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Turing-like patterns in an asymmetric dynamic Ising model
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To investigate novel aspects of pattern formation in spin systems, we use a mapping between reactive
concentrations in a reaction-diffusion system and spin orientations in a dynamic multiple-spin Ising model.
While pattern formation in Ising models always relies on infinite-range interactions, this mapping allows us to
design a finite-range-interactions Ising model that can produce patterns observed in reaction-diffusion systems
including Turing patterns with a tunable typical length scale. This model has asymmetric interactions and several
spin types coexisting at a site. While we use the example of genetic regulation during embryogenesis to build
our model, it can be used to study the behavior of other complex systems of interacting agents.
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I. INTRODUCTION

The mechanisms underlying global pattern formation from
local interactions are studied in many fields of physics,
chemistry, and biology [1–3]. Reaction diffusion is possibly
the most widespread patterning model. It uses continuous
variables such as the concentrations of chemical species that
can form complex patterns, e.g., stripes, propagating fronts,
and oscillatory waves [4]. Another class of pattern formation
models are Ising models. Ising variables are two-state (up
and down) discrete spins interacting on a lattice. One can
distinguish two types of interactions: infinite and finite range.
Infinite-range interactions are more commonly referred to as
long-range interactions, i.e., decreasing with the distance as
a power law 1/rα with α larger than or equal to the spatial
dimension. Infinite- and finite-range interactions show differ-
ences in terms of behavior and are investigated using specific
computational methods [5]. In terms of patterning, finite-
range interactions mostly lead to ferromagnetic (all spins up
or down) or antiferromagnetic (alternating up and down spin)
states. In the presence of frustration, one-site width stripes can
also occur [6]. On the other hand, infinite-range interactions
can lead to the formation of more complex patterns. The
combination of ferromagnetic nearest-neighbor interactions
with antiferromagnetic infinite-range interactions found, for
instance, in ultrathin magnetic films [7,8] is known to pro-
duce patterns such as mazes or bubbles. Up to now, infinite-
range interactions were considered a necessary condition for
the formation of patterns with a typical width of several lattice
constants. Our goal in the present paper is to derive a variant
of the Ising model which produces such patterns without
infinite-range interactions.

Reaction-diffusion and Ising models are both well adapted
to describe emergent collective behaviors from individual evo-
lution rules. Yet, they have been confronted in few restricted
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cases. An example is the rigorous proof of the existence of
traveling fronts in a ferromagnetic Ising model under Glauber
dynamics using a mapping of the magnetization evolution
equation with the reaction-diffusion Allan-Cahn equation
[9,10].

In this paper, we build upon the similarities between
reaction-diffusion and Ising models to construct a dynamic
finite-range Ising model giving rise to complex patterns. We
introduce in Sec. III a stochastic reaction-diffusion automaton
(SRDA) on a lattice, inspired by embryogenesis (Sec. II).
Then we construct in Sec. IV our asymmetric dynamic Ising
model (ADIM) and establish a mapping between the ADIM
and the SRDA in Sec. V. From this mapping we show in
Sec. VI that the ADIM can reproduce the variety of patterns
observed in reaction-diffusion systems even if it only relies on
finite-range interactions.

II. AN ASIDE ON EMBRYOGENESIS

One of the most emblematic example of pattern formation
is embryogenesis, which motivated Turing to develop his
well-known reaction-diffusion model in 1952 [4]. The major
question in this field is to understand how initially identical
cells can express different genes to form various tissues and
organs at the proper time and location during the development
of the embryo.

Turing proposed that interactions between diffusing gene
products (called hereafter species) could lead to the spatial
organization of gene expression. In the case of the so-called
activator-inhibitor model, two species (an activator a and an
inhibitor b) can self-organize in stripes, dots, or mazelike
patterns. This is driven by three main ingredients: an auto-
catalysis of a, an asymmetry in reciprocal interactions (i.e., a
enhances the formation of b while b penalizes the formation of
a), and a quantitative difference in their diffusion coefficients.
Besides these self-organized patterns [11–13] suggested by
Turing, embryogenesis provides examples of externally driven
patterns that are preformed at large scales, for instance, by
chemical gradients in the case of Drosophila’s fertilized egg
[14,15]. These gradients activate specific genes in different

