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Geometry dependence in linear interface growth
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The effect of geometry in the statistics of nonlinear universality classes for interface growth has been widely
investigated in recent years, and it is well known to yield a split of them into subclasses. In this work, we
investigate this for the linear classes of Edwards-Wilkinson and of Mullins-Herring in one and two dimensions.
From comparison of analytical results with extensive numerical simulations of several discrete models belonging
to these classes, as well as numerical integrations of the growth equations on substrates of fixed size (flat
geometry) or expanding linearly in time (radial geometry), we verify that the height distributions (HDs) and
the spatial and the temporal covariances are universal but geometry-dependent. In fact, the HDs are always
Gaussian, and, when defined in terms of the so-called “KPZ ansatz” [h � v∞t + (�t )βχ ], their probability
density functions P(χ ) have mean null, so that all their cumulants are null, except by their variances, which
assume different values in the flat and radial cases. The shape of the (rescaled) covariance curves is analyzed in
detail and compared with some existing analytical results for them. Overall, these results demonstrate that the
splitting of such university classes is quite general, being not restricted to the nonlinear ones.
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I. INTRODUCTION

Interface growth is ubiquitous in nature. The complex
morphologies formed in this far from equilibrium process
have scales ranging from nano- (e.g., in thin film deposition
[1,2]) to dozen of meters (e.g., in forest fire fronts), pass-
ing through intermediate scales in growth of cell colonies
[3], cracks [4], ice deposits [5], paper combustion [6], etc.
Despite the very different scales and underlying microscopic
processes determining the evolution of such interfaces, they
all are expected to present dynamic scaling properties—with
their squared width w2 increasing in time as w2 ∼ t2β , while
their correlation length ξ follows ξ ∼ t1/z—which allow us
to group them in a few number of universality classes (UCs).
The most important of these ones are the Kardar-Parisi-Zhang
(KPZ) [7], Villain-Lai-Das Sarma (VLDS) [8,9], Edwards-
Wilkinson (EW) [10], and Mullins-Herring (MH) [11,12] UCs
(see, e.g., Refs. [13,14] for details).

The great majority of studies of growing interfaces in
the past decades have focused on calculating the scaling
exponents (β, z, and others), in order to determine their UC
[13,14]. In the past years, however, attention has turned to
more fundamental quantities such as the (one-point) height
distributions (HDs) and (two-point) correlators, which have
revealed an interesting dependence of the UCs on the geom-
etry of the system. More specifically, the height h at a given
point of a growing interface is expected to evolve according
to the “KPZ ansatz” [15,16]

h � v∞t + (�t )βχ, (1)
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where v∞ is the asymptotic growth velocity of the interface, �
sets the interface width amplitude, and χ is a random variable
which fluctuates according to universal HDs [P(χ )]. The two-
point correlation functions can be defined in general as

C(r, t, t0) = 〈h̃(�x + �r, t )h̃(�x, t0)〉, (2)

where h̃ ≡ h − 〈h〉. For equal times, one has the spatial covari-
ance CS (r, t ) ≡ C(r, t, t0 = t ) � w2F (r/ξ ), while for a sin-
gle point one has the temporal covariance CT (t, t0) ≡ C(r =
0, t, t0) � √

w2(t )w2(t0)A(t/t0), where F (x) and A(y) are
expected to be universal scaling functions. A number of recent
works have revealed that P(χ ), as well as F (x) and A(y),
assume different forms for flat and curved geometries. For
instance, such geometry dependence was initially observed in
the solution of a one-dimensional (1D) model [16] belonging
to the nonlinear KPZ UC, and, since then, it has been widely
confirmed theoretically [17–19], numerically [20–24], and ex-
perimentally [25,26] for other 1D KPZ systems. Generaliza-
tions of this scenario for 1D circular KPZ interfaces ingrowing
[27,28] or evolving out of the plane [29] have been also
investigated more recently. Furthermore, a similar splitting of
P(χ ), F (x), and A(y) have been numerically observed in the
two-dimensional (2D) KPZ class [30–33], as well as in the
nonlinear VLDS UC in both one and two dimensions [34].
Thus, nowadays it is well established that nonlinear UCs for
interface growth split into subclasses depending on whether
the interfaces are flat or curved.

For the linear EW and MH UCs, notwithstanding, a sys-
tematic study of such splitting is lacking in the literature. For
instance, the amplitudes of w2—where a difference in HDs for
these UCs might arise—have been exactly calculated from the
solution of the EW and MH equations [Eqs. (3) and (4) given
below] in the flat case in one dimension (see, e.g., Ref. [14])
and in 1D circular geometry [Eq. (A1) in Appendix A] for
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the EW class [35,36]. However, as far as we know, for the 1D
circular MH class, as well as for both classes and geometries
in two dimensions they have never been reported elsewhere.
For the spatial covariances, approximated analytical results
exist for their behavior in the large r limit for the flat geometry
in both one and two dimensions [37], but for the radial cases
it seems that neither analytical predictions nor numerical
analysis exist for F (x). For the temporal covariances, there
are analytical calculations for their general behavior in the flat
case [38], as well as for 1D circular interfaces [35], whereas
in the 2D radial case only the form of the asymptotic decay
[A(y) ∼ y−λ̄] is known analytically [35]. However, numerical
confirmations of the universality of such behaviors, as well as
of most of the other analytical results mentioned above, seem
to be absent in the literature.

Hence, the aim of the present work is to gather the ex-
isting results for the statistics of linear interfaces together,
demonstrate their universality, and fill the several existing
gaps. Through this analysis, a throughout confirmation of
the existence of a geometry dependence in the linear UCs
is given. In order to do so, we investigate both analytically
and numerically several models belonging to the EW and
MH classes, on 1D and 2D substrates, in the flat and radial
geometries.

