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Simulating quantum thermodynamics of a finite system and bath with variable temperature
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We construct a finite bath with variable temperature for quantum thermodynamic simulations in which
heat flows between a system S and the bath environment E in time evolution of an initial SE pure state.
The bath consists of harmonic oscillators that are not necessarily identical. Baths of various numbers of
oscillators are considered; a bath with five oscillators is used in the simulations. The bath has a temperaturelike
level distribution. This leads to definition of a system-environment microcanonical temperature TSE (t ) which
varies with time. The quantum state evolves toward an equilibrium state which is thermal-like, but there is
significant deviation from the ordinary energy-temperature relation that holds for an infinite quantum bath, e.g.,
an infinite system of identical oscillators. There are also deviations from the Einstein quantum heat capacity. The
temperature of the finite bath is systematically greater for a given energy than the infinite bath temperature, and
asymptotically approaches the latter as the number of oscillators increases. It is suggested that realizations of
these finite-size effects may be attained in computational and experimental dynamics of small molecules.
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I. INTRODUCTION

This paper considers computational simulation of a process
of energy flow as a quantum system becomes entangled with a
very small temperature bath. In the corresponding “classical”
thermodynamic system, we would have an idea of a variable
temperature as energy flows into the finite bath. Here we
ask, does a simulacrum of thermodynamic behavior emerge
when we make the bath very small? Do reasonable ideas of
a variable temperature hold, and is there something akin to
thermal equilibrium with a Boltzmann distribution? We will
find that with a very small “thermal” environment, as small as
five oscillators, it is possible to get behavior that is very much
like thermodynamic behavior. On the other hand, anomalies
are observed related to the notion of temperature with the
small bath. The work here builds on earlier simulations with a
cruder, constant temperature bath [1–6]. Questions of variable
temperature in a very small quantum thermodynamic system
and bath are of more than abstract interest. Our simulations
may not be too much simpler than what is called for in
problems of practical import. Quantum nanodevices can be
imagined whose performance may depend on considerations
similar to those here. Similar in spirit to the approach taken
here, quantum thermalization behavior of a pure quantum
state has recently been observed experimentally in Bose-
Einstein condensates containing as few as six atoms [7].
Recently [8–10], work on molecular “quantum chaos” is being
conceptualized as a venue for the exploration of contemporary
ideas about the foundations of quantum thermodynamics, to
which we turn next.

There have been a variety of simulations of quantum ther-
modynamic processes, including the very basic elementary
process of heat flow into a bath [1–6]. These have been
successful in recovering standard thermodynamic behavior,
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with attainment of thermal equilibrium and a Boltzmann
distribution for the system, with a properly behaving temper-
ature. However, these investigations have used rather simple
models of the temperature bath, sometimes with a grossly
discrete model of energy levels [1,2,4], in others with an
approximation to continuous levels in the bath [3,5,6], but
always to our knowledge with a model of an effectively
infinite bath with fixed temperature in mind. Usually also,
a very simple coupling between system and environment is
assumed, typically, a random-matrix coupling without signif-
icant structure. Paralleling (and sometimes preceding) these
simulations, there has been a great deal of work [2,3,9–32] ex-
amining theoretical foundations of quantum thermodynamics.
Generally, this has focused on the large N limit of quantum
entangled systems. In our simulations here the focus is rather
on the extent to which thermodynamiclike behavior persists
as the total system becomes very small. There have been
simulations examining ergodicity and energy flow in small
total systems [9–12,33,34], but these have not involved the
type of variable temperature analysis that is our focus here.
We construct a finite, variable temperature bath, also making
use of a structured coupling which is far more selective than
the random-matrix coupling used in many earlier simulations.
We will find that we can build a simulation model with
features very much like a variable temperature and thermaliza-
tion, but with significant anomalies due to the finite bath, with
some challenges to overcome having to do with the nature of
the coupling.