2470-0045/2019/100(4)/042111(8) 042111-1 ©2019 American Physical Society

https://orcid.org/0000-0002-1349-878X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.042111&domain=pdf&date_stamp=2019-10-08
https://doi.org/10.1103/PhysRevE.100.042111


MERLE, MESSIO, AND MOZZICONACCI PHYSICAL REVIEW E 100, 042111 (2019)

locations of the embryo and the products of these genes
subsequently act on other genes in a combinatorial manner.
In the current view, the spatial regulation of gene expression
in developing embryos is explained by combinations of these
two different and complementary classes of scenarios [16].

Various models implementing these two classes have been
proposed, either based on differential equations or on cellular
automata [17]. Recently, an Ising model [18] has also been
developed to model gene patterning during embryogenesis.
Each spin represents a gene that can be in one of the two
states: active or inactive. Each site represents a nucleus and
can contain several spins (genes). The spatial proximity be-
tween nuclei defines the interaction lattice (nonzero cou-
plings), while coupling values defines the interaction network
between spins (genes). These couplings are a simplification
of the molecular mechanisms at work: gene transcription in
RNA, RNA translation in proteins, and protein diffusion to
neighboring nuclei where they can modify the transcription
rate of other genes. While being different from more detailed
reaction-diffusion models, this Ising model features the most
important ingredient: short-range interactions between spins
(genes) [18]. Based on this similarity, we also placed our-
selves in this context to build an extended variant of the Ising
model, implementing asymmetric interactions between spin
types, that could lead to Turing patterns. To achieve this goal,
we start by constructing a reference reaction-diffusion model
in the next section.

III. STOCHASTIC REACTION-DIFFUSION AUTOMATON

Reaction-diffusion models describe the evolution in time
and space of the concentrations c = (ca, cb, . . . ) of ns chem-
ical species a, b, . . . undergoing two processes: diffusion,
associated to diffusion coefficients Da, Db, . . . , and local
reactions Ra(c, g), Rb(c, g), . . . , resulting in the creation of
units of a, b, . . . per time unit, where g is a possible external
gradient forcing the system. The continuous space and time
equations are for each species a of the form

∂t ca = Da∇2ca + Ra(c, g). (1)

As a discrete space and time model of reaction diffusion,
we use here a probabilistic automaton on a one-dimensional
(1D) lattice. The vector ci(t ) = (cia(t ), cib(t ), . . . ) contains
the concentrations of the ns considered species on each lattice
site i at discrete time t . The external gradient g is a prescribed
time-independent additional species of concentration gi on
site i. Each time step is divided into three substeps. The first
one (t → t ′) is the production event: each concentration is
incremented by 1 with probability

Pprod
ia = 1

1 + e−ua (Ci,gi )
. (2)

It is a common usage to model gene regulation by
sigmoidal functions. This exact form has been used for
Drosophila development modeling [19]. We choose ua(ci, gi )
of the form

ua(ci, gi ) =
∑

b

(φbacib) + κagi − θ0, (3)
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FIG. 1. The SRDA recapitulates different patterning mecha-
nisms, illustrated here on a 1D lattice. (i) Externally driven pattern
by a linear external gradient g. (ii) Self-organized pattern, here
Turing stripes. (iii) Hybrid pattern which is a combination of both
mechanisms. Corresponding interaction networks are shown with →
and � symbols representing, respectively, activation and inhibition.

where the φba are the reaction constants between species (the
sum is over all species, including a itself), κa represents the
effects of the gradient g on species a, and θ0 is an activation
threshold common to all species.

The second event (t ′ → t ′′) is diffusion, approximated by a
Gaussian kernel Gσa of standard deviation σa and mean value
zero:

cia(t ′′) =
∑

| j−i|<2σa

Gσa (| j − i|)c ja(t ′). (4)

The third event (t ′′ → t + 1) is degradation, assumed to
occur at the same rate ε for all species:

cia(t + 1) = εcia(t ′′), (5)

where 0 < ε < 1.
To represent the steady states, concentrations are normal-

ized by cmax = ε
1−ε

, so c∗ = c
cmax

is comprised between 0 and
1. As described in Sec. II, two classes of patterns can emerge
from our model: gradient-induced patterning [Fig. 1(i)] and
Turing instabilities [Fig. 1(ii)]. The two types of mechanisms
can be combined [Fig. 1(iii)], leading to the appearance of
hybrid patterns [16].