The rest of the paper is organized as follows. In Sec. II
we present the models and numerical methods employed to
investigate them. In Secs. III, IV, and V results for HDs and
spatial and temporal covariances are reported, respectively.
Our conclusions and final discussions are summarized in
Sec. VI. In Appendix A the analytical solution of the radial
linear equations is devised. A discussion of the inverse method
is provided in Appendix B.

II. MODELS AND NUMERICAL METHODS

Let us recall that in the continuum limit the dynamics of
interfaces belonging to the EW and MH classes are described
by the EW equation

∂h(�x, t )

∂t
= F + ν2∇2h + η(�x, t ) (3)

and the MH equation

∂h(�x, t )

∂t
= F − ν4∇4h + η(�x, t ), (4)

respectively, where F can be viewed as the net particle flux
per site, ν2 and ν4 are phenomenological parameters, and
η is a Gaussian white noise, with zero mean and correla-
tion 〈η(x, t )η(x′, t ′)〉 = 2Dδds (x − x′)δ(t − t ′), where ds is the
substrate dimension. In order to investigate them in radial
geometry, these equations must be rewritten in appropriate
coordinates [see Eq. (A1) in Appendix A for the 1D case]. We
can numerically integrate Eqs. (3) and (4) by defining them on
discretized substrates, which will be an array of L sites in one
dimension and a rectangular lattice with Lx × Ly sites in two
dimensions. Thenceforth, we make the height at a given site �x
to evolve, following the Euler method, as [39]

h�x(t + δt ) = h�x(t ) + (δt )νzL[h�x(t )] +
√

24(δt )DR, (5)

TABLE I. Parameters used in the numerical integration of the
EW and MH equations in both one and two dimensions. We have set
F = 0 in all cases.

EWI EWII MHI MHII

1D: νz 1 6 1 6
1D: D 0.25 1 0.25 1
2D: νz 1 2.5 1 2.5
2D: D 1 1 1 1

where z = 2 (EW) or 4 (MH), and we have made F = 0,
without any loss of generality. The functions L[h�x(t )] are
given, in two dimensions, by

LEW ≡ hi+1, j + hi−1, j + hi, j+1 + hi, j−1 − 4hi, j

(�x)2(�y)2
,

LMH ≡ −[hi+2, j + hi−2, j − 4hi+1, j − 4hi−1, j + hi, j+2

+ hi, j−2 − 4hi, j+1 − 4hi, j−1 + 12hi, j]/[(�x)4(�y)4],

which are discretized approximations for ∇2hi, j and ∇4hi, j ,
respectively. The simplification of these expressions for one
dimension is straightforward. �x and �y can be set to 1,
without any loss of generality. R is a random variable sorted
from a uniform distribution in the interval (−1/2, 1/2). More-
over, we use δt = 0.001 in one dimension and δt = 0.01 in
two dimensions and two set of parameters (νz, D), which are
displayed in Table I. For the sake of simplicity, hereafter, we
will refer to them as the EWI , EWII , MHI , and MHII models.

The discrete models investigated in the EW class are the
symmetric single step (SSS) [40] and the Family [41] models,
while in the MH class two versions of the large curvature
(LC) model [42,43] are analyzed. In all models, deposition
(and evaporation in the SSS model) occurs sequentially at
randomly chosen sites. The growth rules at a given site, say, i,
are as follows:

(1) SSS: hi → hi + 2 if �h ≡ (h j − hi ) = 1 ∀ nearest
neighbors (NNs) j, or hi → hi − 2 if �h = −1 ∀ NNs j, or
the deposition/evaporation attempt is rejected.

(2) Family: hi → hi + 1 if hi � h j ∀ NNs j. Otherwise,
the NN j with minimal height is taken and h j → h j + 1. A
random draw resolves possible ties.

(3) LC1 [42]: The local curvature Ck [e.g., Ck ≡ hk+1 +
hk−1 − 2hk in one dimension] is calculated for k = i and
k = j ∀ NNs j and then hi → hi + 1 if Ci � Cj ∀ NNs j.
Otherwise, the NN j with maximal curvature is taken and
h j → h j + 1. A random draw resolves possible ties.

(4) LC2 [43]: The growth rule is identical to LC1, but
instead of sorting a random site i, supposing that the sites
live between the lattice vertices, we sort a random vertex.
Therefore, in one dimension we have to compare Ck only for
two sites (k = i and k = i + 1). Similarly, in two dimensions
we look at the four sites around a given vertex.

To enable uniform aggregation and evaporation in the SSS
model, we start the growth with a checkerboard initial condi-
tion, so that sites with height h(t = 0) = −1/2 are surrounded
by NN sites with h(t = 0) = 1/2 and vice versa. For the
other models one simply makes hi(t = 0) = 0 ∀ i. The time
is defined so that we attempt to deposit one monolayer in a
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time unity. Hence, for a substrate of fixed size L0 one has
�t = 1/L0. Since all deposition attempts are accepted in the
Family and LC models, their interfaces have mean heights
increasing deterministically as 〈h〉 = t , so that v∞ = 1 [in
Eq. (1)] for these models. On the other hand, in the SSS model
and integrations of the linear equations, the mean height of a
given interface stochastically fluctuates around zero, without
any tendency to increase or decrease in time, leading to 〈h〉 =
0 and, so, v∞ = 0. For all models, one may conclude also that
〈χ〉 = 0 [in Eq. (1)].