As noted briefly above, and in more detail in the conclud-
ing section, there are real molecular systems that could be
considered as laboratories for “postclassical” thermodynamic
effects. Consideration of small size is a recent “dimension”
of quantum thermodynamics beyond that introduced long
ago with the advent of quantum levels. A third innovation
might come with novel effects from combining quantum time
evolution with multiple small baths of the kind developed here
for a single bath.
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II. MODEL SYSTEM-ENVIRONMENT “UNIVERSE”

In this section, we detail the system and environment
in our model; we treat the system-environment interaction
separately, in Secs. V and VI.

We will deal with a total system or “universe” pure state
for a coupled and entangled system and environment, or
temperature bath. The total Hamiltonian includes system S ,
environment E , and interaction SE components

Ĥ = ĤS + ĤE + ĤSE . (1)

For the basis set we will use a truncation of the full SE tensor
product basis to a subset that contains all of the SE basis
states |n〉 ⊗ |ε〉 in the energy range

0 � En + Eε � 13, (2)

similar to the “thermal basis” described in Ref. [3]. The
numerical convergence with this basis will be discussed in
Sec. VI. Time evolution of the pure SE state |�〉 is carried
out by numerically diagonalizing Ĥ and then calculating a
series of timesteps using the Schrödinger equation |�(t )〉 =
exp(−iĤt )|�(0)〉 (h̄ = 1). In this section we will develop the
system and environment basis sets and Hamiltonians ĤS and
ĤE; later sections develop ĤSE .

The system Hamiltonian consists of a set of five evenly
spaced levels

〈n|ĤS |n〉 = h̄ωS n, (3)

with frequency ωS = 0.5 and quantum number n =
0, 1, . . . , 4. These choices of ωS and n give a maximum
system energy Emax

S = 2 that is reasonably small compared
to the initial SE state total energies we will consider in this
paper, 〈Ĥ〉 � 4, where Ĥ is the total Hamiltonian of Eq. (1).
With larger Emax

S we have found that it is more difficult to
get good system thermalization, since very few environment
levels are paired with the highest energy system levels at the
total energy 〈Ĥ〉 when Emax

S ≈ 〈Ĥ〉. This choice of ωS and
n = 0, 1, . . . , 4 ensures that there is always a fair amount of
energy in the environment, so that it can act properly as a heat
bath to the system in our simulations.

We want to have an environment or bath E with certain
properties more general than in earlier work [1–6], and more
similar to real physical systems. We want the temperature to
vary with energy, instead of being fixed. We would also like
for the energy and temperature to be close to proportional,
T ∼ E , to the extent possible in a finite model, and exactly
so in the limit of a large bath. Furthermore, we may want the
bath to have some significant structure, so that the couplings
might also have some structure, unlike the abstract undefined
environment levels with random couplings used earlier. To do
all of these things, we will construct the bath as a collection
of oscillators.

Consider first a set of degenerate oscillators with equal
frequencies and level spacings h̄ω = 1. This “Einstein heat
capacity” system has the well-known degeneracy pattern and
density of states

ρEin(η, ntot ) = (η − 1 + ntot )!

(η − 1)!ntot!
, (4)

where ρEin(η, ntot ) is the number of ways to distribute ntot total
energy quanta into η oscillators. A more physically realistic
model will generalize to oscillators of different frequencies,
so as to obtain something resembling a continuous distribution
of levels, while approximately maintaining the overall pattern
of Eq. (4). To this end, we will extend the distribution ρEin to
variable frequencies and energies using a continuous function
ρE that interpolates between the discrete points in Eq. (4).
Then, we will devise a set of distinct harmonic oscillator fre-
quencies {ωosc} that approximates the continuous distribution.
The total environment Hamiltonian is expressed as the sum of
oscillator Hamiltonians

ĤE =
η∑

osc=1

Ĥosc, (5)

where the Ĥosc have energy eigenvalues

〈nosc|Ĥosc|nosc〉 = h̄ωoscnosc, (6)

where nosc is the quantum number of a given oscillator. We
will analyze the density of states ρĤE

of the Hamiltonian ĤE,
finding good agreement with the continuous density ρE , and
then analyze the temperature dependence of the model.