IV. ASYMMETRIC DYNAMIC ISING MODEL

The classical Ising model was created in 1920 [20] as a
toy model describing ferromagnetism. The spins are bivalued
(usually Si = ±1, but here, we equivalently choose Si = 0, 1).
They are placed on a lattice and interact with their nearest
neighbors with an interaction constant J > 0 that tends to
align them. In the presence of a space-dependent magnetic
field hi, the energy of the system is

E = −J
∑

i

∑
j∈∂i

SiS j −
∑

i

hiSi, (6)

where ∂i contains the nearest neighbors of site i.
The first step to map our reaction-diffusion automaton is to

design a multiple-spin Ising model, similarly to that in [18].
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To each site i of the lattice, we associate ns spin types corre-
sponding to the different species a, b, . . . . Si becomes a vector
Si = (sia, sib, . . . ) of components 0 or 1. The concentration of
the SRDA now corresponds to the average value of the spin,
called the magnetization. Each spin type interacts with all
other spin types including itself. We thus rewrite J as a matrix
J̄ whose coefficient Jab represents the interactions between a
spins and b spins. To mimic the gradient effect on the different
genes, hi is supposed to be coupled differently to each spin
type and we introduce a coupling vector K = (ka, kb, . . . ),
where ka represents the effect of hi on the a spins. Equation
(6) becomes

E = −
∑

i

∑
j∈∂i

Sj
t J̄Si −

∑
i

hiKSi. (7)

To get patterns typical of reaction diffusion, we also in-
troduce a spin-type-dependent interaction range ra. An a spin
now acts on its neighboring sites up to a distance ra, including
itself. We denote by ∂ia this set of spins (e.g., ∂ia = [i − ra :
i + ra] on a 1D chain). The interaction parameters are rescaled
using the volume V∂ia , which is the number of sites in ∂ia

(e.g., V∂ia = 2ra + 1 in one dimension). We notice that only
the average values Jab+Jba

2 are important in the determination of
the equilibrium state of Eq. (7), obtained at finite temperature
T �= 0 using, e.g., the Metropolis algorithm [21]. However,
the matrix J̄ needs to be effectively asymmetric to reproduce
the asymmetry of the reaction constants φab leading to the
formation of interesting patterns. We thus take a step further
from [18] by implementing parallel dynamics in our model,
similarly to kinetic asymmetric Ising models [22,23], making
it a nonequilibrium model.

At each time step t , we calculate an effective field heff
ia (t )

influencing the sia spin:

heff
ia (t ) =

∑
b

⎛
⎝ Jba

V∂ib

∑
j∈∂ib

s jb(t )

⎞
⎠ + kahi − h0, (8)

where we introduce h0, a homogeneous external gradient.

TABLE I. Correspondence between parameters of the models.

SRDA ADIM

Diffusion constant σ r Interaction range
Reaction constant φ̄ J̄ Interaction strength
Reaction constant

with gradient
κ k Coupling with linear field

Activation threshold θ0 h0 Homogeneous external field
Degradation ε = 0.5
Noise T = 1 Temperature

All spins are then updated to give the configuration at time
t + 1 according to the following probability distribution:

P(sia(t + 1)) = e−βheff
ia (t )sia(t+1)

2 cosh
(
βheff

ia (t )
) , (9)

where β = 1/T . The temperature T accounts for the noisiness
of the system.

V. MODEL COMPARISON

The SRDA and ADIM are both governed by Markovian
dynamics and share important features: asymmetry of the
coupling matrices and locality of the interactions (see Ap-
pendix A for the detailed numerical implementation). In the
ADIM, however, local reactions and transport are merged in
nearest-neighbor interactions. Still, many parameters appear
to have similar roles: J̄ and 
, k and κ , h0 and θ0, and r and
σ , as presented in Table I. Two parameters are nevertheless
model specific: the degradation rate ε and the temperature T .