In the form just described, the models and integrations of
the growth equations yield asymptotically flat interfaces and,
so, the flat geometry. As demonstrated in a number of recent
works on nonlinear interface growth [28,33,34,44] and con-
firmed in the following for linear ones, a simple way to inves-
tigate these systems in the radial geometry is by considering
their growth on substrates whose size enlarges stochastically
in time, in each direction, as L(t ) = L0 + ωt , where L0 is
the initial size and ω is the enlargement rate. To do so, we
randomly mix the growth rules defined above (occurring with
probability Pg(t ) = N (t )/[N (t ) + ωds]) with the substrate en-
largement [with probability Pω(t ) = ωds/(N (t ) + ωds)]. Here
N = L in one dimension and N = LxLy in two dimensions.
The enlargement is implemented by randomly choosing a
column (say, i) and duplicating it. Namely, a new column with
height hi is created between i and the older i + 1 one. Each
event increases the time by �t = 1/(N + ωds). For the SSS
model, one has to duplicate a pair of neighboring columns in
order to not violate the single step restriction |�h| = 1 and,
then, ω is changed to ω/2 in the expressions above. Note that
in two dimensions we have 〈Lx〉 = 〈Ly〉, so that on average
one has square lattices expanding linearly in time. We remark
that with such definitions for the probabilities and �t , one still
has 〈h〉 = t for the Family and LC models and 〈h〉 = 0 for
the other ones. Thence, independently of the geometry, the
models investigated here have 〈χ〉 = 0 and v∞ = 1 (Family
and LC) or v∞ = 0 (the other models).

As we have demonstrated for KPZ systems [28,29,33],
large L0’s introduce crossover effects in expanding systems,
from the flat to the truly asymptotic radial statistics, and this
may hamper the analysis of the last one. So, in order to avoid
undesired transients, here we will use L0 = 4 in all simula-
tions for enlarging substrates. Moreover, it is well known from
previous studies that no quantity is affected in the asymptotic
regime by the rate ω, at least when the substrate expansion
is linear in time [29], which is the case here. In fact, we have
confirmed that all results presented in the following are indeed
ω-independent, and, then, only data for ω = 12 and ω = 2
will be shown for one and two dimensions, respectively. For
fixed substrate sizes (ω = 0), we will consider L = L0 up to
217 for the discrete models and 213 for the integrations in one
dimension; and L up to 210 for all cases in two dimensions.
At least ∼107 substrate sites are considered in the statistics for
each system in a given time.

III. HEIGHT FLUCTUATIONS IN LINEAR GROWTH

In this section we focus on the behavior of the asymptotic
height distributions (HDs), during the growth regime, ana-
lyzed in the light of the KPZ ansatz [Eq. (1)]. Let us remark

that for the EW (z = 2) and MH (z = 4) classes the squared
interface width behaves as w2 � (D/ν1−2β

z )bt2β [14], where
b is expected to be a universal constant. Meanwhile, from
Eq. (1) one has w2 � �2β〈χ2〉ct

2β , so that one may identify
b = 〈χ2〉c and

� =
(

D

ν
1−2β
z

) 1
2β

, (6)

where 2β = 1 − ds/z, while the dynamic exponent is always
z = 2 for EW and z = 4 for the MH class, regardless of the
substrate dimension ds [13,14]. Since the EW [Eq. (3)] and
MH [Eq. (4)] equations are linear, the HDs in these classes
are Gaussian, in both one and two dimensions. Thereby, the
single non-null cumulant of P(χ ) is its variance 〈χ2〉c, once
as noted above 〈χ〉 = 0, and 〈χn〉c = 0 for n > 2 for Gaussian
distributions. So, any difference between HDs for flat and ra-
dial geometries might appear in 〈χ2〉c. This contrasts with the
nonlinear classes, where the full probability density functions
P(χ ) are different.

A. Results for 1D interfaces

The exact solution of the 1D EW equation on a

flat substrate yields w2 = ( D√
ν2

)[
√

2�(1/2)
π

]t1/2 (see, e.g.,
Refs. [14,45]), where �(x) is the gamma function. There-
fore, one may identify β = 1/4, � = D2/ν2 [in agreement

with Eq. (6)] and 〈χ2〉 f
c,EW,1D = [

√
2�(1/2)

π
] � 0.79788. On the

other hand, the solution of the radial 1D EW equation gives
w2 = ( D√

ν2
)
√

π
2 t1/2 [35,36], showing that the variance of the

HDs changes to 〈χ2〉r
c,EW,1D = √

π/2 � 1.25331, while the
other quantities are still the same. For the 1D MH equation
on flat substrates, it is known that w2=( D

ν
1/4
4

)[ 23/4�(1/4)
3π

]t3/4

[14,45], leading to β = 3/8, � = (D4/ν4)1/3 [which is again
consistent with Eq. (6)] and 〈χ2〉 f

c,MH,1D = [ 23/4�(1/4)
3π

] �
0.64697. For the radial 1D MH equation, notwithstanding, al-
though its solution has been discussed in some works [46,47],
to the best of our knowledge the amplitude of w2 has not
been reported elsewhere. So we solve this equation here (see
Appendix A) and find that 〈χ2〉r

c,MH,1D = π/[541/4�(3/4)] ≈
0.94573, which confirms the geometry dependence in the
HDs’ variance also in this class.

In order to verify that our integration method yields reliable
results and, more important, that simulations on substrates
enlarging linearly in time are indeed consistent with the radial
geometry, we numerically integrate the 1D growth equations
[(3) and (4)]. Figures 1(a) and 1(b) show the extrapolation
of w2/(�t )2β for the long-time limit, for the EW and MH
classes, respectively, where results for both fixed-size and
enlarging substrates are shown. According to Eq. (1), the
extrapolated values are expected to converge to the values
of 〈χ2〉c reported above for each class and geometry. In fact,
in all cases the relative difference between the central values
from extrapolations and the exact ones does not surpass 2%,
and they always agree within the error bars.