We begin by developing a continuous density function ρE
in place of the highly degenerate density of Eq. (4). The most
straightforward way to do this is to replace the factorials in (4)
with gamma functions

ρE(EE) = �(η + EE)

�(η)�(EE + 1)
, (7)

where the discrete number of total quanta ntot has been re-
placed by a continuous environment energy EE. The � func-
tion extends the density to noninteger values of the energy EE,
and agrees with the original density ρEin at integer EE = ntot,
since, for example, �(EE + 1) = EE! = ntot! when EE = ntot

is an integer. The top of Fig. 1 shows how the continuous
density ρE extends the degenerate oscillator density ρEin to
noninteger EE.

The next step is to devise a set of oscillator frequencies
for the Hamiltonian ĤE in Eq. (5) with a density ρĤE

that
follows the interpolating function ρE . An η = 5 oscillator
bath will be used for the simulations. This value of η is
large enough to give a density of states with an exponential-
like dependence on energy, which will be imperative for
Boltzmann thermalization of the system S , but also small
enough to make the computations tractable. The frequencies
are generated as random numbers, to make the bath generic.
We first tried generating random numbers 0.5 � h̄ωosc � 1.5,
then rescaling the h̄ωosc so that their average was the same
as the degenerate oscillator frequency h̄ω = 1 seen in the top
of Fig. 1. However, when constructing the Hamiltonian ĤE in
Eq. (5) using these frequencies, it was found that the resulting
density of states ρĤE

was always greater than the desired ρE
of Eq. (7). Instead, good agreement ρĤE

≈ ρE is consistently
found by rescaling the random h̄ωosc values according to their
geometric mean,

η

√√√√ η∏
osc=1

h̄ωosc = h̄ω = 1, (8)
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FIG. 1. (a) The continuous density ρE from Eq. (7) interpolates
between the degenerate oscillator densities ρEin from Eq. (4). (b) Os-
cillator density of states histogram for the five-oscillator bath with
the frequencies in Table I.

as discussed in detail shortly. Equation (8) sets the unit of
energy in this paper and also sets the relationship between the
collection of variable frequencies {h̄ωosc} and the degenerate
oscillator frequency h̄ω assumed in connection with Eq. (4).
The relation Eq. (8) has previously been noted by Landau and
Lifshitz [35] where it was also found to give the necessary link
between variable and fixed frequency oscillators in a different
context.

The ĤE that we use with Eq. (5) uses the frequencies given
in Table I that come from randomly chosen values that have
been rescaled according to Eq. (8). The results are robust for
other choices of random and rescaled {h̄ωosc}. The density of
states ρĤE

for this set of frequencies is shown in the histogram
boxes in the bottom of Fig. 1, and is in excellent agreement
with ρE of Eq. (7). Recall that ρE also agrees with the fixed
frequency ρEin as seen in the top of Fig. 1. This demonstrates
that Eq. (8) gives the desired correspondence between the
densities of states for the variable and identical frequency
oscillators:

ρĤE
≈ ρE = ρEin (9)

TABLE I. Oscillator frequencies in the five-harmonic-oscillator
environment shown to six decimal places.

h̄ω1 h̄ω2 h̄ω3 h̄ω4 h̄ω5

0.620 246 0.735 401 1.146 315 1.316 886 1.453 415

at integer energies EE = ntot and

ρĤE
≈ ρE (10)

at noninteger energies [where the single-frequency ρEin is
undefined in Eq. (4)]. The correspondence between the some-
what random ρĤE

and the well-controlled, analytical ρE will
allow us to determine analytical temperature relationships for
our oscillator bath using the relatively simple function ρE.
This is developed in the next section.

III. TEMPERATURE

This rather involved section addresses key questions about
the “thermal” character introduced by the small finite bath
in our model. Does the standard infinite bath relation E ∼ T
hold at high energy? What is the low temperature behavior
of the finite bath? While sensible notions of temperature will
emerge, we will also see that there are anomalies in both of
these aspects, related to the finite size of the bath.

