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Smooth transportation has drawn the attention of many researchers and practitioners in several fields. In the
present study, we propose a modified model of a totally asymmetric simple exclusion process (TASEP), which
includes multispecies of particles and takes into account the sequence in which the particles enter a lattice. We
investigate the dependence of the transportation time on this “entering sequence” and show that, for a given
collection of particles, group sequence in some cases minimizes the transportation time better than a random
sequence. We also introduce the “sorting cost” necessary to transform a random sequence into a group sequence
and show that when this is included a random sequence can become advantageous in some conditions. We obtain
these results not only from numerical simulations but also by theoretical analyses that generalize the simulation
results for some special cases.
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I. INTRODUCTION

Transportation systems are key topics in social or biolog-
ical systems [1]. In social systems, researchers have sought
to obtain smooth transportation in various situations, such as
production flow [2,3], vehicular traffic [4–7], and pedestrian
evacuation [8–11]. On the other hand, for biological systems,
intracellular transportation along microtubules has been vig-
orously investigated [12–14].

Among various transportation models, the asymmetric
simple exclusion process (ASEP), pioneered by MacDon-
ald and Gibbs [15,16], has attracted much attention. It is a
stochastic process on a one-dimensional lattice in which par-
ticles move asymmetrically. A derivative of ASEP, in which
particles are allowed to hop unidirectionally (left to right in the
present study) is called a totally asymmetric simple exclusion
process (TASEP). In the field of nonequilibrium statistical
mechanics, researchers have applied TASEP to various trans-
portation problems, such as molecular-motor traffic [17–20],
vehicular traffic [5–7,21–23], and the exclusive-queuing pro-
cess [24–26], especially since the TASEP with open boundary
conditions has been solved exactly [27–29].

In practice, researchers struggle to achieve smooth opera-
tion for various tasks, smooth logistics for various products,
and an effective evacuation method for pedestrians in various
situations, such as exit plans from sports stadiums and concert
venues. To attain smooth flow in such situations, we often con-
sider the sequence in which we perform tasks and pedestrians
move because this sequence may affect the total performance
of the systems. For example, slow pedestrians may block fast
ones at the back of a narrow street, which worsens pedestrian
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flow. To investigate how the above-mentioned sequences af-
fect pedestrian flow in various systems, herein, we propose a
modified TASEP comprising a finite number of multispecies
particles, in which the entering sequences of the particles are
considered.

In the proposed model, we consider the number of parti-
cles to be finite and study the transportation times of those
particles. Note that we do not consider the steady state of
the system itself. Minemura et al. [30] investigated the trans-
portation time for a hopping probability that depends on the
lot size, using the single-species TASEP with a finite number
of particles. Other related works [31–34] also adopted a
finite number of particles. In those models, however, particles
circulated through a system comprising a lattice and a particle
pool while the input or output rate was varied.

Additionally, the concept of multiple particles has al-
ready been extensively studied [35–58]. For example, second-
class particles were introduced in Refs. [35–45] and more
than two-species particles were introduced in Refs. [46–55].
However, most of these studies focused on mathematically
exact solutions to the systems under consideration by us-
ing matrix product Ansatz and did not much consider the
application of the studied model to real-world situations.
Furthermore, owing to their simplicity, periodic-boundary
conditions have been adopted in many studies [35,39,47,49–
51,53,54,56–58]. Studies on multispecies ASEP with open
boundaries and random updating were undertaken only re-
cently [37,40,41,44,45,52,55]; for example, Ref. [55] ob-
tained the exact phase diagram for a multispecies (more
than two-species) ASEP. The present investigation primarily
focuses on the problem of minimizing the transportation time,
adopting open-boundary conditions and parallel updating.
With the same boundary conditions and updating rules as
the present study, Ref. [59] adopted particles with disorder,
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FIG. 1. Schematic illustration of the original TASEP with open-
boundary conditions.

whereas jumping particles were introduced in Ref. [60]. Note
that majority related works considering multispecies particles
assume that swapping between different types of particles, i.e.,
bidirectional particle hopping, can occur, whereas our model
prohibits swapping [61].

In contrast, to the best of our knowledge, no TASEP inves-
tigations that focus on the entering sequence of the particles
(the key highlight of our model) have been reported thus far.
Herein we have considered two special types of sequences in
particular: “random sequences” and “group sequences,” and
we have compared the transportation times for these two types
of sequences. In association with the entering sequence, we
have introduced the sorting cost in our model. Without sorting,
particles are typically transported at random, i.e., in a random
sequence. Therefore, considering the cost of sorting particles
from a random sequence into a group sequence is useful. In
the present study, we define this sorting cost and compare the
results obtained with and without sorting.

We have determined the dependence of the transportation
time on the entering sequence of the particles from numerical
simulations based on our model. Moreover, we find that the
optimal sequence can vary, depending on choice of parameter
set, when the sorting cost is considered. In addition, we have
succeeded in obtaining mathematical proofs of the simulation
results for some special cases.

The remainder of the present study is organized as follows.
Section II describes the details of our proposed model and
some important parameters, modifying the original TASEP.
In Sec. III, we present and discuss the results of numerical
simulations using the modified TASEP. Section IV presents
theoretical analyses of the simulation results for some special
cases. The paper concludes in Sec. V.

II. MODEL DESCRIPTION

A. Original (single-species) TASEP
with open-boundary conditions

The original TASEP with open-boundary conditions is
defined as a one-dimensional lattice of L sites, labeled from
left to right i = 0, 1, . . . , L − 1 (see Fig. 1). Each site can be
either empty or occupied by a single particle. In the present
study, we adopt discrete time steps and parallel updating. In
parallel updating, the states of all the particles on the lattice
are determined simultaneously in the next time step. Notably,
we can use random updating, which is usually adopted in the
ASEP; however, we intentionally adopt parallel updating in
the present study (see the specific reasons in Ref. [62]). Parti-
cles enter the lattice from the left boundary with probability α

and leave the lattice from the right boundary with probability
β. In the bulk of the lattice, if the right-neighboring site
is empty, a particle hops to that site with probability p;

FIG. 2. Schematic illustration of TASEP with a finite number of
particles. This figure shows the case N = 12.

otherwise, it remains at its present site. Our modified TASEP
differs from this original one in the following four ways.

B. Difference 1: Finite number of particles

First, the number of particles N is finite, as illustrated in
Fig. 2. The system evolves until the N th particle leaves the
lattice. We define the transportation time T as the time gap
between the start of the simulation and the time when the N th
particle leaves the lattice.

C. Difference 2: Multispecies particles

Second, our model adopts multispecies particles, i.e., par-
ticles with different hopping probabilities, as illustrated in
Fig. 3. Specifically, each of the N particles is allocated to
one of S species, where 1 � S � N . Particles that belong to
each species s (s = 1, 2, . . . , S) all have the same hopping
probability p = ps (0 < ps � 1). Note that with S = 1 our
model reduces to the single-species TASEP, whereas with
S = N all particles have different hopping probabilities. The
fraction of all the N particles allocated to each species s is
defined as rs, obviously satisfying

∑S
s=1 rs = 1.

D. Difference 3: Consideration of entering sequence of particles

Third, we consider the sequence in which the particles
enter the lattice (i.e., the “entering sequence”), which is the
most important feature in our model. Specifically, particles
form a queue before the left boundary and enter the lattice
according to the sequence, as illustrated in Fig. 4. In the
present study, we investigate two types of sequences: “random
sequences” and “group sequences,” as illustrated in Fig. 5.

In a random sequence, particles line up randomly re-
gardless of their hopping probabilities. A random sequence
thus has N!/

∏S
s=1(rsN )! patterns. Note that in real situations

FIG. 3. Schematic illustration of TASEP with multispecies parti-
cles. In this figure, we show a case with S = 3, where the red particles
belong to species 1, green ones to species 2, and the yellow ones to
species 3.
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FIG. 4. Schematic illustration of the entering sequences of par-
ticles. In this figure, we show three examples among all 90
{= 6!/(2!2!2!)} possible sequences for the case N = 6, S = 3, and
r1 = r2 = r3 = 1/3. Note that Sequence 1 is one example of a group
sequence, whereas the others are examples of random sequences.

without any controls, random sequences can be assumed to
occur spontaneously.

On the other hand, in a group sequence, particles form
groups of the same species and line up group by group. There
are S! possible patterns of group sequences, which are clearly
among the random sequences.

For the case S = N , where all hopping probabilities are
different, we bunch the particles with similar hopping prob-
abilities close together with each other as much as possible,
imaginarily considering them as “continuous groups.” Con-
sistent with this idea, we define a group sequence with S = N
as either an ascending or a descending sequence. Note that we
define such a sequence by considering the rightmost particle
to be the first particle in the sequence.

We define the transportation times for the random and
group sequences to be TR and TG, respectively.

E. Difference 4: Introduction of the sorting cost

Finally, we introduce the cost of sorting the particles and
investigate the effect of the sorting cost on the transportation

FIG. 5. Schematic illustration of random (upper panel) and group
(lower panel) sequences for S = 3, where the red particles belong
to species 1, the green ones to species 2, and the yellow ones to
species 3. In the upper panel, we show two possible examples out
of all N!/

∏3
s=1(rsN )! possible random sequences, whereas in the

lower panel, we display two examples of all 6 (=3!) possible group
sequences. Note that in each case r1 + r2 + r3 = 1.

