m2L/nλ

accounts for this potential. The partition function for free
electrons is also modified according to

Zel
n−m =

(
nλ

�

)n−m

f n
n−m

(
L

nλ

)
, (57)

as the recursion relation stops at f n
n−m, excluding the adsorbed

particles. The complete partition function becomes

Zs =
(

nλ

�

)n n∑
m=0

(
ls
nλ

)m e−m2L/nλ

m!
f n
n−m

(
L

nλ

)
. (58)

From Eq. (24), we get

f n
n−m(y) = (2m)!

(n − m)!(n + m)!

+
n−m∑
k=1

(−1)k (2m + k)!e−(k2+2km)y

k!(n − m − k)!(n + m + k)!

2m + 2k

2m + k
.

(59)

The probability for m adsorbed ions is given by

pm = 1

c

(
ls
nλ

)m e−m2L/nλ

m!
f n
n−m

(
L

nλ

)
, (60)

or, explicitly,

pm = 1

c

(
ls
nλ

)m e−m2L/nλ

m!

[
(2m)!

(n − m)!(n + m)!

+
n−m∑
k=1

(−1)k (2m + k)!e−(k2+2km)L/nλ

k!(n − m − k)!(n + m + k)!

2m + 2k

2m + k

]
.

(61)

The pressure between the two plates in the limit L → 0
reduces to

lim
L→0

βP = n

ls
− n

λ
, (62)

where the origin of the positive term was previously discussed
in reference to Eq. (55). The negative term arises due to
electrostatic attraction between the walls, as the adsorption of
counterions on a neutral wall at x = L leads to attractive force
toward the charged wall at x = 0. As in the limit L → 0 all
counterions become adsorbed, this force is proportional to n.

In Fig. 5, we plot pressure and the average adsorption as a
function of confinement L for two scenarios: when adsorption
occurs on a charged wall and when adsorption occurs on a
neutral wall. Even if adsorption is lower for a sticky neutral

FIG. 5. (a) Pressure and (b) average fraction of adsorbed parti-
cles as a function of confinement for two scenarios: adsorption on
a charged wall (solid line) and adsorption on a neutral wall (dashed
line). The system parameters are n = 20 and ls/λ = 1.

wall, because counterions prefer the vicinity of the opposite
charged wall, the adsorption in this case affects pressure more
strongly due to the resulting electrostatic attraction between
the two walls.

V. TWO-WALL CONFINEMENT: TWO STICKY WALLS

In this section, we consider a confinement with two sticky
walls with a wall at x = 0 charged and a wall at x = L neutral.
The stickiness of each wall is l1 and l2. The general form of
the partition function reads as

Zs =
n∑

m1=0

n−m1∑
m2=0

Z id
m1

Z id
m2

Zel
n,m1,m2

, (63)

where the ideal parts are

Z id
m1

=
(

l1
�

)m1 1

m1!
(64)

and

Z id
m2

=
(

l2
�

)m2 e−m2
2L/nλ

m2!
, (65)

respectively, and the electrostatic part of free counterions is

Zel
n,m1,m2

=
(

nλ

�

)n−m1−m2

f n−m1
n−m1−m2

(
L

nλ

)
. (66)

To understand the expression above, it helps to think of the
superscript as representing an effective surface charge of a
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wall at x = 0 (that is, a bare surface charge reduced by
adsorbed counterions), and a subscript as representing the
number of free ions. The functions f n−m1

n−m1−m2
(y) are defined

in Eq. (24). The partition function can be written as

Zs =
(

nλ

�

)n n∑
m1=0

n−m1∑
m2=0

(
ls
λ

)m1+m2

× 1

m1!

e−m2
2L/nλ

m2!
f n−m1
n−m1−m2

(
L

nλ

)
. (67)

To verify the accuracy of the expression, we ensure that it
correctly recovers the number of limiting cases. In the limit
λ → ∞, we recover the ideal-gas behavior given by

lim
λ→∞

Zs =
n∑

m1=0

n−m1∑
m2=0

(
l1
�

)m1
(

l2
�

)m2
(

L

�

)n−m1−m2

× 1

m1!m2!(n − m1 − m2)!
, (68)

and which corresponds to n ideal particles variously dis-
tributed in three boxes of length l1, l2, and L. The other
limiting situation is the limit L → 0, which yields

lim
L→0

Zs =
n∑

m1=0

(
l1
�

)m1
(

l2
�

)n−m1 1

m1!(n − m1)!
, (69)

and which corresponds to n ideal particles distributed in two
boxes.

If we look into the behavior of pressure in the limit L → 0,
we find

lim
L→0

βP = n

l1 + l2
− n

λ

(
l2

l1 + l2

)2(
1 + 1

n

l1
l2

)
. (70)

As before, the first term indicates the pressure that adsorbed
particles exert as the result of their tendency to dissociate. It
has the form of an ideal-gas pressure for n particles inside
a box of combined size l1 + l2. The negative term comes
from attractive interactions between the two walls due to their
effective charge. This term can be shown to originate from the
potential between two walls given by

βu(L) = L

nλ

〈
m2

2

〉
. (71)

The second term in Eq. (70) has a contribution that does not
depend on n. This is the term that accounts for the Kirkwood-
Shumaker force [35,36]. It becomes less significant as the
number of counterions increases.

Two charged walls

In the above examples, we limited our investigation to
a setup with only one wall charged, as this allowed us to
formulate the solutions in terms of the functions f n

m(y) defined
in Eq. (24) for a single-wall system. To consider a situation
with two charged walls, a different set of fundamental func-
tions is required, which are more complex as they involve the
combination of simple and second-order poles.