We usually think of temperature in terms of a microcanon-
ical ensemble with a very large, effectively infinite bath, so
that the temperature is constant. The temperature comes from
the standard relation

1

T
= ∂S

∂E
(11)

applied to the total system + environment SE as the density
of states is varied with energy. In the situation envisaged in
Fig. 2, we start by thinking instead of a temperature TE for the
bath environment initially in isolation from the system. There
are a multiplicity of initial separate system-bath combinations,
each with the same total energy E ; an example is the red
SE state pair in the left of Fig. 2. Each SE combination
has its own initial system energy ES , bath energy EE, and
bath temperature TE. The bath temperature TE is based on a
fixed EE microcanonical energy that is defined only before
the interaction with the system has begun—the system in our
simulations starts in a single zero-order state—so there is
no meaningful independent system temperature. Then, heat
flows between system and bath, leading to a finite change
in a temperature that we want to be defined for the final

FIG. 2. (a) Schematic example of an SE initial state with the
system in the lowest energy level and the environment in a high-
energy Gaussian initial state as described in Sec. IV. The temperature
is TE(EE) from Eq. (13). (b) Schematic of the same state after SE
equilibration, where now there is an SE state pair for each system
level, all at the same total S + E energy (examples of the SE state
pairs are shown by the arrows). The temperature is TSE from Eq. (23),
which is the average of the 1/TE across all of the SE state pairs.
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equilibrium state, and perhaps in between as well. The final
temperature TSE after the heat flow comes from the micro-
canonical ensemble for the total system SE , which consists of
the union of all the system-bath subensembles, all with total
SE energy E , as in the right of Fig. 2. An interesting relation,
Eq. (23), will be found to hold between the inverse tempera-
ture 1/TSE of the complete ensemble of the SE total system,
and the average of the inverse temperatures 1/TE of the baths
of the subensembles. In fact, it will be possible to define a
time-varying “master temperature” TSE (t ) in Eq. (24) for the
time-dependent intermediate state |�(t )〉 in the equilibration
process. Thus, we will obtain a satisfying unified description
of all the possible processes of the type in Fig. 2.

A. Temperature for initial isolated environment

First, we develop the temperature TE for a finite environ-
ment that is thermally isolated from the system. (This will turn
out to be the initial state temperature in the time-dependent
temperature TSE (t ) to be developed in Sec. III C.) We will
compare this finite bath to an infinite “true” temperature
bath of infinitely many oscillators. The system is in a single
zero-order initial state n0, corresponding to our initial state
in Fig. 2. The total energy is E , the system has energy
ES = En0 , and the environment has energy EE = E − ES .
The temperature is defined using the standard thermodynamic
relation of Eq. (11). This is evaluated using the Boltzmann
entropy S = kB ln W (n0, E ), with W (n0, E ) the number of
SE states |n0, ε〉 in a microcanonical energy shell [E −
δE/2, E + δE/2], again with the system in the level n0. Since
n0 is fixed, W (E ) = ρE (EE)δE is just the number of environ-
ment states, where ρE in Eq. (7) is the smoothed continuous
density function describing the density of discrete states in
our Hamiltonian ρĤE

, following Eqs. (9) and (10). The initial
temperature is then related only to the environment, and we
will label it TE, and rewrite it in terms of the density ρE as

1

TE
= dρE/dEE

ρE
. (12)

Using Eq. (7) for ρE then gives

1

TE
= ψ (EE + η) − ψ (EE + 1) =

η−1∑
m=1

1

EE + m
, (13)

where ψ (x) = [d�(x)/dx]/�(x) is the digamma function.
The last equality comes analytically from η − 1 applications
of the recurrence relation [36] ψ (x) = ψ (x − 1) + 1/(x − 1)
to the term ψ (EE + η).

It is not clear just from looking at Eq. (13) how our
temperature TE for the finite bath will behave in comparison
to standard temperature-energy relations involving an infinite
fixed-temperature bath. In the next two sections we will
make this comparison, using the paradigmatic standard of an
average oscillator in an infinite oscillator bath. Section III A 1
will discuss the convergence of TE from Eq. (13) to the
standard temperature-energy relation as the size of the bath
is increased, with convergence to the high-energy relation
T ∼ E . Section III A 2 will discuss deviations related to the
finite size of the bath, including deviations from T = 0 at low
energy, and deviations in the heat capacity even at high energy.
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FIG. 3. Temperatures TE converge to the Einstein solid temper-
ature relation as the number of bath oscillators η → ∞. Deviations
outside this limit are due to the finite size of the bath.