We wish to investigate the similarity in patterns that can be
obtained by confronting the two models. We study the case
ns = 1, which corresponds to a classical Ising model under
a space-dependent external field. We fix T = 1 in the ADIM
since this temperature gives the most direct equivalence with
Eq. (2) (see Appendix B). For the sake of simplicity, we fix
ra = σa = 1 so that the only interaction is between nearest
neighbors and we choose the space-dependent external field
to be linear. In this condition, we show by a calculation using

FIG. 2. Comparison of models for ns = 1, i.e., interaction networks as represented in insets in (a) and (d) with two parameters: self-
regulation φaa/Jaa and external gradient effect κa/ka. Other parameters are fixed: θ0 = h0 = 1, σa = ra = 1, ε = 0.5, and T = 1. (a) Mean
concentration 〈c〉 and (d) magnetization M in the parameter space (φaa, κa ) for the SRDA and (Jaa, ka) for the ADIM. (b, c) Spatial patterns
obtained in both models for four sets of parameters representing the possible types of patterns (�, fully activated; �, gradientlike; �, fully
inhibited; �, sharp boundary). (d) Spatial parameters (diffusion coefficient σa and interaction range ra) effect on the sharpness of the � pattern.

042111-3



MERLE, MESSIO, AND MOZZICONACCI PHYSICAL REVIEW E 100, 042111 (2019)

FIG. 3. 2D ADIM simulations on a 128 × 128 periodic square
lattice with h0 = 1, ra = 1, rb = 5, Jaa = 13, Jbb = 0, Jab and Jba

varying, and T = 1. Dark red (dark gray) corresponds to sa = 1
and pink (light gray) to sa = 0. A variety of Turing-like patterns is
observed including “maze” (�) and “bubbles” (•).

the homogeneous solutions in mean-field approximation (see
Appendix B) that the degradation rate that gives the best
mapping between interaction parameters in both models is
εopt = 0.5.

Figures 2(a)–2(d) present the mean concentration 〈c∗〉 and
the magnetization M of the patterns obtained by the SRDA
and ADIM in the planes (φaa, κa) and (Jaa, ka) with h0 =
θ0 = 1. They represent the fraction of time during which a
is being produced or spins sa are up, averaged over each
positions. For all probed regions of the parameter space, very
similar patterns are observed for both the ADIM and the
SRDA. Two broad zones of 〈c∗〉 = M = 1 and 〈c∗〉 = M = 0
correspond to full activation (Fig, 2, �) and full inhibition
(Fig. 2, �). The transition between theses two states can be
done either through the formation and displacement of a sharp
boundary (Fig. 2, �), corresponding to strong inhibition by
the external gradient and autoactivation, or by the appearance
and intensification of a smooth gradientlike pattern (Fig. 2,
�), corresponding to a gradient activation balanced by a null
or very low autoinhibition.

Yet, the sharpness of the � pattern is different in both
models. Intuitively this sharpness depends on the correlation
length of the system. The difference in patterns thus reflects
a quantitative difference between the roles of the diffusion
coefficient and the interaction range. Figure 2(e) represents
the evolution of the � pattern in SRDA and ADIM as a
function of respectively σa and ra. The maps confirm that σa

and ra are the spatial parameters that control the boundary
sharpness. In both models, increasing these parameters causes
an increase in the correlation lengths and thus a decrease of
the border sharpness. It is therefore possible to choose a value
for ra for which the slope exactly matches the slope obtained
for any given value of σa (see Appendix C for more discussion
on this matter).

VI. TURING PATTERNS IN THE ADIM

In light of these similarities between SRDA and ADIM
in the case ns = 1, we now look at the case ns = 2 with
no external gradient and try to reproduce Turing patterns.
To investigate a richer variety of Turing patterns, we also
switch to a two-dimensional (2D) case with periodic boundary
conditions. A main feature enabling Turing instabilities in
reaction-diffusion models is the difference of diffusion coef-
ficients for both species. Likewise, the ratio rb/ra, where a is
the activator spin type and b is the inhibitor spin type, needs to
be large enough to form patterns of different spin orientations.
2D patterns as a function of the interactions Jab > 0 and
Jba < 0 are presented in Fig. 3(a) for ra = 1 and rb = 5,
on a 128 × 128 square lattice. A subtle trade-off between
the values of the interactions gives rise to different types of
patterns, including “maze” (�) and “bubbles” (•). These two
patterns are used for further analysis in the next part.