FIG. 6. Two examples with K (τa, τb) = 2 for the case N = 6 and
S = 3. For each sequence τR, we chose the one of all 6 (=3!) possible
sequences τG so that K (τa, τb) is minimized.

time. Here we define the sorting cost as the minimal number
of exchanges K (τa, τb) necessary to sort the particles form
sequence τb to sequence τa, where τa and τb represent the
sequence after sorting and before sorting, respectively. Note
that the arguments of K (τa, τb) will be abbreviated in obvious
cases.

In the present study, τa (τb) correspond to τG (τR), where
τR and τG represent a random sequence and a group sequence,
respectively. The sequence τG can differ depending on τR;
that is, τG is determined so that the number of exchanges
is minimized for each τR. Figure 6 shows two examples for
which K (τa, τb) = 2 when N = 6 and S = 3. Note that we do
not consider the distance between the exchanged particles.

We define the number of time steps necessary to sort the
particles to be λK , where the parameter λ is the ratio of the
sorting cost to number of TASEP time steps.

III. SIMULATION RESULTS

In this section, we use numerical simulations to investigate
the dependence of the transportation time on the entering
sequence of the particles.

In all the simulations below, we set L = 200 and N =
10 000; we validate this selection of L an N in Appendix A.
We determine the value of T for each parameter and average
T over 100 trials for Fig. 7 and over 10 trials for Figs. 8–10.

A. Without sorting cost (λ = 0)

In this subsection, we set λ = 0, i.e., we do not include the
sorting cost.

In Fig. 7 we plot the simulation values of the number
of particles that have not yet exited the lattice at time t for
S ∈ {2, 3, N}. We fix (α, β ) = (1, 1) for Figs. 7(a)–7(c) and
(α, β ) = (0.1, 0.2) for Figs. 7(d)–7(f). In the figures, we refer
to the number of particles that have not yet exited the lattice
at time t simply as the “remaining particles.” The simulation
starts at t = 0, and the number of particles becomes 0, i.e., the
N th particle exits the lattice, at t = T .

We note two important phenomena in Figs. 7(a)–7(c). First,
surprisingly, TG is smaller than TR for all three values of S
when α = β = 1. This result implies that the group sequences
yield smoother transportation than the random ones for the
cases (α, β ) = (1, 1). Second, TG seems not to depend on the
order of each group in the group sequence, which can take S!
possible patterns.
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FIG. 7. Simulation values of the number of particles remaining at time t with λ = 0 for (a) S = 2, (b) S = 3, and (c) S = N with
(α, β ) = (1, 1) and for (d) S = 2, (e) S = 3, and (f) S = N with (α, β ) = (0.1, 0.2). For S = 2, S = 3, and S = N , we set (p1, p2; r) =
(0.5, 1; 0.5), (p1, p2, p3; r1, r2, r3) = (0.4, 0.6, 0.8; 0.2, 0.3, 0.5), and ps = 1 − 0.6(N − s)/(N − 1) (s = 1, 2, . . . , N ), respectively, fixing
λ = 0. The notation “ps → pt ” means that a group of species s is followed by a group of species t .

FIG. 8. Simulation values of �T for various (α, β ) with (a) S = 2, (b) S = 3, and (c) S = N . The parameters other than (α, β ) are the same
as in Fig. 7. Note that three black crosses in each panel represent (α, β ) = (0.1, 0.2), (0.6, 0.6), and (1, 1), respectively. The color scale at the
right of each panel represents the value of �T .
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FIG. 9. Simulation values of �T with (a) S = 2, (b) S = 3, and (c) S = N as functions of λ for various (α, β ) ∈ {(0.1, 0.2),
(0.6, 0.6), (1, 1)}. The parameters other than (α, β ) are the same as in Fig. 7.

On the other hand, in Figs. 7(d)–7(f), unlike the cases in
Figs. 7(a)–7(c), the difference between TR and TG seems to
vanish.

In order to compare the difference between TR and TG for
various (α, β ), we define �T as the ratio of the change from
TR to TG, that is,

�T = TG − TR

TR
. (1)

From this definition of �T , �T < 0 (�T > 0) indicates that
group (random) sequences are preferable for smooth trans-
portation. Note that in the following, to calculate �T we
assume that each group in a group sequence is arranged in
ascending order in terms of species number s.

The simulation values of �T for various (α, β ) with
(a) S = 2, (b) S = 3, and (c) S = N are plotted in Fig. 8. Note
that the black lines represent the boundaries between the low-
density–high-density (LD-HD) and the maximal current (MC)
phases of the single-species TASEP with hopping probability
p1 (boundary A) in Fig. 8(a) and p1 (boundary B1) and p3

(boundary B3) in Fig. 8(b), respectively.
Figure 8 shows that for all three values of S, �T is small

in the region where min(α, β ) is relatively large. [In Fig. 8(b),
�T finally yields to a constant value in the upper-right region
beyond boundary B3.] On the other hand, �T is small in
the region where min(α, β ) is relatively small. [In Figs. 8(a)
and 8(b), �T is almost 0, especially in the lower-left region

beyond the boundary A or B1.] Here, we term the region
with �T < 0 as the “group-advantageous region” (TR > TG),
whereas we designate the region with �T ≈ 0 as a “neutral
region” (TR ≈ TG), if it exists.

These results indicate that group sequences can make trans-
portation smoother than random sequences when the system
is mainly governed by the bulk region of the lattice, but the
dependence on the type of sequences vanishes (or decreases)
when the system is mainly governed by the boundaries.

B. With sorting cost (λ > 0)

In this subsection, we consider the sorting cost by varying
λ for the same parameter sets in the previous subsection. Ap-
pendix B presents specific schemes for obtaining the minimal
number of exchanges necessary to sort the particles in the
simulations.

Figure 9 plots �T for (a) S = 2, (b) S = 3, and
(c) S = N as functions of λ for various (α, β ) ∈
{(0.1, 0.2), (0.6, 0.6), (1, 1)}, which are plotted as black
crosses in Fig. 8. We emphasize again that in the region with
�T < 0 group sequences are preferred, even if when the
sorting cost is considered, whereas in the region with �T > 0
random sequences are preferred. Note that the cases with
λ = 0 correspond to those obtained without considering the
sorting cost.

As discussed in the previous subsection, we note that
�T � 0 for almost all (α, β ) when λ = 0, indicating that

FIG. 10. Simulation values of �T for various (α, β ) with (a) S = 2, (b) S = 3, and (c) S = N for λ = 1. The other parameters are the same
as in Fig. 7.
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sorting is almost always beneficial for smooth transportation.
However, once the sorting cost is considered, the sign of �T

can become positive, especially in the region where min(α, β )
is relatively small, indicating that sorting is not always benefi-
cial. Note that the curves of (α, β ) = (0.6, 0.6) and (1, 1) are
observed to overlap each other in Figs. 9(b) and 9(c), unlike
Fig. 9(a). This happens because there is no difference in �T

at these two points when λ = 0, as we can see in Figs. 8(b)
and 8(c).

Figure 10 plots �T for (a) S = 2, (b) S = 3, and (c) S = N
for various (α, β ) with λ = 1. In this figure, we note the
existence of a new region in which �T > 0, which we term
a “random-advantageous region” (TR < TG). This new region
widens as λ increases, finally resulting in the complete disap-
pearance of the group-advantageous region for large-enough
λ. Note that Fig. 10(c) exhibits only a random-advantageous
region.

IV. THEORETICAL ANALYSES

In this section, we show that the simulation results can be
theoretically reproduced in some special cases. Specifically,
we have succeeded in obtaining a mathematical proof of the
appearance of the group-advantageous region for any group
number S(>1) when λ = 0.

A. Approximate flow of a multispecies TASEP

In this subsection, before calculating T , we briefly dis-
cuss the steady-state flow QS of the multispecies TASEP
that corresponds to a random sequence. We write QS =
QS (p1, . . . , pS; r1, . . . , rS ) with the arguments abbreviated in
obvious cases. When the flow Q is simulated for each param-
eter set, we first evolve the system for 105 time steps and then
average over the next 106 time steps.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P00

P0∗
P10

P1∗
P20

P2∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − α (1 − α)β 0 0 0 0

0 (1 − α)(1 − β ) p1 0 p2 0

rα rαβ 1 − p1 β 0 0

0 rα(1 − β ) 0 1 − β 0 0

(1 − r)α (1 − r)αβ 0 0 1 − p2 β

0 (1 − r)α(1 − β ) 0 0 0 1 − β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P00

P0∗
P10

P1∗
P20

P2∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

L = 2

This subsection presents the derivation of an approximate
QS based on a Markov chain model. Due to the difficulty
of considering general values of L (the length of the lat-
tice) and S (the number of particle species), we consider
the simplest case—with L = 2 and S = 2. As two species
of particles exist—that is, particles with hopping probability
p1 and particles with p2—each site may have three states:
“unoccupied (state 0),” “occupied by a particle 1 (state 1),”
and “occupied by a particle 2 (state 2).” This results in nine
possible states; however, noting that it is not necessary to
distinguish the particle at site 1 because it always leaves the
lattice with probability β, the number of possible states can
be reduced to 6. Here, we define the probability distribution
Pi j (i = 0, 1, 2, j = 0, ∗), where i and j represent the state
number of site 0 and 1, respectively. Note that state ∗ indicates
either of state 1 or 2.