1. Comparison of finite and infinite bath:
Energy-temperature relation

The heat bath described above is a finite collection of
oscillators. We will compare this to a true temperature bath
consisting of an infinite collection of oscillators. For this, we
use the energy-temperature relation from Einstein and Planck
for a harmonic oscillator in an infinite temperature bath:

〈nosc〉 = 1

e1/T − 1
(14)

(h̄ω = 1 and kB = 1), where 〈nosc〉 is the expected number of
energy quanta in the oscillator. (This relation was obtained
by Einstein in his heat capacity model [37] by treating a
solid as a collection of identical oscillators in an exterior
temperature bath using the canonical ensemble. The result is
the same regardless of the ensemble setup, microcanonical or
canonical.) We will find that our TE for the finite bath behaves
much like a standard temperature, but also has significant
differences from the Einstein relation, Eq. (14), leading also
to deviations in the heat capacity from the Einstein model.
However, we also find that TE agrees properly with Eq. (14)
in the limit of a large number of oscillators. The development
is based on the correspondence ρE ≈ ρĤE

in Eqs. (9) and (10),
recalling the remarks there about the analytical function ρE.

These relationships are represented in Fig. 3 and later for
the heat capacity in Fig. 4. It will be instructive to consider the
total energy of the “Einstein oscillator” including both energy
quanta and the zero-point energy, 〈E (+zp)

osc 〉 = 〈nosc〉 + 1/2.
The orange (light gray) curve in Fig. 3 shows the relationship
between 〈E (+zp)

osc 〉 and temperature based on Eq. (14). The
curve begins at the zero-point energy at T = 0, then quickly
approaches the well-known quantum equipartition relation

lim
〈nosc〉→∞

T = 〈nosc〉 + 1
2 = 〈

E (+zp)
osc

〉
, (15)

shown by the purple (medium gray) line in the background of
the figure.
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FIG. 4. Heat capacities for the energy-temperature curves in
Fig. 3.

For comparison, Fig. 3 also shows the relationship between
〈Eosc〉 + 1/2 and TE for finite oscillator baths with various η,
again, based on the correspondence ρE ≈ ρĤE

in Eqs. (9) and
(10). The average energy per oscillator from energy quanta
〈Eosc〉 ≡ EE/η is the analog for our bath of 〈nosc〉 for the
Einstein oscillator in Eqs. (14) and (15). The quantity 1/2 then
shifts this up by the Einstein oscillator zero-point energy to
allow for a direct comparison in the figure between our TE
and the temperature in the Einstein model. In general, the
exact zero-point energy in our model will not be 1/2 in our
units (unlike the Einstein model), but will instead depend on
the frequencies of the oscillators. Here, the 1/2 is an arbitrary
added quantity for the finite baths, inserted for comparison to
the Einstein bath.

For the η = 5 bath we use for our simulations, shown by
the black solid curve, the temperature behavior is significantly
different than the orange (light gray) infinite bath curve. As we
increase the number of oscillators η we find that the curves
get closer to the standard orange curve for an infinite bath.
For example, the dashed-dotted dark purple (dark gray) line
for η = 500 oscillators rests on top of the orange line for
the infinite bath T . The convergence towards Eq. (14) with
increasing η confirms that our temperature gives the standard
relation for an infinite bath in the thermodynamic limit η →
∞, as expected with a reasonable temperature definition. With
this in mind, we next discuss in more detail the much more
interesting question of anomalies in temperature behavior
associated with small number of oscillators η in the finite bath.