Because of a mapping of the 1D SSS model on the kinetic
Ising model, one knows that it is described in the continuum
limit by the EW equation with ν2 = D = 1 [48] and, so,
� = D2/ν2 = 1. Moreover, by construction, for the Family

042107-3



I. S. S. CARRASCO AND T. J. OLIVEIRA PHYSICAL REVIEW E 100, 042107 (2019)

FIG. 1. Extrapolations to the long-time limit of the rescaled
squared interface widths for the different models and classes in one
dimension: w2/(�t )2β as a function of t−2β for the integrations of the
1D EW (a) and MH (b) equations, for two sets of parameters each,
and [w2/〈χ 2〉c]1/2β/t versus t−2β for the Family and SSS models
(c) and the LC models (d). In all cases, data for fixed-size (open,
black) and expanding (full symbols, red) substrates are shown. The
solid lines represent the linear fits used to perform the extrapolations.

and LC models one has D = 1/2 [14], whereas the parameters
νz, with z = 2, 4, are not exactly known for these models, and
the scarce numerical estimates of them are not so accurate. For
instance, the value ν4 ≈ 0.14 was found for the LC2 model
by comparing numerical results (for the flat case) with the
exact result above for w2 and the one for the average local
slope 〈(∇h)2〉 ≡ 〈(hi+1 − hi )2〉 [14]. Moreover, ν2 ∼ 0.8 was
obtained for the Family model with a pseudospectral inverse
method [49]. To the best of our knowledge, no estimate exists
for the LC1 model. We remark that, when applying inverse
methods [49,50], one usually supposes that a given model (or
a real surface) is described by a given growth equation and
try to find all its coefficients, e.g., F , νz, and D in EW and
MH equations. See Appendix B for details. Notwithstanding,
since one knows that F = 1 and D = 1/2 for the Family and
LC models, we can apply the inverse method more effectively
by letting such parameters fixed and calculating only νz. By
doing this, we have indeed found more accurate values, which
are summarized in Table II.

Now, we may verify the universality of the HDs’ variances,
e.g., by calculating � from the values of νz and D for the
discrete models (see Table II) and comparing them with the
values coming from extrapolations of [w2/〈χ2〉c]1/2β

/t for
t → ∞, using the exact values of 〈χ2〉c. This is done in
Figs. 1(c) and 1(d) for all discrete models. The values of �

estimated in this way are also displayed in Table II, which
agree with the expected ones (obtained from νz and D) within
the error bars, giving a compelling demonstration of the
universality of the HDs for 1D linear interfaces. It is worth
remarking that a given model is expected to have the same �

(actually, the same νz and D) regardless whether the substrate

TABLE II. The top three rows show coefficients νz from the
inverse method, with the exception of the exact value for the SSS
model, and the exact values for D for the discrete EW (left) and MH
(right) models in one dimension. The values of � obtained using
Eq. (6) are also shown. The bottom two rows are the extrapolated
values of � from Figs. 1(c) and 1(d) for flat and radial systems.

Family SSS LC1 LC2

νz 0.78(2) 1 0.61(2) 0.142(6)
D 1/2 1 1/2 1/2
� 0.321(8) 1 0.468(5) 0.761(9)
� (flat) 0.315(1) 1.003(4) 0.471(1) 0.765(1)
� (radial) 0.318(2) 1.01(1) 0.468(2) 0.763(2)

size is fixed or enlarging linearly in time [33]. An exception
to this occurs for circular interfaces evolving out of the plane,
when L is a nonlinear function of t [29], which is not the case
here. Therefore, the agreement of the �’s for flat and radial
systems observed in Table II is per se a confirmation of the
correctness (i.e., universality) of the values of 〈χ2〉c used in
the extrapolations. This fact will be very important in what
follows in the analysis of 2D interfaces.

B. Results for 2D interfaces

Although in two dimensions and higher dimensions we
can deal with the linear equations to obtain the exact scaling
exponents, as far as we know, it is not possible to perform the
summations appearing along the solutions (see Appendix A)
to calculate the exact values of w2’s amplitudes. In fact, it
seems that they have never appeared elsewhere. So we will
rely on numerical calculations of these amplitudes to verify
their dependence on the geometry, a task which has also not
been tackled so far.

Let us start recalling that ds = 2 is the upper critical
dimension for the EW class, meaning that β = 0 there, so that
the power-law scaling gives place to a logarithmic variation
of w2 in time. More specifically, w2 � (D/ν2)〈χ2〉c ln(ν2t/a)
[14], where a is the lattice parameter (a = 1 for the models
investigated here). Therefore, the ansatz as defined in Eq. (1)
cannot be applied in this case, once it yields w2 ∼ t2β . We
can, however, redefine it for the EW class in two dimensions
as

h � v∞t +
√

� ln(ν2t/a)χ, (7)

where again 〈χ〉 = 0 and 〈χn〉c = 0 for n > 2, and � = D/ν2.
Thereby, the HDs’ variances can be found by extrapolating
w2/[� ln(t )] for t → ∞. Figure 2(a) shows such extrapola-
tions for the integrations of the 2D EW equation on fixed-
size and expanding substrates. The values of 〈χ2〉c for each
condition are displayed in Table III, which agree quite well
for both set of parameters considered in the integrations
but are different for flat and expanding systems. We notice
that the extrapolation of w2/[� ln(ν2t )], including ν2, returns
essentially the same values from Table III, as expected.