The master equations for the steady state are summarized
in Eq. (2), using the relation r1 + r2 = 1. Note that r1 and r2

are replaced with r and 1 − r, respectively, for the case S = 2.
In addition, Pi j must satisfy the normalization condition

2∑
i=0

Pi0 +
2∑

i=0

Pi∗ = 1. (3)

From Eqs. (2) and (3), the flow of the system can be written
as a function of p1, p2, and r; that is, Q2(p1, p2; r), is given
by the following expression:

Q2(p1, p2; r)= p1P10+p2P20 = p1 p2A

{(1−r)p1+r p2}A+p1 p2B
,

(4)

where

A = αβ(α + β − αβ ) (5)

and

B = α2 + β2 − α2β − αβ2 + αβ. (6)

The specific forms of the probability distributions are summa-
rized in Appendix C.

For r = 1 and p1 = p, the system reduces to the single-
species TASEP with the flow Q1(p), where

Q1(p) = pA

pB + A
. (7)

Note that the flow of the single-species TASEP for general L is
exactly solved in Ref. [65]. Therefore, assuming that the value
p = ph satisfies the condition Q2(p1, p2; r) = Q1(p), we can
derive

ph = p1 p2

(1 − r)p1 + r p2
. (8)

The quantity ph is termed the harmonic mean of p1 and p2.
Accordingly, for L = 2, Q2 is equivalent to Q1(p = ph ). This
relation holds for any species number S(>2), as we show in
Appendix D.

Figure 11 compares the simulation and theoretical curves
for various β ∈ {0.2, 0.6, 1} with (a) S = 2, (b) S = 3, and
(c) S = N (= 10 000). In all the figures, the simulations show
very good agreement with our exact analyses.

2. General L(>2)

For general L and S, it is complicated to solve the master
equations. Therefore, in this subsection, we instead assume
an inequality, based on the results in the previous subsection
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FIG. 11. Simulation (circles) and theoretical (curves) values of (a) Q2, (b) Q3, and (c) QN for L = 2 as functions of α for various β ∈
{0.2, 0.6, 1}. The other parameters are fixed at (a) (p1, p2; r) = (0.5, 1; 0.5), (b) (p1, p2, p3; r1, r2, r3) = (0.4, 0.6, 0.8; 0.2, 0.3, 0.5), (c) ps =
1 − 0.6(S − s)/(S − 1) (s = 1, 2, . . . , N) and rs = 1/N (= 1/10 000).

and the qualitative discussions, and confirm the validity of the
inequality by the simulations.

First, for general L and S, QS is clearly larger than Q1(p =
pmin), where pmin = min{p1, p2, . . . , pS}.

In addition, for L > 2, a platoon can be observed in the
bulk of the lattice, in which a slower particle behaves as a
bottleneck, and faster particles behind it cannot hop with a
probability larger than that of the smaller one, i.e., less than
ph, as shown in Fig. 12. This phenomenon suppresses the flow,
implying that QS is smaller than Q1(p = ph ).

Consequently, QS satisfies the following inequality:

Q1(p = pmin) < QS < Q1(p = ph ). (9)

In this subsection, we hereafter consider the case S = 2 ex-
cluding Fig. 16 and its explanation.

Figure 13 shows the phase diagrams obtained by plotting
the simulation values for (a) the single-species TASEP with
p = pmin, (b) the two-species TASEP, and (c) the single-
species TASEP with p = ph, respectively. Note that Q2 (Q1)
are the simulation (theoretical) values (and similarly here-
after).

Comparing these three figures shows that Eq. (9) obvi-
ously holds. In addition, as in Figs. 13(a) and 13(c), we find
that three different phases—HD, LD, and MC—also exist
in Fig. 13(b). Due to Eq. (9), the boundaries between the
LD (HD) and MC phases of Fig. 13(b) lie between those of
Figs. 13(a) and 13(c). Note that the black lines in Figs. 13(a)
and 13(c) are theoretical boundaries, based on the fact that
the boundary between the LD and MC phases of the single-
species TASEP with hopping probability p [27] can be written
as

α = 1 −
√

1 − p ∧ 1 −
√

1 − p < β < 1

β = 1 −
√

1 − p ∧ 1 −
√

1 − p < α < 1. (10)

FIG. 12. Schematic illustration of a platoon. In this figure, we
set S = 2, with the red particles belonging to species 1 (faster) and
the green ones to species 2 (slower). A green particle blocks the red
particles behind it, so that the trailing red particles cannot hop with
probability p1 but only with probability p2, which is less than ph.

Here, as with �T , we define �Q as the ratio of the change
from Q1(p = ph) to Q2; that is,

�Q = Q2 − Q1(p = ph)

Q1(p = ph )
, (11)

and we note that �Q = 0 when Q1(p = ph) = 0.
Figure 14 shows �Q for various (α, β), for the fixed param-

eter set (p1, p2; r) = (0.5, 1; 0.5). The black lines represent
the boundaries between the LD-HD and MC phases of the
single-species TASEP with hopping probability p1 (boundary
1) and the single-species TASEP with p = ph (boundary 2).
Therefore, the lower-left (upper-right) region beyond bound-
ary 1 (boundary 2) corresponds to the LD-HD (MC) phases
both for the two-species TASEP and for the single-species
TASEP with p = ph. This figure confirms that �Q starts from
0 in the LD-HD phase, decreases, and finally yields to a
constant value in the MC phase as (α, β ) approaches the upper
right.

Figure 15 plots �Q as a function of (p1, p2) for various
(α, β ) ∈ {(0.1, 0.2), (0.2, 0.1), (1, 1)}, fixing r = 0.5. Note
that both the single-species TASEP with hopping probability
ph and the two-species TASEP exhibit the LD, HD, and
MC phases with (α, β ) = (0.1, 0.2), (0.2, 0.1), and (1, 1),
respectively. This is because ∀(p1, p2) (0.2 � p1, p2 � 1)
0.1 < 1 − √

1 − pmin � 1 − √
1 − ph. For example, Fig. 13

confirms that those three points exist within each correspond-
ing phase for (p1, p2) = (0.5, 1).

In Figs. 15(a) and 15(b), we find that �Q is approximately
0, whereas �Q deviates from 0 in Fig. 15(c), as is also
observed in Fig. 14. These phenomena can be explained as
follows.

First, in the LD (HD) phase, Q2 is mainly governed by
the input (output) probability, leading to �Q → 0, i.e., Q2

approaches Q1(p = ph ). This is because Q2 deviates from
Q1(p = ph ) mainly due to the existence of platoons, which
do not influence the flow much in this phase. Note that �Q

decreases as α or β approaches 0.2, because the influence
of platoons increases, approaching the MC phase of the two-
species TASEP.

On the other hand, in the MC phase, Q2 is mainly governed
by the bulk region of the lattice. Therefore, the existence of
platoons has a more critical influence on Q2, causing �Q to
deviate from 0; i.e., Q2 < Q1(p = ph). Especially as |p1 − p2|
increases, the extent of the deviation also increases. This is
because the effect of platoons increases when there is a large
gap between p1 and p2.
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FIG. 13. Phase diagrams. The color bars indicate the simulation values of (a) Q1(p = pmin ), (b) Q2(p1, p2; r), and (c) Q1(p = ph ),
respectively, obtained by fixing (p1, p2; r) = (0.5, 1; 0.5), pmin = 0.5, and ph = 1/(0.5/0.5 + 0.5/1) = 2/3. Note that the three black crosses
in each figure represent (α, β ) = (0.1, 0.2), (0.2, 0.1), and (1,1), respectively.

In the end of this subsection, we briefly discuss the
case of general S. Figure 16 plots (a) Q2/Q1(p = ph ),
(b) Q3/Q1(p = ph), and (c) QN/Q1(p = ph) for various L ∈
{2, 3, 4, 10, 100, 200}. Both of QS (S = 2, 3, 10 000) and
Q1(p = ph) are obtained by the simulations. In all the fig-
ures, we observe that for L > 2, QS/Q1(p = ph ) generally
becomes less than 1, i.e., QS < Q1(p = ph ), especially when
α increases, i.e., the system approaches and exhibits the MC
phase. Note that for S = 10 000, the difference among L =
2, 3, 4 is unclear; however, it becomes obvious when L � 10.
Those results imply that Eq. (9) and its qualitative discussions
can be applicable for general L and S.

B. Relation between TR and TG without the sorting cost

Hereafter, we assume p1 < p2 < · · · < pS , S > 1,
∀s rs > 0, and α > 0.

In this subsection, we fix λ = 0, i.e., we do not consider
the sorting cost. If for any number of particle species s, rsN
is large enough for TG and TR to be determined by the steady-

FIG. 14. Simulation values of �Q for various (α, β ), fixing
(p1, p2; r) = (0.5, 1; 0.5).

state flow (see Appendix E), we obtain

TR ≈ N

QS
(12)

and

TG ≈
S∑

s=1

rsN

Q1(p = ps)
. (13)

Note that this approximation immediately implies the in-
dependence of TG from the order of the group sequence.
Strictly speaking, TG can differ depending on the order of each
group in the group sequence. However, that difference can be
ignored for large N (see Appendix E).