2. Anomalous temperature behavior associated
with a very small bath

The very small size of the η = 5 bath leads to anomalous
temperature behavior at both high and low energies, as seen
in Fig. 3. First, consider the behavior of TE at low energies.
Recall that we treat this as a continuous variable that will
be related to the continuous variable EE in Eq. (13). The
temperatures for all of the finite η oscillator baths in Fig. 3

are nonzero at the minimum value of energy 1/2 in the figure
[when EE = 0 in Eq. (13), the rationale for the 1/2 being that
given in the last section]. The nonzero minimum temperatures
seem to be an unavoidable consequence of combining a finite
bath with the standard temperature definition Eq. (12). The
temperature is only zero when dρE /dEE = ∞ in Eq. (12)—
an evidently impossible condition for a finite bath with a
limited number of states. However, as seen in Fig. 3, the
curves for increasing η converge to the standard infinite bath
relation in which T = 0 at the minimum energy 1/2.

At high energy, TE approaches the asymptotic relation

lim
EE→∞

TE = EE + η/2

η − 1
=

(
〈Eosc〉 + 1

2

)
η

η − 1
, (16)

where again 〈Eosc〉 = EE/η refers to the average energy per
nonidentical oscillator of the finite bath, although it also
applies to an infinite “Einstein bath” of identical oscillators.
Equation (16) comes from the analytical limit of the right-
hand side of Eq. (13), which we evaluated using Mathematica.
Equation (16) differs from the high-energy Einstein relation,
Eq. (15), by the factor of η/(η − 1). This difference is negli-
gible in the thermodynamic limit η → ∞ but very significant
for small η, as seen by the differing slopes for the solid black
and orange (light gray) lines in Fig. 3 at high energy.

The differing slopes correspond to a difference in heat
capacities

C = d〈Eosc〉
dT

(17)

between the different temperature-energy relations. The heat
capacities for all of the temperature-energy curves in Fig. 3
are plotted in Fig. 4. The heat capacity curves are similar
to the standard Einstein behavior at low temperature, but
they are systematically lower at high temperature, where they
approach asymptotic values C → (η − 1)/η < 1, less than
both the Einstein relation and the standard equipartition result.

We will find in Sec. VII that the anomalous temperature
behavior seen in Fig. 3 is critical in obtaining the correct ther-
malized Boltzmann distribution for the system: the anomalous
scaling behavior ∼η/(η − 1) in the figure must be taken into
account to correctly describe the equilibrium S Boltzmann
distribution and the SE thermodynamic behavior.

B. System-environment microcanonical temperature

We now consider the equilibrium SE state and the tem-
perature TSE for the complex entangled state |�(t )〉 shown
schematically in the right of Fig. 2; this will be the equilib-
rium value of the time-dependent temperature TSE (t ) to be
developed in Sec. III C.

TSE is defined following the same reasoning leading to
Eq. (12), giving

1

TSE (E )
= dρSE /dE

ρSE
. (18)

To evaluate the temperature we will examine ρSE as the
density of zero-order states, just as we did for the isolated bath
temperature ρE. While there is some arbitrariness in doing this
now with ρSE , it is operationally simple, and seems at least as
reasonable a choice as other possibilities. It is consonant with
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what we have done with ρE, and will lead to the simple result,
Eq. (23).

The total density of SE zero-order states at energy E
has contributions from all of the SE state pairs that are
in the microcanonical energy shell E − δE/2 � ES + EE �
E + δE/2, that is, each of the SE state pairs shown schemat-
ically in Fig. 2. The total density of SE states is the sum of
bath densities that pair with each system level n at the total
energy E = EE + En,

ρSE (E ) =
∑

n

ρE (E − En). (19)

The SE temperature can then be written as

1

TSE (E )
=

∑
n

dρE (E − En)/dE∑
m ρE (E − Em)

. (20)

The derivatives can be rewritten in terms of ρE and TE using
Eq. (12), giving

1

TSE (E )
=

∑
n

ρE (E − En)∑
m ρE (E − Em)

1

TE(E − En)
. (21)

The fraction involving the densities gives the number of
microcanonical states with the system in the level En relative
to the total number of microcanonical states. This is simply
the microcanonical probability of the system level En,

ρE (E − En)∑
m ρE (E − Em)

= pmicro(En). (22)

Putting this into Eq. (21) gives the simple result

1

TSE (E )
=

∑
n

pmicro(En)

TE(E − En)
=

〈
1

TE(E − En)

〉
micro

. (23)

Equation (23) says that the reciprocal temperature 1/TSE for
the full SE microcanonical ensemble is simply the average of
the reciprocal environment temperatures 1/TE for each of the
SE state pairs within the microcanonical ensemble.