However, by considering the limit L → 0, we suppress the
electrostatic part and can still point out some interesting fea-
tures of the model. If the two walls have the same charge and

the stickiness parameter, and the total number of counterions
is 2n, with each wall releasing n counterions, in the limit
L → 0 all the counterions are adsorbed and the interaction
potential between the walls is given by

βu(L) = −L(n − m1)(n − m2)

nλ
, (72)

where n − mi might be considered as the effective charge on
a wall and n/λ is the interaction strength between two ions. If
all counterions are adsorbed, then m2 = 2n − m1 and

βu(L) = L(n − m1)2

nλ
. (73)

The above formula is correct for L that is sufficiently small
so that ion dissociation is negligible. The expression indi-
cates that interactions are almost always attractive even if,
on average, the walls are neutral. The no interaction case
corresponds to a single symmetric configuration when m1 =
n. The attraction is therefore strictly the result of fluctuations
which produce asymmetric distributions of counterions.

As the effective interaction takes into account all possible
configurations, we write

βu(L) = L

λ

〈(n − m1)2〉
n

, (74)

and since it is easy to guess that 〈m1〉 = n, the effective inter-
actions between two walls become dependent on fluctuations
alone as

βu(L) = L

λ

〈
δm2

1

〉
n

. (75)

To evaluate the fluctuations 〈δm2
1〉, we define the partition

function valid in the limit L → 0,

Z =
(

ls
�

)2n 2n∑
m1=0

e−(n−m1 )2L/λ

m1!(2n − m1)!
. (76)

What is clear from the above expression is that asymmetric
configurations are less likely to occur for finite L. In the exact
limit L = 0, we find

lim
L→0

〈δm2
1〉 = n

2
, (77)

and the interaction potential is

lim
L→0

βu(L) = 1

2

L

λ
. (78)

Based on this, we can next obtain an expression for pressure
in the same limit. Since the attractive force is −1/2λ, the
pressure must be

lim
L→0

βP = n

(
1

ls
− 1

2n

1

λ

)
. (79)

As the number of particles increases, the attractive force
between walls becomes less relevant, and in the limit n →
∞, it completely vanishes. In that case, pressure is strictly
repulsive.
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FIG. 6. Probability of ion association into pairs, p2, as a function
of the confinement size L/λ, obtained based on Eq. (82). The system
parameters are n = 10 and ls/λ = 0.1.

VI. STICKY COUNTERIONS

In this section, we briefly consider sticky counterions as
a way to model the association of counterions into pairs.
Such charge regulation of mobile ions have been recently
considered in Refs. [15,16,18].

To simplify things, we assume that all ions are either
dissociated or associated into pairs. The partition function
accounting for this two different configurations, for a single
charged wall case, is

Z =
(

nλ

�

)n 1

n!n!
+

(
nλ

2�

)n/2( ls
�

)n/2 1

(n/2)!(n/2)!
, (80)

where we used the partition function in Eq. (27), and where
the first term represents dissociated counterions and the sec-
ond term represents associated counterions into pairs due to
sticky interactions between them. Alternatively, we may write

Z =
(

nλ

�

)n[ 1

n!n!
+

(
ls

2nλ

)n/2 1

(n/2)!(n/2)!

]
. (81)

To see how confinement affects dissociation of ion pairs,
we introduce a neutral and nonsticky wall at x = L. The

partition function for this situation is

Z =
(

nλ

�

)n[
f n
n

(
L

nλ

)
+

(
ls

2nλ

)n/2

f n/2
n/2

(
2L

nλ

)]
, (82)

with f n
n (y) given in Eq. (25). In Fig. 6, we plot the probability

that all ions are associated into pairs, p2, as a function of
confinement. The smaller the confinement, the more likely it
is for ions to exist as pairs. As smaller confinement implies a
more concentrated system, this result could be used to obtain
the solubility of a given ionic molecule.

VII. CONCLUSION

In this work, we have investigated a one-dimensional one-
component Coulomb gas model in a sticky wall confinement
as a simple case study of charge regulation. The choice
of the system has been motivated by the desire to gain a
deeper understanding of, first, the role of fluctuations and,
second, the statistical mechanics of more realistic systems in
higher dimensions, especially with regard to the structure of a
partition function.

Unlike the mean-field analysis, the model provides com-
plete distributions of adsorbed particles. These distributions
depend on the interaction strength, the wall stickiness, the
number of ions, and the size of the confinement. In con-
sequence, the model provides a simple paradigm for the
mechanism of the Kirkwood-Shumaker interactions [35–37].

The view that the complete system is a collection of
independent equilibriums with fixed number of adsorbed ions
allows us to derive expressions in an intuitive manner. A
similar decomposition holds for higher-dimensional models;
however, in these systems, adsorbed ions are no longer viewed
as ideal particles, as they no longer occupy a single point
in space. In two-dimensions, adsorbed ions are moving on
a line, and in three-dimensions, they move on a surface.
Different configurations of adsorbed particles may lead to
spontaneous inhomogeneity of a surface charge, giving rise
to local fluctuations of surface charge density, even if the
total number of adsorbed ions is fixed. Particles adsorbed on
a surface, can, in addition, undergo a phase transition under
appropriate conditions [42], leading to additional exotic forces
unrelated to the Kirkwood-Shumaker interactions.
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