In addition, we define the transportation times of the parti-
cles with the same hopping probabilities ph and pmin as

TH ≈ N

Q1(p = ph )
(14)

and

TM ≈ N

Q1(p = pmin)
, (15)

respectively. From Eqs. (9), (12), (14), and (15), we immedi-
ately obtain the inequality

TH < TR < TM. (16)

In the following, we show that a general relation between
TR and TG can be obtained mathematically for general S(>1).
We emphasize that this relation can be proven by comparing
TH and TG, and not by comparing TR and TG directly. Here,
we introduce the new function f (α, β; p1, . . . , pS; r1, . . . , rS ),
which is defined as follows:

f (α, β; p1, . . . , pS; r1, . . . , rS ) = TH − TG. (17)

Because we can assume α < β without loss of generality,
we adopt this assumption in the following discussion, writing
in abbreviated form f (α, β; p1, . . . , pS; r1, . . . , rS ) = f (α).
Note that for cases with α � β, the theoretical results can be
obtained simply by replacing α (LD) with β (HD).

A contour map of f (α) in the (α, β ) plane exhibits four
large regions, which are summarized in Table I.
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FIG. 15. Simulation values of �Q for various (p1, p2), S = 2, and r = 0.5, (a) (α, β ) = (0.1, 0.2) (LD), (b) (α, β ) = (0.2, 0.1) (HD), and
(c) (α, β ) = (1, 1) (MC).

In the following subsections, we examine the behavior of
f (α) according to this classification.

1. Region 1: α < 1 − √
1 − p1

In this region, all the steady-state phases of the single-
species TASEP for any ps exhibit the LD phase. Here the
steady-state flow for the single-species TASEP with parallel
updating [27] is given by

Q1(p) =
{

α
p−α

p−α2 for LD phase
1
2 (1 − √

1 − p) for MC phase
. (18)

Therefore, we obtain

TG ≈
S∑

s=1

rsN (ps − α2)

α(ps − α)
(19)

and

TH ≈ N (ph − α2)

α(ph − α)
. (20)

From Eqs. (19) and (20), we obtain f (α) as

f (α) ≈ N (ph − α2)

α(ph − α)
−

S∑
s=1

rsN (ps − α2)

α(ps − α)
. (21)

After some calculations, we obtain

f (α) < 0; (22)

the detailed derivation is given in Appendix F.

2. Region 2: 1 − √
1 − p1 � α < 1 − √

1 − ph

This region is further divided into (u − 1) subregions, as
summarized in Table II.

In Subregion 2–v (v = 1, 2, . . . , u − 1), the single-species
TASEP with p = p1, . . . , pv, ph exhibits the MC phase,
whereas that with p = pv+1, . . . , pS displays the LD phase.
Therefore, using Eq. (18), we obtain

Q1(p) =
{

1
2 (1 − √

1 − p) for p = p1, . . . , pv, ph.

α
p−α

p−α2 for p = pv+1, . . . , pS.
(23)

From Eqs. (13), (14), and (23), TG and TH can be written as
follows;

TG ≈
v∑

s=1

2rsN

1 − √
1 − ps

+
S∑

s=v+1

rsN (ps − α2)

α(ps − α)
(24)

and

TH ≈ N (ph − α2)

α(ph − α)
. (25)

FIG. 16. Simulation values of the ratio (a) Q2/Q1(p = ph ), (b) Q3/Q1(p = ph ), and (c) QN/Q1(p = ph ) as functions of α for various
L ∈ {2, 3, 4, 10, 100, 200}, fixing β = 0.6. The other parameters are fixed at (a) (p1, p2; r) = (0.5, 1; 0.5), (b) (p1, p2, p3; r1, r2, r3) =
(0.4, 0.6, 0.8; 0.2, 0.3, 0.5), (c) ps = 1 − 0.6(S − s)/(S − 1) (s = 1, 2, . . . , N) and rs = 1/N (= 1/10 000).
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TABLE I. Classification of Regions.

Region no. Range

1 α < 1 − √
1 − p1

2 1 − √
1 − p1 � α < 1 − √

1 − ph

3 1 − √
1 − ph � α < 1 − √

1 − pS

4 1 − √
1 − pS � α

From Eqs. (24) and (25), we thus obtain f (α) in the form

f (α) ≈ N (ph − α2)

α(ph − α)
−

v∑
s=1

2rsN

1 − √
1 − ps

−
S∑

s=v+1

rsN (ps − α2)

α(ps − α)
. (26)

For 1 − √
1 − pv � α < 1 − √

1 − pv+1, due to α < pv+1 <

· · · < pS and α < ph, we obtain ps − α > 0 for s = v +
1, . . . , S and ph − α > 0. Therefore, the function f (α) is
continuous and differentiable with respect to α, including
at each boundary (see Appendix G). However, the signs of
f (α) and df (α)/dα are not specified. Note that the following
condition

lim
α→qh−0

df (α)

dα
> 0, (27)

where qh = 1 − √
1 − ph indicates that f (α) increases mono-

tonically at least near the boundary between Subregion 2–
(u − 1) and Region 3. This is discussed in Appendix H.

3. Region 3: 1 − √
1 − ph � α < 1 − √

1 − pS

Similarly to Region 2, this region is further divided into
(S − u + 1) subregions, as summarized in Table III. Note that
Subregion 3–u vanishes in the case ph = pu, resulting in the
(S − u) subregions.

In Region 3–v (v = u, u + 1, . . . , S), the single-species
TASEP with p = p1, . . . , pv−1, ph exhibits the MC phase,
whereas that with p = pv, . . . , pS displays the LD phase.
Therefore, using Eq. (18), we obtain Q1(p)

Q1(p) =
{

1
2 (1 − √

1 − p) for p = p1, . . . , pv−1, ph.

α
p−α

p−α2 for p = pv, . . . , pS.
(28)

TABLE II. Classification of subregions in Region 2.

Subregion no. Range

2–1 1 − √
1 − p1 � α < 1 − √

1 − p2

2–2 1 − √
1 − pu � α < 1 − √

1 − pu+1

... ...
2–v 1 − √

1 − pv � α < 1 − √
1 − pv+1

... ...
2–(u − 1) 1 − √

1 − pu−1 � α < 1 − √
1 − ph

TABLE III. Classification of subregions in Region 3.

Subregion no. Range

3–u 1 − √
1 − ph � α < 1 − √

1 − pu

3–(u + 1) 1 − √
1 − pu � α < 1 − √

1 − pu+1

... ...
3–v 1 − √

1 − pv−1 � α < 1 − √
1 − pv

... ...
3–S 1 − √

1 − pS−1 � α < 1 − √
1 − pS

From Eqs. (13), (14), and (28), TG and TH can be written as
follows;

TG ≈
v−1∑
s=1

2rsN

1 − √
1 − ps

+
S∑

s=v

rsN (ps − α2)

α(ps − α)
(29)

and

TH ≈ 2N

1 − √
1 − ph

. (30)

From Eqs. (29) and (30), f (α) becomes

f (α) ≈ 2N

1 − √
1 − ph

−
v−1∑
s=1

2rsN

1 − √
1 − ps

−
S∑

s=v

rsN (ps − α2)

α(ps − α)
. (31)

For 1 − √
1 − pv−1 � α < 1 − √

1 − pv , due to α < pv <

· · · < pS , we obtain ps − α > 0 for s = v, . . . , S. Similarly to
Region 2, f (α) is continuous and differentiable with respect
to α including at each boundary.

After some calculations,we find that df (α)/dα satisfies

df (α)

dα
> 0 (32)

in each subregion, as discussed in detail in Appendix I. Equa-
tion (32) indicates that f (α) is a monotonically increasing
function of α throughout Region 3.

4. Region 4: 1 − √
1 − pS � α

In this region, all the steady-state phases of the single-
species TASEP for any hopping probabilities ps and ph exhibit
the MC region. Note that this region vanishes in the case
pS = 1 because 1 − √

1 − pS = 1.
Therefore, we obtain

TG ≈
S∑

s=1

2rsN

1 − √
1 − ps

(33)

and

TH ≈ 2N

1 − √
1 − ph

, (34)

both of which are independent of α. From Eqs. (33) and (34),
we thus obtain f (α) as

f (α) ≈ 2N

1 − √
1 − ph

−
S∑

s=1

2rsN

1 − √
1 − ps

. (35)
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TABLE IV. Sign of f (α) and df (α)/dα.

Region no. f (α) df (α)/dα

1 − U
2 U U
3 U +
4 + 0

After some calculations, we obtain

f (α) > 0, (36)

the detailed derivation of which is given in Appendix J.

5. Relation between TR and TG

With the results of Secs. IV B 1–IV B 4, we can obtain a
general relation between TR and TG for some special cases.
Table IV summarizes the signs of f (α) and df (α)/dα in each
region. Note that “U” indicates that the sign is unclear.

Considering Table IV and the continuity of f (α) including
at each boundary (see Appendix G), we find from the inter-
mediate value theorem that ∃αcr such that f satisfies

f (α = αcr ) = 0 ⇔ TH = TG (37)

in Region 2 or 3. The specific conditions that αcr must satisfy
are given in Appendix K.

Defining αcr,max as the largest value among the quantities
αcr, we obtain f (α) > 0—i.e., TH > TG—in the region where
α > αcr,max. This is because f (α) is continuous and increases
monotonically from a point in Region 2 (and through Region
3), to yield f (α) > 0 in Region 4.