For the MH class, the ansatz in Eq. (1) is still valid in two
dimensions, so we can proceed similarly to the 1D case, by
extrapolating w2/(�t )2β , to estimate 〈χ2〉c; see Fig. 2(b). The
obtained values from the integration of the 2D MH equation
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FIG. 2. Extrapolations to the long-time limit of rescaled squared
interface widths for the different models and classes in two dimen-
sions: (a) w2/[� ln(t )] against 1/ ln t for the integrations of the 2D
EW equation; (b) w2/(�t )2β as function of t−2β for the integrations
of the 2D MH equation; (c) w2/ ln(t ) versus 1/ ln t for the Family
and SSS models; and (d) w2/t2β versus t−� for the LC models. In all
cases, data for fixed-size (open, black) and expanding (full symbols,
red) substrates are shown. The solid lines represent the linear fits
used to perform the extrapolations. In panel (d) we use � = 2β in
all cases, with exception of the LC2 model on expanding substrates,
where � = 3β provides a better linearization.

are also summarized in Table III, and, again, they agree for
different parameters ν4 and D and depend on whether the
substrate size is fixed or enlarging. Thus, both EW and MH
classes display a geometry dependence in the HDs’ variances
also in two dimensions.

Unfortunately, since the 2D linear interfaces are still very
smooth (i.e., w2 is still very small) even at long deposition
times, the inverse method fails in returning reliable values for
νz and D. Hence, to verify the universality of the HDs we

TABLE III. The top two rows are the extrapolated values of the
HDs variances 〈χ 2〉c for the integration of the growth equations in
two dimensions from Figs. 2(a) and 2(b). The bottom part are the
extrapolated values of g2 (see definitions in the text) from Figs. 2(c)
and 2(d). The corresponding roughness amplitudes � for the discrete
models in EW (left) and MH (right) classes in two dimensions are
also shown.

EWI EWII MHI MHII

〈χ 2〉c (flat) 0.077(2) 0.075(3) 0.200(2) 0.198(2)
〈χ 2〉c (radial) 0.160(1) 0.161(2) 0.415(3) 0.416(3)

Family SSS LC1 LC2

g2 (flat) 0.055(1) 0.1497(4) 0.173(1) 0.237(1)
g2 (radial) 0.115(1) 0.322(4) 0.356(2) 0.500(1)
� (flat) 0.72(4) 1.97(8) 0.76(2) 1.42(4)
� (radial) 0.71(2) 2.00(5) 0.74(2) 1.45(3)
νz (flat) 0.69(4) 0.51(2) 0.176(5) 0.33(1)
νz (radial) 0.70(2) 0.50(1) 0.172(3) 0.340(9)

extrapolate g2 ≡ w2/ ln t (for EW) and g2 ≡ w2/t2β (for the
MH class) for t → ∞, as done in Figs. 2(c) and 2(d), respec-
tively. The extrapolated values for g2 are summarized in Ta-
ble III. According to the ansatz for the 2D EW class [Eq. (7)],
g2 → �〈χ2〉c, while from the “KPZ ansatz” [Eq. (1)], we
have g2 → �2β〈χ2〉c for the MH class. Therefore, from
the estimates of g2 and 〈χ2〉c in Table III, one may calculate
the amplitudes �. Such values, also shown in Table III, agree
quite well for both flat and radial geometries, for a given
model, providing a strong evidence of the universality of the
HDs’ variances also in two dimensions. Finally, we notice that
it is quite reasonable to expect that the noise amplitudes for
the discrete models do not change with dimension. Thence,
assuming that D = 1/2 for the Family and LC models, and
D = 1 for the SSS model, we obtain the values of νz displayed
in Table III, whose reliability will be confirmed in the next
section.

IV. SPATIAL COVARIANCES

Now we discuss the two-point height correlation
function, also called the spatial covariance CS (r, t ) =
〈h̃(�x + �r, t )h̃(�x, t )〉 � w2F (r/ξ (t )), focusing on the
dependence of the scaling function F (s) with geometry. Note
that CS (r = 0, t ) = w2, so that F (0) = 1, and, moreover, for
s ≡ r/ξ → 0 it is expected that F (s) = 1 − O(s2α ), where
α = βz is the roughness exponent. The behavior of F (s) in
the large s limit was approximately calculated for the EW and
MH classes for flat geometry in both one and two dimensions
and appears to be given in general by [37]

F (s) ∼ s−γ e−csδ

, (8)

where the exponents δ = z/(z − 1) and γ = 1 + δ/2 were
derived for one dimension [37]. In both dimensions, the con-
stants c are real (complex) for the EW (MH) class. Therefore,
in the MH class the correlations shall decay in a modulated
oscillatory way for large s. As long as we know, these results
have never been confronted with numerical simulations to
confirm their universality.

For the radial geometry in one dimension, the correlation
functions C(θ, θ ′, t ) ≡ 〈ρ(θ, t )ρ(θ ′, t )〉—where ρ ≡ r − 〈r〉
and r(θ, t ) denotes the interface radius at polar coordinate
θ—have been analytically investigated for the linear growth
equations in Ref. [51]. However, only approximations for
the case φ ≡ θ − θ ′ � 1 were derived, which are not so
useful here, once we want to compare the behavior of the
entire covariance curves. Moreover, some expressions for
the scaling function F (s) were calculated for the 1D linear
growth equations on growing domains [52], but the interfaces
analyzed there were not spatially homogeneous, due to the
nonperiodic boundary conditions considered, and, so, they
are not expected to describe the circular interfaces we are
interested in here. Some steps toward the calculation of the
correlation functions for the spherical EW and MH equations
were given in Ref. [53], but expressions for F (s) have not been
reported for this 2D radial geometry. Therefore, it seems that
the effect of geometry on F (s) for the linear UCs has never
been demonstrated.