To quantitatively study the 2D patterns obtained with our
ADIM, we compute the discrete 2D Fourier transform (FT) of
sa on our periodic square lattice of linear size n:

s̃a(qx, qy) =
n−1∑
x=0

n−1∑
y=0

e− 2iπ
n (xqx+yqy )sa(x, y). (10)

These patterns have one characteristic length resulting in a
circular distribution in the reciprocal space [Fig. 4(a),(c)-ii].
The FT gives two quantities: the pseudo-order parameter �

and the characteristic length L�. We average s̃a over circles
of radius q to get the mean intensity λ(q) and define the order
parameter � = λ(qpeak) as the peak value of these curves. The
corresponding characteristic length in the direct space is L� =

1
qpeak

. For illustration, Fig. 4 shows the λ(q) curves at different
temperatures for both maze and bubbles patterns from Fig 2.

We first investigate the role of rb in the emergence of
patterns for a fixed ra = 1. Figure 5(a) shows the maze
pattern and its FT for different values of rb. While there
is no pattern for small values of rb, maze patterns appear
for higher values. Computing L�/ra for rb ranging from 1
to 25 we conclude that the maze pattern appears for rb � 3
[Fig. 5(b)]. The characteristic length of the pattern increases
linearly with rb with a coefficient close to 1. For higher
values of ra, L�/ra increases linearly with the ratio rb/ra with
the same coefficient. We conclude that if one takes ra as a
unit length, the behavior of adimensional quantities L�/ra

and rb/ra is independent of the lattice spacing. When the
lattice spacing becomes small compared to the characteristic
length ra we can refine the value of the ratio rb/ra for which
patterns appear. In this case we find that this value tends
towards 2.

We next investigate the effect of temperature on the sta-
bility of these patterns using the pseudo-order parameter
� defined above. In infinite-range interacting Ising models
at equilibrium, phase transitions between smectic, nematic,
or liquid phases can occur when T varies [24]. Here, the
various patterns do not break any symmetry and no such phase
transition can occur. Figure 6 shows � for different system
sizes and different temperatures. A dynamic crossover occurs
between a patterned and a disordered phase for both patterns,
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(a) (b)

(c) (d)

FIG. 4. (a, c) (i) Snapshots of patterns in 128 × 128 periodic square boxes for T = 0.5, 1, 2, 3 for respectively maze and bubbles patterns
introduced in main text [dark red (dark gray) corresponds to sa = 1 and pink (light gray) to sa = 0] and (ii) 2D Fourier transforms of these
patterns averaged on n = 100 independent simulations. (b, d) Mean value λ(q) of the FT over circles of radius q over different temperatures
between 0 and 3. The peak value of this distribution gives us the order parameter �. The corresponding length in direct space L� is the
characteristic length of the pattern.
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FIG. 5. (a) (i) 128 × 128 zoomed snapshots of the maze pattern obtained in simulations on 512 × 512 periodic square lattices with ra = 1
and rb = 1, 5, 10, 20. Dark red (dark gray) corresponds to sa = 1 and pink (light gray) to sa = 0. (ii) The corresponding 2D Fourier transforms
averaged over n = 20 independent simulations. (b) The value of the typical length L�/ra of the patterns as a function of the ratio rb/ra for
different values of ra.
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(b)(a)

T=0.50 T=1.00 T=2.00 T=3.00

FIG. 6. (a) Pseudo-order parameter � as a function of temperature for maze (�) and bubbles (•) patterns issued from Fig. 3, obtained
by averaging the FT over n = 100 independent simulations. � = f (T ) is computed for different system sizes. (b) 128 × 128 snapshots at
different temperatures of the corresponding patterns. Dark red (dark gray) corresponds to sa = 1 and pink (light gray) to sa = 0.

albeit at different temperatures. The crossovers do not depend
on the lattice size, thus excluding potential finite size effects.