Considering Eq. (16), we finally obtain

TG < TH < TR (38)

in the region α > αcr,max. Equation (38) means that �T < 0,
reproducing the simulation results in the region where
min(α, β ) is relatively large. This result indicates that the
group-advantageous region must appear even in a case with
pS = 1, for which Region 4 vanishes.

In analogy with the discussion above, we can also predict
that a region with �T < 0 must appear in the case S = N .

C. Relation between TR and TG with sorting cost

In this subsection, we discuss the change in the relation
between TR and TG when λ > 0, i.e., when the sorting cost is
included. In the following, we first obtain a general formula
for the sorting cost and then evaluate upper and lower limits
to λ.

1. General formula for the sorting cost

First, we calculate mathematically the averaged minimal
number of exchanges necessary to sorting the particles from
random to group sequences.

We here define K as the averaged value of K , using the
fact that τR can take N!/

∏S
s=1(rsN )! patterns with equal

probability. We thus have

K =
∏S

s=1(rsN )!

N!

∑
∀τR

K (τG, τR). (39)

FIG. 17. (a) Simulation values of the ratio K/K
′

as functions of
r for various N ∈ {1000 (red), 5000 (green), 10 000 (blue)} for S =
2. (b) Simulation values of the ratio K/K

′
as a functions of N for

S = N . Note that K and K
′

are each simulation value obtained by
respectively averaging over 100 trials.

If K ′(τG, τR ) is the minimal number of exchanges neces-
sary to sort the particles from a random sequence τR to a given
fixed group sequence τG, then K ′(τG, τR) satisfies

K (τG, τR) = min{K ′(τG, τR)}. (40)

Note that the number of elements of {K ′(τG, τR)} is equal
to that of {τG} from the definition. Equations (39) and (40)
indicate that the best group sequence τG can vary depending
on the particular random sequence τR.

Due to the difficulty of a general calculation of K , we
instead calculate K

′
, which is defined as follows:

K
′ =

∏S
s=1(rsN )!

N!

∑
∀τR

K ′(τ̃G, τR), (41)

where τ̃G is a fixed sequence out of the set {τG} for all
possible τR.

For S = 2 and S = N , K
′
can be generally calculated as

K
′ =
{

r(1 − r)N for S = 2

N −∑N
k=1

1
k for S = N

, (42)

the detailed derivations of which are discussed in Appendix L.
Figure 17 shows the ratio K/K

′
for (a) S = 2 and (b) S =

N . Both figures show that K/K
′ ≈ 1, i.e., K ≈ K

′
, indicating

that there is no problem in substituting K
′

for K for large-
enough N .

In the following calculations, we therefore use K
′

instead
of K because K

′
can be represented by a general formula,

whereas K cannot.
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TABLE V. Upper and lower limits to λcr.

Region no. Upper and lower limits to λcr

1 0 � λcr < 1
rα

( p1−α2

p1−α
− p2−α2

p2−α

)
2 max

{
0, 1

r(1−r)

[ ph−α2

α(ph−α) − 2r
1−√

1−p1
− (1−r)(p2−α2 )

α(p2−α)

]}
� λcr < 1

r

[
2

1−√
1−p1

− p2−α2

α(p2−α)

]
3 max

{
0, 1

r(1−r)

[
2

1−√
1−ph

− 2r
1−√

1−p1
− (1−r)(p2−α2 )

α(p2−α)

]}
� λcr < 1

r

[
2

1−√
1−p1

− p2−α2

α(p2−α)

]
4 2

r(1−r)

(
1

1−√
1−ph

− r
1−√

1−p1
− 1−r

1−√
1−p2

)
< λcr < 2

r

(
1

1−√
1−p1

− 1
1−√

1−p2

)

2. Upper and lower limits to λcr

We first define λ = λcr � 0, as the value for which TR =
TG. Note that λcr is defined to be equal to 0 if TR � TG when
λ = 0. From the definition of λcr, the random-advantageous
region appears when λ > λcr. Based on the discussions in
Secs. IV B and IV C 1, we here evaluate λcr for S = 2 and
α < β.

To take into account the sorting cost, we add the term
λK (λ > 0) to TG; that is,

TG ≈ λK
′ +

S∑
s=1

rsN

Q1(p = ps)
. (43)

Conversely, we do not add that term to TR because a random
sequence means a sequence without sorting.

We also define λH and λM as the values of λ for which
TH = TG and TM = TG, respectively. Note that λH can have
negative values, because TH can be less than TG.

From Eq. (16) and Sec. IV B, when λ = 0 the relations
among TR, TG, TH, and TM must satisfy one of the following
three inequalities:

TH < TR � TG < TM, (44)

TH < TG < TR < TM, (45)

or

TG < TH < TR < TM. (46)

Therefore, the relations of λcr, λH, and λM can be written as
follows:

max(0, λH) � λcr < λM, (47)

where we note that by definition λcr � 0, whereas λH can be
either negative or positive, while λM must be positive.

In Region 1, i.e., α < 1 − √
1 − p1, where TH < TG with

λ = 0, λH must be negative, while λM must be positive, and
satisfy

N (p1 − α2)

α(p1 − α)
≈ λMr(1 − r)N + rN (p1 − α2)

α(p1 − α)

+ (1 − r)N (p2 − α2)

α(p2 − α)
. (48)

In Region 2, i.e., 1 − √
1 − p1 � α < 1 − √

1 − ph, λH

can be either negative or positive, whereas λM must be

positive. The quantities λH and λM satisfy

rN (ph − α2)

α(ph − α)
≈ λHr(1 − r)N + 2rN

1 − √
1 − p1

+ (1 − r)N (p2 − α2)

α(p2 − α)
(49)

and
2N

1 − √
1 − p1

≈ λMr(1 − r)N + 2rN

1 − √
1 − p1

+ (1 − r)N (p2 − α2)

α(p2 − α)
, (50)

respectively.
In Region 3, i.e., 1 − √

1 − ph � α < 1 − √
1 − p2, λH

can be either negative or positive, and λM must be positive.
Thus, λH and λM satisfy

2N

1 − √
1 − ph

≈ λHr(1 − r)N + 2rN

1 − √
1 − p1

+ (1 − r)N (p2 − α2)

α(p2 − α)
(51)

and
2N

1 − √
1 − p1

≈ λMr(1 − r)N + 2rN

1 − √
1 − p1

+ (1 − r)N (p2 − α2)

α(p2 − α)
, (52)

respectively.
In Region 4, i.e., 1 − √

1 − p2 � α, due to TG < TH < TM

when λ = 0, λH and λM must both be positive. The quantities
λH and λM therefore satisfy

2N

1 − √
1 − ph

≈ λHr(1 − r)N + 2rN

1 − √
1 − p1

+ 2(1 − r)N

1 − √
1 − p2

(53)

and
2N

1 − √
1 − p1

≈ λMr(1 − r)N + 2rN

1 − √
1 − p1

+ 2(1 − r)N

1 − √
1 − p2

, (54)

respectively.
Table V summarizes the upper and lower limits to λcr

in each region. Furthermore, Fig. 18 shows the simulation

042106-12



DEPENDENCE OF THE TRANSPORTATION TIME … PHYSICAL REVIEW E 100, 042106 (2019)

FIG. 18. Simulation values (black circles) and the theoretical existence range of λcr (yellow region) as functions of α. The other parameters
are fixed at (β; p1, p2; r) = (a) (1;0.5,1;0.5) and (b) (1;0.5,0.6;0.5).

values (black circles) and the theoretical existence range of λcr

(yellow region) as functions of α. Note that the we calculated
the simulation values using with 10-trial-averaged values of
TR, TG, and K .

We can interpret Fig. 18 as demonstrating that a group
(random) sequence is preferable in the region below (above)
the black line. In the blue (green) region, a group (random)
sequence is in fact theoretically verified to be preferable.
Comparing Figs. 18(a) and 18(b), the simulation values ap-
proach the lower limit—i.e., the accuracy of approximating
TR by TH increases—as |p1 − p2| decreases. We admit that
the yellow region is extensive, especially when |p1 − p2| is
relatively large; however, we emphasize that the simulation
values always exist within the expected region and that the
region can be limited easily without numeric calculations,
which is convenient for applications to actual situations.

V. CONCLUSION

In the present study, we have used a modified TASEP
to analyze the dependence of the transportation time on the
entering sequences of particles, using both the numerical
simulations and theoretical analyses.

Here we summarize a number of important results. In
Sec. III, we discovered that there exists an important “group-
advantageous region” where TR > TG when min(α, β ) is
relatively large and the sorting costs are neglected. When
sorting costs are introduced, a new region called a “random-
advantageous region” appears with TR < TG. In addition, the
group-advantageous region shrinks and finally disappears as
λ increases. We explored these phenomena for various S ∈
{2, 3, N}.

In Sec. IV, we analyzed the simulation results by em-
ploying mathematical approaches for certain special cases.
Using some approximations, we have shown theoretically that
without the sorting cost the group-advantageous region must
appear for any parameter sets (S, ps, rs). Moreover, we have
succeeded in deriving the upper and lower limits to the value
of λcr where TR = TG by obtaining a general formula for the
sorting cost.