Figures 3(a) [3(c)] and 3(b) [3(d)] present the rescaled
covariances respectively for EW and MH models in one
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FIG. 3. Rescaled spatial covariances for EW (left) and MH
(right) classes, in one dimension (top) and two dimensions (bottom).
In all cases, results for the integrations of the respective growth equa-
tions are represented by dashed lines, while the symbols are results
for the discrete models. In each panel, the top curves are data for
expanding substrates and the bottom ones for fixed-size substrates.
Different colors represent covariances measured at different times
in the ranges t ∈ [103, 105] in one dimension and t ∈ [102, 103] in
two dimensions. The solid (red) lines are fits of the numerical data
according to Eq. (8).

dimension (two dimensions). First, we may note the striking
collapse of curves for different models and deposition times
for a given geometry, which gives strong evidence of their
universality and also confirms the correctness of the coeffi-
cients νz estimated in the previous subsections for the discrete
models. Second, it is clear that two different scaling functions
F (s) exist for fixed-size (flat) and expanding substrates (radial
geometry). This is especially remarkable in the MH class,
where the modulated oscillatory behaviors observed in the
flat case give place to simple monotonic decays in the radial
geometry, in both one and two dimensions. We stress that this
very same behavior was found by us for the VLDS class [34],
which is the nonlinear counterpart of the MH class. Moreover,
while in the EW class the decay is always monotonic, it is
much slower in the radial case than in the flat one, a behavior
which is also observed in the KPZ class (see e.g., Ref. [33]),
the nonlinear counterpart of the EW class.

These similarities lead us immediately to inquire whether
the covariances for linear and nonlinear UCs might be the
same, whose answer is almost always negative. Indeed, in
Fig. 4 representative curves of the rescaled covariances for
the EW and MH classes in both dimensions and geometries
are compared with the same data for their nonlinear counter-
parts (KPZ and VLDS, respectively). The results for the 1D
KPZ class are the exact Airy1 and Airy2 covariances for flat
and radial systems, respectively [54–56]. In two dimensions,
the EW-KPZ and MH-VLDS curves are quite different. The
MH-VLDS curves also present noticeable differences in one
dimension, as well as the 1D EW-KPZ covariances for the
radial case. In the 1D flat case, however, the EW-KPZ curves

FIG. 4. Comparison of rescaled spatial covariances for EW and
KPZ [MH and VLDS] classes in one dimension (a) [(c)] and two
dimensions (b) [(d)]. In all cases, data for flat (open) and radial (full
symbols) geometries are shown. In panel (a) the symbol and color
schema is the same of panel (b), and the Airy1 (solid) and Airy2

(dashed) curves are the exact results for the 1D KPZ class. The insert
presents the data for the flat EW class in one dimension and the
Airy1 curve in a linear scale. Results for the 2D KPZ class were
extracted from Ref. [33], while the ones for the VLDS class came
from Ref. [34]. In all panels, the scaling parameter a was chosen to
make the curves pass at CS/w2 = 0.2 (dotted lines) when r/a = 1
for flat systems. For radial ones, the interceptions (at CS/w2 = 0.2)
are placed at r/a = 10, with the exception of panel (c), where it is at
r/a = 100.

present a remarkable collapse, as highlighted in the insert in
Fig. 4(a). This strongly suggests that both have the same spa-
tial covariance; namely, the EW covariance in one dimension
coincides with the Airy1 one.

Let us now verify how Eq. (8) compares with our data.
For the flat systems in one dimension, we keep the expo-
nents δ = z/(z − 1) and γ = 1 + δ/2 [37] fixed in Eq. (8)
and try to fit the covariances using this equation with c ∈
R and the missing amplitude as free parameters in EW
case. For the MH class, since c ∈ C [i.e., c = a + ib, so
that F (s) ∼ s−γ e−asδ

cos (bsδ + φ)] more parameters are used
to adjust the data. The resulting fittings are shown as red
curves in Figs. 3(a) and 3(b), which are quite reasonable for
r/(2νzt )1/z � 1. Interestingly, the covariances for both EW
and MH classes with radial geometry in one dimension are
also well fitted by Eq. (8), for large r, with c ∈ R, δ = z/(z −
1) and γ = 1, as can be seen in Figs. 3(a) and 3(b). This
confirms that the EW covariance for the radial case is different
from the Airy2, since the last one decays asymptotically as an
inverse square law [54]. By assuming that the exponents δ are
still the same in two dimensions (as suggested in Ref. [37]),
we find a good agreement between the covariances for the
integration of the 2D EW equation and Eq. (8) with γ ≈ 0.67
and γ ≈ 0.39 for the flat and radial geometry, respectively.
See Fig. 3(c). For the integration of 2D MH equation, good
fits are obtained in the flat case with γ ≈ 0 and c ∈ C, and in
the radial case with γ ≈ 0.61 and c ∈ R [see Fig. 3(d)].
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FIG. 5. Rescaled temporal covariances for EW (left) and MH
(right) classes, in one dimension (top) and two dimensions (bottom).
In all cases, the symbols are data for discrete models, being the
open (closed) ones for fixed-size (expanding) substrates. Different
colors represent different values for t0, considered in the ranges t0 ∈
[103, 104] in one dimension and t0 ∈ [102, 103] in two dimensions.
The continuous red lines are the exact analytical results, while the
blue one in panel (c) is the fit discussed in the text. The dashed lines
have the indicated slopes.