In the Ising model, the temperature reflects thermal noise,
whereas in a reaction-diffusion system, noise is related to the
number of molecules: a lower number leads to larger relative
fluctuations in the local concentrations. Molecular dynamics
studies point out the importance of fluctuations for the emer-
gence of Turing patterns [25]. Our results on the stability of
patterns with temperature suggest on the other hand that if
the number of molecules becomes too small (corresponding
to high temperatures, and hence high fluctuations) the patterns
could disappear.

VII. CONCLUSION

To summarize, using an embryogenesis-inspired mapping
between an Ising model and a reaction-diffusion automa-
ton, we have constructed the ADIM, a finite-range out-of-
equilibrium Ising model that can give rise to Turing patterns
with a typical length scale of several lattice spacings. Such
Turing patterns had previously only been observed in infinite-
range Ising models. It is worth noticing that our variant of
the Ising model can be seen as a cellular automaton featuring
rules similar to the ones which can be derived from reaction-
diffusion equations (see for instance [26]). Our approach
shows that a discrete toy model with different ranges of inter-
action and an asymmetry in the interaction coupling between
species is sufficient to produce Turing-like patterns.

APPENDIX A: NUMERICAL METHODS

ADIM. The system is composed of NS sites. On each site is
associated ns spin types. Parallel dynamics is implemented as
follows.

We initialize the system at t = 0 by randomly attributing a
value 0 or 1 at each of the ns × NS spins. At each time step t
we calculate the effective field heff

ia (t ) for each a-type spin on

each site i:

heff
ia (t ) =

∑
b

⎛
⎝ Jba

V∂ib

∑
j∈∂ib

s jb(t )

⎞
⎠ + kahi − h0, (A1)

where Jba is the action of b spins on a spins, hi the value
of the space-dependent external magnetic field at site i, ka

the coupling between h and a-type spins, and h0 a global
external field. ∂ib designates the nearest neighbors of spin sib,
defined by the interaction range rb for b-spin type such as
∂ib = { j, | j − i| < rb} and V∂ib = Card(∂ib).

We calculate the corresponding Boltzmann probabilities:

P(sia(t + 1) = 1) = eβheff
ia (t )

2 cosh
(
βheff

ia (t )
) , (A2)

where β = T −1 is the inverse temperature.
In one dimensions, the simulation runs at a fixed temper-

ature T . In two dimensions, the stationary state is calculated
using a simulated annealing (SA) to avoid freezing in config-
urations with long relaxation times. The cooling strategy is
exponential:

TSA(t ) = T0 × at (A3)

with 0 < a < 1.
The spins at time t + 1 are simultaneously chosen accord-

ing to these probabilities. The operation is repeated during nt

time steps, and in case of SA, a is chosen so that TSA(nt ) = T ,

i.e., a = ( T
T0

)n−1
t . Then the simulation is pursued and recorded

for nrec time steps. Finally 〈sia〉 is obtained by averaging
over the nrec recorded configurations. Typically, nt = 250 and
nrec = 50.

SRDA. The system is composed of NS sites at which is
associated ns species concentrations ca. Each concentration
is randomly chosen at t = 0 between 0 and 1. Each time
step is subdivided into three events as presented in the main
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text. This is repeated for nt time steps to reach the stationary
state. Then each concentration is normalized by cmax to obtain
0 < c∗

ia < 1. Typically, nt = 200.
In both models, the boundary conditions are set to reflect-

ing in the 1D case to have gradient-dependent patterns. In the
2D ADIM, we choose periodic boundary conditions.

APPENDIX B: DETERMINATION OF εopt USING
HOMOGENEOUS STATIONARY SOLUTIONS

We use here the homogeneous steady-state solutions in
mean-field approximation for both models to establish a re-
lationship between parameters in the case of one species a
(ns = 1), and more specifically to find the optimal value εopt

for which both models lead to the same patterns for equal
network parameters.