Our findings can be applied to real-world situations, such
as providing efficient operation for various tasks and smooth
logistics for various products and yielding an effective evac-
uation method for pedestrians. Specifically, for smooth op-

eration, we can determine whether we should begin tasks
without considering the operation sequence or otherwise.
Similarly, for smooth logistics, we can select whether the
products should be bunched with nearly equal sizes. Further-
more, for ensuring effective evacuation of pedestrians, we can
determine whether the bunching of pedestrians having nearly
equal velocities should be conducted before transportation.
The criteria for these judgments depend on the magnitude of
the consideration or bunching cost (λ). Note that these mag-
nitudes significantly differ from each other, i.e., considering
only the sequence of tasks is typically deemed cheaper (have
a smaller λ) than sorting various pedestrians and products.
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APPENDIX A: VALIDITY OF OUR
SELECTION OF L AND N

In this Appendix, we briefly discuss the validity of select-
ing L = 200 and N = 10 000.

As finite-size effects may occur for small L, we compare
the simulation values of Q2 for L = 200 and L = 1000. Fig-
ure 19 shows the ratio Q2/Q′

2, where Q2 and Q′
2 represent the

flow of the multispecies TASEP with L = 200 and L = 1000,
respectively, as functions of α for various β ∈ {0.2, 0.6, 1}.
The result that Q2/Q′

2 ≈ 1 indicates that the effect can be
ignored for L = 200. Thus, we choose L = 200 to decrease
the simulation time.

On the other hand, the assumption that T is determined
by a steady-state flow may be inappropriate for small N .
Therefore, we have compared the results for N = 10 000 and
N = 20 000, in both cases for L = 200. Figure 20 shows the
ratio T/T ′, where T and T ′ represent the transportation times
for N = 10 000 and N = 20 000, respectively, as functions of
α for various β ∈ {0.2, 0.6, 1}. The result that T/T ′ ≈ 0.5,
i.e., that T is proportional to N , indicates that the assumption
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FIG. 19. Simulation values of the ratio Q2/Q′
2 as functions of

α for various β ∈ {0.2, 0.6, 1}. The other parameters are fixed at
(p1, p2; r) = (0.5, 1; 0.5).

can be regarded as valid for N = 10 000. Thus, we choose
N = 10 000 similarly to decrease the simulation time.

APPENDIX B: SIMULATION SCHEMES FOR OBTAINING
THE MINIMAL NUMBER OF NECESSARY EXCHANGES

In this Appendix, we briefly describe the specific simula-
tion schemes we used to obtain K . We emphasize that the cost
of counting or comparing particles and the distances between
exchanged particles are both ignored in the following.

First, for S = 2, τa = τG can have only one of two patterns.
Once τG is fixed to be either of these two sequences, we
can immediately obtain the number of particles placed at the
wrong areas in sequence τb = τR, which is twice as large as
the number of necessary exchanges (see also Appendix L).
Consequently, comparing the results for the two τG gives the
smaller number as K .

Second, for S = 3, τa = τG can have six patterns. Once τG

is fixed at one of these six sequences, we can immediately
obtain the number of particles placed at the wrong areas in
sequence τb = τR. After selecting one species, which we first
replace at the correct location, we exchange all particles of
that species that are placed in the wrong areas in sequence
τb = τR. The subsequent procedure is similar to the case for
S = 2. Consequently, comparing the six results for each τG

again gives the smallest number as K . Note that we can
similarly calculate the numbers for general S > 4.

Finally, for S = N , τa = τG can have one of two patterns:
either an ascending or a descending sequence. One exchange

FIG. 20. Simulation values of the ratio T/T ′ as functions of α for
various β ∈ {0.2, 0.6, 1}. The other parameters are fixed at L = 200
and (p1, p2; r) = (0.5, 1; 0.5).

is needed for each particle in τb = τR for which there exists
a particle with a smaller (larger) hopping probability than
the noted particle. This is termed a “selection sort.” This
procedure starts from the leading particle. Consequently, by
comparing the results for the two τG, the smaller number is
again selected as the minimal number of necessary exchanges.

APPENDIX C: PROBABILITY DISTRIBUTION
WITH L = 2 AND S = 2

Here, we summarize the probability distributions with L =
2 and S = 2, which can be obtained from Eqs. (2) and (3). The
specific forms are described as follows:

P00 = p1 p2(1 − α)β2

{(1 − r)p1 + r p2}A + p1 p2B
= ph(1 − α)β2

A + phB

P0∗ = p1 p2αβ

{(1 − r)p1 + r p2}A + p1 p2B
= phαβ

A + phB

P10 = r p2A

{(1 − r)p1 + r p2}A + p1 p2B
= r phA

p1(A + phB)

P1∗ = r p1 p2α
2(1 − β )

{(1 − r)p1 + r p2}A + p1 p2B
= r phα

2(1 − β )

A + phB

P20 = (1 − r)p1A

{(1 − r)p1 + r p2}A + p1 p2B
= (1 − r)phA

p2(A + phB)

P2∗ = (1 − r)p1 p2α
2(1 − β )

{(1 − r)p1 + r p2}A + p1 p2B
= (1 − r)phα

2(1 − β )

A + phB
,

(C1)

where

A = αβ(α + β − αβ ), (C2)

B = α2 + β2 − α2β − αβ2 + αβ, (C3)

and

ph = p1 p2

(1 − r)p1 + r p2
. (C4)

APPENDIX D: QS FOR GENERAL S WITH L = 2

In this Appendix, we prove that for general S with L = 2,
QS is equal to Q1(p = ph ).

From the results with L = 2 and S = 2 (see Appendix C),
we can conjecture the probability distributions for general S
with L = 2 as

P00 = ph(1 − α)β2

A + phB

P0∗ = phαβ

A + phB

Ps0 = rs phA

ps(A + phB)

Ps∗ = rs phα
2(1 − β )

A + phB
, (D1)

where s = 1, 2, . . . , S.
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FIG. 21. Simulation values of the ratio TG,sim/TG,theo as functions
of α for various β ∈ {0.2, 0.6, 1} with (a) S = 2 and (b) S = 3.
The other parameters are fixed at (a) (p1, p2; r) = (0.5, 1; 0.5) and
(b) (p1, p2, p3; r1, r2, r3) = (0.4, 0.6, 0.8; 0.2, 0.3, 0.5).

On the other hand, the master equations of the steady state
are summarized as 2(S + 1) equations:

P00 = (1 − α)P00 + (1 − α)βP0∗

P0∗ = (1 − α)(1 − β )P0∗ +
S∑

k=1

pkPk0

Ps0 = rsαP00 + rsαβP0∗ + (1 − ps)Ps0 + βPs∗
Ps∗ = (1 − β )Ps∗ + rsα(1 − β )P0∗, (D2)

where s = 1, 2, . . . , S. In addition, Pi j must satisfy the nor-
malization condition

S∑
i=0

Pi0 +
S∑

i=0

Pi∗ = 1. (D3)

We can confirm that Eqs. (D1) satisfy Eqs. (D2) and (D3).
With Penron-Frobenius theorem regarding stochastic matrix,
this indicates that Eqs. (D1) are unique solutions for Eqs. (D2)
and (D3).

From Eqs. (D1), the flow of the system is given by the
following expression:

QS =
S∑

s=1

psPs0 =
S∑

s=1

ps
rs phA

ps(A + phB)
= Q1(p = ph). (D4)

APPENDIX E: VALIDITY OF THE
APPROXIMATION FOR T

In this Appendix, we briefly demonstrate the validity of
Eq. (13).

Figure 21(a) shows the ratio TG,sim/TG,theo as functions of α

for various β ∈ {0.2, 0.6, 1} with S = 2 and Fig. 21(b) shows

FIG. 22. Simulation values of 199-steps central moving av-
erage of flow at time t with (N, α, β ) = (10 000, 1, 1). For
S = 2 and S = 3, respectively, we set (p1, p2; r) = (0.5, 1; 0.5),
(p1, p2, p3; r1, r2, r3) = (0.4, 0.6, 0.8; 0.2, 0.3, 0.5). Note that each
plot ends just after it reaches 0.

the same ratio for S = 3. Note that TG,sim and TG,theo represent
the values of TG from the simulations and that given by
Eq. (13), respectively. Both figures show that TG,sim/TG,theo ≈
1, indicating that Eq. (13) provides a good approximation for
TG.

Strictly speaking, TG,sim/TG,theo must be larger than 1 on
average. This is mainly due to the fact that TG,sim includes T1,
which is the time required for the first particle to reach the
right-hand boundary, whereas TG,theo ignores that time. This
also indicates that TG can differ depending on the order of
each group in the group sequence (i.e., the hopping probability
of the leading group). However, this difference has little
influence on the theoretical results, as explained below.

First, T1 can be estimated as

T1 ≈ L

ps
, (E1)

where s = 1, 2, . . . , S and the time steps before the first
particle enters the lattice are assumed to be small enough to
be ignored. The quantities T1 and TG without T1 satisfy

T1 ≈ L

ps
<

L

pS
<

L

1 − √
1 − pS

(E2)

and

TG ≈
S∑

s=1

rsN

Q1(p = ps)
>

2N

1 − √
1 − pS

, (E3)

respectively. Therefore, T1/TG reduces to

T1

TG
<

L

2N
. (E4)

Under the proposition that N is large enough, we can assume
L/2N � 1 (L/2N = 0.01 in the present study). In fact, ob-
serving the time series of the flows (199-steps central moving
average) in Fig. 22, we find that nearly the entire duration
during transportation can be regarded to be in the steady state
for large-enough rsN . Note that we calculate the flows at time
t by averaging number of moving particles per bond between
(t − 1) and t . Moreover, all the transportation times T (TR,
TH, and TM) originally include T1, so that this term disappears
when they are subtracted from each other.
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Consequently, T1 (and therefore, the dependence of TG on
the order of each group in the group sequence) can be assumed
to be ignorable.