V. TEMPORAL COVARIANCE

Finally, we discuss the effect of geometry on
the temporal covariance CT (t, t0) = 〈h̃(x, t0)h̃(x, t )〉 �√

w2(t )w2(t0)A(t/t0). As demonstrated by Krug et al.
[38], for linear flat interfaces CT ∼ [(t + t0)2β − (t − t0)2β],
for t > t0 � 1 for both one and two dimensions [38],
so that A f (y) = (4y)−β [(y + 1)2β − (y − 1)2β ]. From
solutions of the radial EW and MH equations in one
dimension by Singha [35], one knows also that Ar

EW(y) =
2
√

2
π

y−1/4(1 + 1/y)−1/2 sin−1
√

1+1/y
2 and Ar

MH(y) =
2
√

2
π

y−3/8
2F1([ 1

4 , 1
4 ], [ 5

4 ]; 1+y−3

2 ), where 2F1([a, b], [c]; y) is
the hypergeometric function. Curiously, it seems that none of
these results have ever been compared with numerical data for
discrete models. This is done here in Figs. 5(a) (for EW) and
5(b) (for the MH class in one dinmension), where the collapse
of the rescaled covariance curves for different models and t0’s
with the analytical expressions above leave no room for doubt
about their universality. The same is observed for the flat MH
class in two dimensions [see Fig. 5(d)].

For the 2D radial geometry, as far as we know, there exist
no analytical expressions for these covariances. Moreover, for
the EW class in two dimensions, even in the flat case the
covariance behavior is not known analytically. Nonetheless,
similarly to what happens also in one dimension, they are
expected to decay asymptotically as A ∼ (t0/t )λ̄ with λ̄ =
β + ds/z in flat [57] and λ̄ = β in radial systems [35]. In fact,
for large t/t0 one observes exponents consistent with λ̄ = 1
for the flat EW class [see Fig. 5(c)] and λ̄ = β for the radial
MH class [Fig. 5(d)] in two dimensions. For the radial 2D

EW class λ̄ = β = 0, so that one could expect some kind of
logarithmic decay of A(y). Unfortunately and certainly due
to logarithmic corrections, in this case the collapse of data for
different models and t0’s is not as good as in the other systems.
One finds nevertheless that the average data are reasonably
well fitted by A(y) = a + b/(c + ln y), using a, b, and c as
fitting parameters. Despite this caveat, our results provide
strong evidence that these temporal covariances are universal
also in two dimensions.

VI. CONCLUSION

In summary, we have demonstrated through extensive nu-
merical analyses as well as some analytical calculations that
linear interfaces belonging to the EW and MH classes split
into subclasses depending on whether they are flat or radial.
This happens even at the upper critical dimension, as is the
case of EW in two dimensions. Although the one-point fluctu-
ations for all classes, subclasses, and dimensionalities inves-
tigated are Gaussian, the universal and geometry-dependent
character of the height distributions (HDs) manifests in their
different variances 〈χ2〉c. At this point, we remark that once
the 〈χ2〉c values for the EW and MH classes in a given geom-
etry and dimension have considerable differences, they might
serve as a useful indicator to decide between these classes
in interfaces with Gaussian statistics. By the same token, the
remarkable differences in the spatial and temporal covariances
and their universality (as demonstrated here for the linear
cases and elsewhere for the nonlinear ones) confirm that these
are very important quantities to determine the class of a given
evolving interface. An interesting exception to this is the spa-
tial covariance for the flat EW class in one dimension, which
displays an unanticipated agreement with the rescaled curve
for the flat 1D KPZ class, strongly indicating that 1D flat EW
interfaces are also described by the so-called Airy1 process.
This result, which is likely related to the fact that EW and
KPZ flat interfaces share the same statistics at the steady-state
regime in one dimension, will motivate theoretical studies to
verify the relevance of the KPZ nonlinearity in such quantity.
In the 2D case, which is the most important for applications,
the spatial covariances are always quite different. For instance,
HDs and spatial covariances have been employed in recent
works to confirm the universality class in thin film growth
by vapor deposition [58–61] and electrodeposition [62,63],
despite the lack of a confirmation of their universality in the
linear case so far. Therefore, our results are appealing from
this applied point of view. Furthermore, together with all
existing studies for the nonlinear case (already quoted in the
Introduction), the present work confirms the case for geometry
dependence in interface growth for the most important (KPZ,
VLDS, EW, and MH) classes.

Note added. Recently we became aware of the exact re-
sults g2 = D/(4πν2) for the 2D EW equation [64] and g2 =
6/(4π2) for the 2D SSS model [65], both in flat geometry.
This means that the exact variance for the HD of the flat
EW class in two dimensions is 〈χ2〉c = 1/(4π ) � 0.07958.
Moreover, one obtains for the 2D SSS model ν2 = π/6 �
0.52360, by assuming that D = 1, as confirmed in recent sim-
ulations [66]. We remark that while our numerical estimates
in Table III are slightly smaller than such exact values and in
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some cases do not agree with them within the error bars, their
relative differences are always �2%.
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APPENDIX A: DERIVATION OF THE VARIANCE OF THE
HDs IN RADIAL CASE FOR GENERAL z

The linear growth equation in polar coordinates, for gen-
eral even dynamic exponent z, in one dimension, is given by
[35]

∂r(θ, t )

∂t
= F − (−1)z/2 ν

rz

∂zr(θ, t )

∂θ z
+ η(θ, t ), (A1)

where 〈η(x, t )〉 = 0 and 〈η(θ, t )η(θ ′, t ′)〉 = (2D/r)δ(θ −
θ ′)δ(t − t ′). It can be linearized by considering that fluctu-
ations are small, so that rz can be replaced by 〈r〉z, with
〈r〉 = r0 + Ft , where r0 is the initial radius. This yields

∂r(θ, t )

∂t
= F − (−1)z/2 ν

(r0 + Ft )z

∂zr(θ, t )

∂θ z
+ η(θ, t ).