ADIM. The mean-field approximation for the ADIM is [see
Eq. (9)]

〈sia〉 = 1

1 + eβ〈heff
ia 〉 . (B1)

For only one spin type a (ns = 1),

〈sia〉 = 1

1 + e
β

[
Jaa

V∂ia

∑
j∈∂ia

〈s ja〉+kahi−h0

] . (B2)

Since we consider a homogeneous state and we are in one
dimension,

∑
j∈∂ia

〈s ja〉 = (2ra + 1)〈sia〉 and V∂ia = 2ra + 1,
leading to

〈sia〉 = 1

1 + eβ[Jaa〈sia〉+kahi−h0]
. (B3)

SRDA. In the mean-field approximation for the SRDA
model, we average over several realizations of time evolution
for each time step. Thus, we replace the probabilistic incre-
ment of the production step [Eq. (2)] by a deterministic one:

cia(t ′) = cia(t ) + 1

1 + e−ua (ci,gi )
. (B4)

By combining this new equation to the two other events,
diffusion [Eq. (4)] and degradation [Eq. (5)], we get

cia(t +1) = ε

⎡
⎣ ∑

| j−i|<2σa

Gσa (| j−i|)
[

c ja(t ) + 1

1 + e−ua (c j )

]⎤
⎦.

(B5)

in the classical approach of reaction-diffusion using partial
differential equations, such as in Eq. (1), searching for a
homogeneous steady state equates to looking for the solution
of Ra(c, g) = 0 since ∂t ca = 0 (steady state) and ∇2ca = 0
(homogeneous). In our SRDA, the homogeneity translates in
∀ j c ja(t ) = cia(t ), and using the fact that

∑
r<2σ Gσ (r) = 1,

we obtain
∑

| j−i|<2σa

Gσa (| j − i|)
[

c ja(t ) + 1

1 + e−ua (c j )

]
= cia(t ′), (B6)

which leads to a simplification of Eq. (B5):

cia(t + 1) = ε

[
cia(t ) + 1

1 + e−ua (ci,gi )

]
. (B7)

Being at steady state cia(t + 1) = cia(t ), and using cmax =
ε

1−ε
, we retrieve c∗:

c∗
ia = 1

1 + e−ua (Ci )
. (B8)

For ns = 1,

c∗
ia = 1

1 + e
[
φaa

c∗ia (1−ε)

ε
+κagi−θ0

] . (B9)

Optimal mapping value of ε. Equations (B9) and (B1) are
combined to search for the solution of 〈sia〉 = c∗

ia, leading to

β[Jaa〈s ja〉 + kahi − h0] = φaaε

1 − ε
c∗

ia + κagi − θ0. (B10)

For β = T −1 = 1, identical network parameters (Jaa =
φaa, ka = κa, and h0 = θ0), and under the same external
gradient (hi = gi), we get

〈sia〉 = ε

1 − ε
c∗

ia. (B11)

(a) (b) (c) (d)

FIG. 7. Correspondence between ra using the sharp-boundary pattern introduced in the main text (see Fig. 2). (a) Increasing the spatial
parameters σa and ra decreases the boundary sharpness. (b) Quantitative evaluation of the sharpness by fitting the boundary interface by an
affine function. (c) σa (blue circle) and ra (red square) as a function of the measured sharpness are fitted by power laws y = a

xb . For any given
sharpness, σ fit

a and rfit
a can be calculated using these fits. (d) rfit

a as a function of σ fit
a .
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Finally, we obtain the optimal degradation parameter ε for
which both models give an equivalent homogeneous steady
state for equivalent parameters, as presented in the results of
the main content of this paper (Fig. 2):

ε = 0.5. (B12)

APPENDIX C: EQUIVALENCE BETWEEN σa AND ra

To evaluate the correspondence between σa in the SRDA
and ra in the ADIM we use the sharp boundary pattern
presented in the main text for ns = 1 under a linear exter-

nal gradient. This pattern appears when the spin or gene
activates itself but is repressed by the gradient (Jaa = 7 and
ka = −5). As seen in the main text and shown again in
Fig. 7(a), as σa or ra increases, the sharpness of the bound-
ary decreases. We first measure this sharpness by fitting
the boundary interface (0.2 < c∗

a, 〈sa〉 < 0.8) by an affine
function of the position [Fig. 7(b)]. The slope defines the
sharpness of the boundary. Both the diffusion constant σa

and the interaction range ra as a function of sharpness are
fitted by power laws y = a

xb [Fig. 7(c)]. From these fits we
calculated σ fit

a and rfit
a for any given sharpness and plotting rfit

a
as a function of σ fit

a gives us an equivalence between ra and σa

[Fig. 7(d)].
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