APPENDIX F: DISCUSSION OF THE SIGN
OF f (α) IN REGION 1

In this Appendix, we give a detailed derivation of Eq. (22)
for Region 1, where α < 1 − √

1 − p1.
Equation (21) gives f (α)

f (α) = N (ph − α2)

α(ph − α)
−

S∑
s=1

rsN (ps − α2)

α(ps − α)

= N

α

S∑
s=1

[
rs(ph − α2)

ph − α
− rs(ps − α2)

ps − α

]

= N (α − 1)

(ph − α)
∏S

s=1(ps − α)
C, (F1)

where

C =
S∑

s=1

⎡
⎣rs(ph − ps)

∏
k =s

(pk − α)

⎤
⎦. (F2)

The quantity C is calculated as follows:

C =
S∑

s=1

⎡
⎣rs

(
1∑S

t=1 rt/pt

− ps

)∏
k =s

(pk − α)

⎤
⎦

= 1

D

S∑
s=1

⎧⎨
⎩rs

⎡
⎣ S∏

k=1

pk − ps

S∑
t=1

⎛
⎝rt

∏
k =t

pk

⎞
⎠
⎤
⎦∏

k =s

(pk − α)

⎫⎬
⎭

= 1

D

S∑
s=1

S∑
t=1

⎡
⎣rsrt

⎛
⎝ S∏

k=1

pk − ps

∏
k =t

pk

⎞
⎠∏

k =s

(pk − α)

⎤
⎦

= 1

D

S∑
s=1

∑
t =s

⎡
⎣rsrt (pt − ps)

∏
k =t

pk

∏
k =s

(pk − α)

⎤
⎦, (F3)

where

D =
S∑

s=1

⎛
⎝rs

∏
k =s

pk

⎞
⎠. (F4)

By regarding the sum of the term with (s, t ) = (x, y) and
that with (s, t ) = (y, x) as a new term for ∃(x, y) (x, y =
1, 2, . . . , S, x < y), we can rewrite Eq. (F3) as follows:

C = 1

D

S∑
s=1

∑
t<s

⎡
⎣rsrt (pt − ps)

∏
k =t

pk

∏
k =s

(pk − α)

+ rt rs(ps − pt )
∏
k =s

pk

∏
k =t

(pk − α)

⎤
⎦

= 1

D

S∑
s=1

∑
t<s

⎡
⎣αrsrt (pt − ps)2

∏
k =s,t

pk

∏
k =s,t

(pk − α)

⎤
⎦.

(F5)

Because D > 0, ps − α > 0 (∀s), and ph − α > 0, we obtain
C > 0.

Considering α − 1 < 0 and C > 0, we finally obtain

f (α) < 0. (F6)

APPENDIX G: CONTINUITY AND DIFFERENTIABILITY
OF f (α) AT EACH BOUNDARY

In this Appendix, we briefly discuss the continuity and
differentiability of f (α) at each boundary.

Defining g(x) for 0 < x � 1 as

g(x) =
{

p−x2

x(p−x) for 0 < x � 1 − √
1 − p

2
1−√

1−p
for 1 − √

1 − p < x � 1
, (G1)

where 0 < p � 1, the following equations hold:

lim
x→q−0

g(x) = lim
x→q+0

g(x) = 2

1 − √
1 − p

(G2)

and

lim
δ→−0

g(x + δ) − g(x)

δ
= lim

δ→+0

g(x + δ) − g(x)

δ
= 0, (G3)

where q = 1 − √
1 − p. Therefore, g(x) is continuous and dif-

ferentiable at x = q = 1 − √
1 − p, resulting in the continuity

and differentiability of g(x) for 0 < x � 1.
As a result, because f (α) is represented as a linear sum

of terms g(α), where p is substituted for ps or ph (0 <

ps, ph � 0), f (α) is clearly continuous and differentiable at
each boundary.

APPENDIX H: DISCUSSION OF THE SIGN
OF df (α)/dα IN SUBREGION 2–v

In this Appendix, we discuss the sign of df (α)/dα in
Subregion 2–v, i.e., 1 − √

1 − pv � α < 1 − √
1 − pv+1

From Eq. (26), df (α)/dα can be calculated as follows:

df (α)

dα

≈ N (2α − α2 − ph)

α2(ph − α)2
−

S∑
s=u

rsN (2α − α2 − ps)

α2(ps − α)2

=
v∑

s=1

rsN (2α − α2 − ph )

α2(ph − α)2

+
S∑

s=v+1

[
rsN (2α − α2 − ph )

α2(ph − α)2
− rsN (2α − α2 − ps)

α2(ps − α)2

]

=
v∑

s=1

rsN (2α − α2 − ph )

α2(ph − α)2

+
S∑

s=v+1

rsN (ps − ph )[(α − 1)2 + ps + ph − ps ph − 1]

ph ps(ph − α)2(ps − α)2
.

(H1)
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For 1 − √
1 − pv � α < 1 − √

1 − pv+1, the following two
inequalities hold:

2α−α2 − ph < 2(1 −
√

1−pv+1)−(1 −
√

1 − pv+1)2 − ph

= pv+1 − ph < 0 (H2)

and

(α − 1)2 + ps + ph − ps ph − 1

> (1 −
√

1 − pv+1 − 1)2 + ps + ph − ps ph − 1

> (1 −
√

1 − ph − 1)2 + ps + ph − ps ph − 1

= ps(1 − ph ) > 0. (H3)

We cannot specify the sign of df (α)/dα in this subre-
gion from Eqs. (H1)–(H3). However, near the boundary be-
tween Subregions 2–(u − 1) and 3–u, we obtain the following
conditions:

lim
α→qh−0

(2α − α2 − ph)

= 2(1 −
√

1 − ph ) − (1 −
√

1 − ph)2 − ph = 0 (H4)

and

lim
α→qh−0

{(α − 1)2 + ps + ph − ps ph − 1}

= (1 −
√

1 − ph − 1)2 + pu−1 + ph − pu−1 ph − 1

= pu−1(1 − ph) > 0, (H5)

where qh = 1 − √
1 − ph. Therefore, noting the obvious con-

tinuity of df (α)/dα for 1 − √
1 − pv � α < 1 − √

1 − pv+1,

the region of df (α)/dα > 0 must exist at least in Subregion
2–(u − 1).

APPENDIX I: DISCUSSION OF THE SIGN
OF df (α)/dα IN SUBREGION 3–v

In this Appendix, we give a proof on Eq. (32) in Subregion
3–v, i.e., 1 − √

1 − pv−1 � α < 1 − √
1 − pv .

From Eq. (31), df (α)/dα can be calculated as follows:

df (α)

dα
≈

S∑
s=v

rsN (ps − 2α + α2)

α2(ps − α)2
. (I1)

For s = v, . . . , S, the quantity ps − 2α + α2 satisfies

ps − 2α + α2 > ps − 2(1 −
√

1 − pv ) + (1 −
√

1 − pv )2

= ps − pv > 0. (I2)

From Eqs. (I1) and (I2), we finally obtain

df (α)

dα
> 0. (I3)

APPENDIX J: DISCUSSION OF THE SIGN
OF f (α) IN REGION 4

In this Appendix, we give a detailed derivation of Eq. (36),
where 1 − √

1 − pS � α.
From Eqs. (33) and (34), f (α) can be represented as

follows:

TG ≈ 2N
S∑

s=1

rs(1 + √
1 − ps)

ps
= 2N∏S

s=1 ps

⎡
⎣ S∑

s=1

(rs + rs

√
1 − ps)

∏
t =s

pt

⎤
⎦

= 2N∏S
s=1 ps

⎡
⎣ S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠+

S∑
s=1

⎛
⎝rs

√
1 − ps

∏
t =s

pt

⎞
⎠
⎤
⎦ (J1)

and

TH ≈ 2N
1 + √

1 − ph

ph
= 2N

1 +
√

1 − 1/
∑S

s=1(rs/ps)

1/
∑S

s=1(rs/ps)

= 2N∏S
s=1 ps

⎧⎪⎨
⎪⎩

S∑
s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠+

√√√√√
⎡
⎣ S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠
⎤
⎦

2

−
S∏

s=1

ps ×
S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠
⎫⎪⎬
⎪⎭. (J2)

From Eqs. (35), (J1), and (J2), f (α) is given by

f (α) ≈ 2N∏S
s=1 ps

⎧⎪⎨
⎪⎩
√√√√√
⎡
⎣ S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠
⎤
⎦

2

−
S∏

s=1

ps×
S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠ −

S∑
s=1

⎛
⎝rs

√
1 − ps

∏
t =s

pt

⎞
⎠
⎫⎬
⎭

= 2N∏S
s=1 ps

(E − F ), (J3)
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where

E =

√√√√√
⎡
⎣ S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠
⎤
⎦

2

−
S∏

s=1

ps ×
S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠ (J4)

and

F =
S∑

s=1

⎛
⎝rs

√
1 − ps

∏
t =s

pt

⎞
⎠. (J5)