(A2)

The same approximation can be done in the noise correlation:
〈η(θ, t )η(θ ′, t ′)〉 = [2D/(r0 + Ft )]δ(θ − θ ′)δ(t − t ′). Now, if
r̃n(t ) and η̃n(t ) denote the Fourier transforms of r(θ, t ) and
η(θ, t ), respectively, we arrive at

∂ r̃n(t )

∂t
= − νnz

(r0 + Ft )z
r̃n(t ) + η̃n(t ), (A3)

from which the solution for δr̃n = r̃n − 〈r̃n〉 is obtained, being

δr̃n(t ) = eνnz/[(z−1)F (r0+Ft )z−1] ×
∫ t

0
dt ′e−νnz/[(z−1)F (r0+Ft ′ )z−1].

(A4)

The squared interface width is given by

w2(t ) = 1

2π

∫ 2π

0
〈δr(θ, t )〉 dθ =

∞∑
n=−∞

〈δr̃n(t )δr̃−n(t )〉,

(A5)

which yields

w2 = D

π

∞∑
n=−∞

e2νnz/[(z−1)F (r0+Ft )z−1]

×
∫ t

0
dt ′ e

−2νnz/[(z−1)F (r0+Ft ′ )z−1]

r0 + Ft ′ . (A6)

Now, assuming that r0 = 0, we find

w2 = D

Fπ

∫ t

0

dt ′

t ′

∞∑
n=−∞

e−[ n
σ (t ′ )

]z

, (A7)

where

σ (t ′) ≡ Ft
z−1

z

(
z − 1

2ν

)1/z t ′ z−1
z

(t z−1 − t ′z−1)1/z
. (A8)

Using the Poisson summation formula

Sz ≡
∞∑

n=−∞
e−( n

σ )z =
∞∑

k=−∞

∫ ∞

−∞
dxe−( x

σ )z−2π ikx, (A9)

where the integral can be exactly calculated for a given z
with the help of an algebra software, and it is related to
summations of hypergeometric functions. Assuming that the
main contribution for this sum come from k = 0, one finds
Sz = czσ , where cz is a constant (for instance, c2 = √

π , c4 =
π√

2�(3/4)
, c6 = 2π

3�(5/6) , and so on). Then, returning to Eq. (A7)
we obtain

w2(t ) =
(

D

ν1/z

)[
cz(z − 1)1/zIz

21/zπ

]
t

z−1
z , (A10)

where

Iz ≡
∫ t

0
dt ′ t ′−1/z

(t z−1 − t ′z−1)1/z
, (A11)

which can be again easily calculated, being I2 = π , I4 =√
2π/3, I6 = 2π/5, and so on. Finally, bearing in mind the

“KPZ ansatz” [Eq. (1)], we have that w2 = �2β〈χ2〉ct2β ,
where β = (z − 1)/2z is indeed the expected growth exponent
[13,14]. Moreover, we may identify �2β = D/ν1/z, meaning
that � = (Dz/ν)

1
z−1 and, thus, we have the variance of the HDs

〈χ2〉c = cz(z − 1)1/zIz

21/zπ
. (A12)

For the EW class (z = 2) this gives 〈χ2〉c = √
π/2 ≈

1.25331, as already reported in Refs. [35,36]. For the MH
class (z = 4), which is our main interest in this calculation,
one finds 〈χ2〉c = π/[541/4�(3/4)] ≈ 0.94573.

APPENDIX B: CALCULATION OF THE
PHENOMENOLOGICAL COEFFICIENTS WITH THE

INVERSE METHOD

Following Ref. [50], the inverse method consists in taking
a giving (initial) interface at time t and, starting from it,
evolving m different realizations of the growth during a time
interval �t . The average of these m interfaces generates a
height profile which minimizes the local effects of the noise,
while it keeps (and uncovers) the main features of the long
wavelength fluctuations. Therefore, the parameters of a can-
didate equation [e.g., F , νz, and D in Eqs. (3) and (4)] can be
obtained by minimizing the difference between the evolution
of the initial profile predicted by the given equation and the
average profile measured. Considering a time interval �t , the
evolution can be approximated by

〈�h(x, t )〉
�t

≈ �a · �H , (B1)

where the vector �a contains the set of phenomenological pa-
rameters of the equation and �H is the deterministic derivatives
related to the relaxation process. The parameters are obtained
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FIG. 6. Calculation of the νz for the different models in one-
dimension through the inverse method. The different curves repre-
sent data for �t = 2 (black), 4 (red), 8 (blue), 16 (green), 32 (purple),
and 64 (orange). The lines are a guide for the eye.

minimizing the cost function

S = 1

N

N∑
i=1

( 〈�hi〉
�t

− �a · �H
)2

. (B2)

Usually, this minimization would lead to a matrix equation.
However, since in our case the only unknown coefficient is νz,

the minimization of the previous equation leads to

νz =
∑N

i=1(〈�hi〉/�t − 1)∂z
x h∑N

i=1(∂z
xh)2

, (B3)

with z = 2 for EW and z = 4 for MH class.
Finally, since the function h presents spatial variations

in the scale of its discretization, the application of discrete
differentiations would lead to imprecise results. To avoid this
problem, the derivatives are applied in the Fourier space after
some coarse graining, which is performed by truncating wave-
lengths smaller than Lc. Note that, even though the parameters
in the linear classes does not change under renormalization, in
this discrete environment the result of differentiations changes
over the coarse-graining scale.

The parameters obtained through this slight variation of the
inverse method can be seen in Fig. 6. It shows the values of
νz as a function of Lc for different �t’s. For large enough Lc,
the values obtained by different �t’s agree, from which we
estimate the values of νz displayed in Table I. It is important
to notice that the faster is the increasing of the interface width,
the better are the estimates coming from the inverse method.
Since in two dimensions such an increase is very slow for
the systems investigated here, the application of the inverse
method is not worthwhile.
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