From Eqs. (J4) and (J5), E2 − F 2 becomes

E2 − F 2 =
⎡
⎣ S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠
⎤
⎦

2

−
S∏

s=1

ps ×
S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠−

⎡
⎣ S∑

s=1

⎛
⎝rs

√
1 − ps

∏
t =s

pt

⎞
⎠
⎤
⎦

2

=
S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠

2

−
S∑

s=1

∑
t =s

⎛
⎝rsrt

∏
k =s

pk

∏
l =t

pl

⎞
⎠−

S∏
s=1

ps ×
S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠

−
S∑

s=1

⎛
⎝rs

∏
t =s

pt

⎞
⎠

2

+
S∑

s=1

⎡
⎣r2

s ps

⎛
⎝∏

t =s

pt

⎞
⎠

2⎤
⎦−

S∑
s=1

∑
t =s

⎛
⎝rsrt

√
1 − ps

√
1 − pt

∏
k =s

pk

∏
l =t

pl

⎞
⎠

=
S∑

s=1

⎡
⎣∑

t =s

rsrt

∏
k =s

pk

∏
l =t

pl − rs(1 − rs)pt

∏
k =s

pk

∏
l =t

pl −
∑
t =s

⎛
⎝rsrt

√
1 − ps

√
1 − pt

∏
k =s

pk

∏
l =t

pl

⎞
⎠
⎤
⎦

=
S∑

s=1

∑
t =s

⎧⎨
⎩rsrt

∏
k =s

pk

∏
l =t

pl [1 − pt −
√

(1 − ps)(1 − pt )]

⎫⎬
⎭. (J6)

Here, regarding the sum of the term with (s, t ) = (x, y) and that with (s, t ) = (y, x) as a new term for ∃(x, y) (x, y =
1, 2, . . . , S, x < y), Eq. (J6) can be rewritten as

E2 − F 2 =
S∑

s=1

∑
t<s

⎧⎨
⎩rsrt

∏
k =s

pk

∏
l =t

pl [2 − ps − pt −
√

(1 − ps)(1 − pt )]

⎫⎬
⎭

=
S∑

s=1

∑
t<s

⎡
⎣rsrt (

√
1 − ps −

√
1 − pt )

2
∏
k =s

pk

∏
l =t

pl

⎤
⎦. (J7)

Due to Eq. (J7) and the non-negativity of both E and F , we
have E > F , thereby resulting in

f (α) > 0. (J8)

APPENDIX K: SPECIFIC CONDITIONS ON αcr,max

Here, we discuss the specific conditions on αcr,max.
Table VI summarizes explicit expressions for f (α =

αcr ) = 0, where the upper (lower) expression holds in Region
2 (Region 3). For S = 2, the lower expression becomes a
quadratic equation in αcr. However, the upper expression
becomes a quartic equation that is too difficult to solve ana-
lytically those conditions. Note that for S > 2, both equations
become more than quartic.

From its definition of αcr,max, αcr,max can be written as

αcr,max = max{αcr}, (K1)

where {αcr} represents the set of αcr.

APPENDIX L: DERIVATION OF K
′

In this Appendix, we derive the approximate averaged min-
imal number of exchanges K

′
necessary to sort the particles

for two special cases: S = 2 and S = N .

1. S = 2

First, for a general calculation of K
′
, τG has to be fixed

to be either of the two possible patterns. Once τG is fixed to
τ̃G, K ′(τG, τR) can be determined uniquely for all possible τR.
Without loss of generality, we can assume rN � (1 − r)N and
τG can be fixed as illustrated in the lower panel of Fig. 23.
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TABLE VI. Explicit expressions for f (α = αcr ) = 0.

Region No. Explicit expressions for f (α = αcr ) = 0

N (ph−α2
cr )

αcr (ph−αcr ) −∑v

s=1
2rsN

1−√
1−ps

−∑S
s=v+1

rsN (ps−α2
cr )

αcr (ps−αcr ) = 0
2

∧
{

1 − √
1 − pv � αcr < 1 − √

1 − pv+1 for 1 � v � u − 2

1 − √
1 − pv � αcr < 1 − √

1 − ph for v = u − 1

2N
1−√

1−ph
−∑v−1

s=1
2rsN

1−√
1−ps

−∑S
s=v

rsN (ps−α2
cr )

αcr (ps−αcr ) = 0
3

∧
{

1 − √
1 − ph � αcr < 1 − √

1 − pv for v = u

1 − √
1 − pv−1 � αcr < 1 − √

1 − pv for u + 1 � v � S

Suppose that for τR, k (0 � k � rN ) particles of species 1
are located in the Area 2 (k particles of species 2 are located
in the Area 1, conversely) as described in the lower of Fig. 23.
Under this supposition, k-time exchanges are necessary for
sorting particles from τR to τG. Considering that τR satisfying
this supposition possibly has (rN

k ) × ((1 − r)N
k ) sequences, aN =∑

∀τR
K ′(τ̃G, τR) can be written as follows;

aN =
∑
∀τR

K ′(τ̃G, τR)

=
rN∑

k=1

k

(
rN

k

)(
(1 − r)N

k

)

=
rN∑

k=1

rN

(
rN − 1

k − 1

)(
(1 − r)N

k

)

= rN
rN∑

k=1

[(
rN

k

)(
(1−r)N

k

)
−
(

rN − 1

k

)(
(1−r)N

k

)]
.

(L1)

FIG. 23. Schematic illustration of τR (upper panel) and τG (lower
panel), where the red particles belong to species 1 and the green ones
to species 2. In the upper panel, we show one example from among

all (rN
k ) × ((1 − r)N

k ) possible random sequences, whereas in the lower

panel we show one of the two possible group sequences. Note that
r1 = r, r2 = 1 − r.

Using the Vandermonde convolution formula, Eq. (L1) can be
rewritten as follows:

aN = rN

[(
N

rN

)
−
(

N − 1

rN

)]
. (L2)

Because the sequence τR can take any of N!/{(rN )!((1 −
r)N )!} possible patterns with equal probability, we can finally
reduce K

′
to

K
′ = (rN )![(1 − r)N]!

N!
aN = r(1 − r)N. (L3)

Figure 24 compares the simulation (circles) and
theoretical (curves) values for various N ∈ {1000 (red),
5000 (green), 10 000 (blue)} for S = 2. The simulations
show very good agreement with our exact analysis.

2. S = N

When S = N , τG also has to be fixed as either of the two
possible patterns—an ascending or a descending sequence—
for a general calculation of K

′
, as illustrated in the upper

panel of Fig. 25. Once τG is fixed to τ̃G, K ′(τG, τR ) can be
determined uniquely for all possible τR.

If we regard the entire sequence as consisting of two
parts—the first (blue) particle and other (N − 1) particles, as
described in the lower panel of Fig. 25—the sorting procedure
can also be divided into two parts: sorting (N − 1) particles
plus the last exchange for the first particle. If the first particle

FIG. 24. Simulation (circles) and theoretical (curve) values
of K

′
as functions of r for various N ∈ {1000 (red), 5000

(green), 10 000 (blue)} with S = 2. We obtained each of the simu-
lation values by averaging over 100 trials.
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FIG. 25. Schematic illustration of τG (upper panel) and τR (lower
panel) for the case S = N . In the lower panel, we show one example
of all N × (N − 1)! possible sequences. Note that p1 < p2 < · · · <

pN for the ascending sequence, whereas p1 > p2 > · · · > pN for the
descending one.

corresponds to the particle with hopping probability pl (l =
1, 2, . . . , N ), and noting that the sequence for the remain-
ing (N − 1) particles has (N − 1)! possible patterns, we can
calculate the quantity bN,l =∑∀τ ′

R,l
K ′(τ̃G, τ ′

R,l ) as follows:

bN,l =
∑
∀τ ′

R,l

K ′(τ̃G, τ ′
R,l )

=
{

aN−1 for l = 1,

aN−1 + (N − 1)! for l = 2, 3, . . . , N,
(L4)

where N > 1 and τ ′
R,l represents the sequence for which the

first particle is the particle with hopping probability pl . Note
that the last sort is not necessary in the case where l = 1.

Therefore, for N > 1, we can write aN =∑∀τR
K ′(τ̃G, τR ):

aN =
∑
∀τR

K ′(τ̃G, τR)

=
N∑

l=1

∑
∀τ ′

R,l

K ′(τ̃G, τ ′
R,l )

FIG. 26. Simulation (circles) and theoretical (line) values of KN
′

as a function of N . We obtained each of the simulation values by
averaging over 100 trials.

=
N∑

l=1

bN,l

= (N − 1) × (N − 1)! + NaN−1. (L5)

Dividing both sides of Eq. (L5) by N!, we obtain

cN = cN−1 + N − 1

N
= c1 +

N∑
k=1

k − 1

k
, (L6)

where cN = aN/N! and N > 1. With the initial condition c1 =
a1 = 0, aN is finally reduced to

aN = N!

(
N −

N∑
k=1

1

k

)
, (L7)

which we note holds for the case N = 1.
The sequence τR can take N! patterns with equal probabil-

ity, and therefore, K
′
is finally reduced to

K
′ = aN

N!
= N −

N∑
k=1

1

k
. (L8)

Figure 26 compares the simulation (circles) and theoretical
(line) values for S = N . The simulations again show a very
good agreement with our exact analysis.
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