It is interesting that the derivation of TSE in Eqs. (18)–(23)
used only the standard temperature definition in Eqs. (12) and
(18) and the choice of the zero-order basis for the densities
of states ρE and ρSE , used to formulate the sum in Eq. (19).
In this respect the relation, Eq. (23), is completely general, so
it could also be used for other SE thermodynamic models
which could potentially be much different from the simple
oscillator model we use here.

C. Continuously varying time-dependent temperature

The temperature relations in the previous sections were
derived using the standard expression, Eq. (11), for the micro-
canonical ensemble, applied to the initial and final equilibrium
states of the SE universe. It is useful to consider a time-
dependent generalization of the microcanonical temperature
that can be defined during thermalization. This uses time-
dependent system probabilities from the system reduced den-
sity operator ρ̂S (t ) in place of the microcanonical probabilities
in Eq. (23), giving

1

TSE (E , t )
=

∑
n

ρn,n
S (t )

TE(E − En)
=

〈
1

TE(E − En)

〉
ρ̂S (t )

, (24)

where ρn,n
S is the probability of the system energy level En.

Note that this time-dependent temperature agrees with the
initial temperature TE in Eq. (13) and with the final temper-
ature TSE in Eq. (23). TSE (t ) is the “master temperature” that
describes the entire equilibration and thermalization process.
Using Eq. (24) we will be able to follow the time-dependent
changes in temperature as S and E begin in the initial state,
exchange energy during thermalization, and eventually reach
thermal equilibrium. This TSE (t ) is what we will be looking
at as the “temperature” throughout the simulation.

IV. INITIAL STATES FOR THE SIMULATIONS

The calculations start at t = 0 with separable SE initial
states

|�n0〉 = |n0〉|ε0〉, (25)

where the initial system level is |n0〉 and the initial environ-
ment state |ε0〉 has Gaussian distributed basis state probabili-
ties

|ε0〉 ∼
∑

ε

exp

(
−

(
Eε − Eε0

)2

4σ 2
E

)
|ε〉, (26)

with σE = 0.5 (the results are similar for other 0.1 � σE �
1 that we have tested). In Eq. (26) the environment state is
centered at an energy

Eε0 = E0 − En0 (27)

which varies with n0, so that we are able to generate states that
have the same nominal SE central energy E0 = Eε0 + En0 but
different system levels n0. This will be useful for examining
temperature equilibration, where the final state in principle
will depend on the total energy but not on n0. An example of
the total probability per unit energy for an n0 = 4 initial state
|�n0〉 at energy E0 = 5 is shown in the top of Fig. 5. Each
histogram bar in the figure shows the sum of SE basis state
probabilities within the surrounding zero-order energy unit;
the actual state is naturally much more complex in the zero-
order basis. Note the logarithmic scale in the figure; the state
is pretty sharply peaked around its nominal central energy. A
slight asymmetry can be observed about the central energy
E0 = 5. This is because there are more basis states per unit
energy above E0 than below due to the increasing environment
density of states. The asymmetry makes the average energy
of the state slightly larger than the nominal energy E0 in a
way that depends on the environment density, which in turn
depends on the environment energy Eε0 and the system level
n0. This gives a slightly different initial state energy for each
n0, but the energies are close to the same.

We next consider the time evolution of this state, first
with a random-matrix coupling which we will find leads to
pathological behavior, then with a more refined coupling that
will be found to give physically satisfactory results.

V. RANDOM-MATRIX COUPLING AND RUNAWAY
THERMALIZATION DYNAMICS

In this section we begin developing the quantum dynamics
with the coupling Hamiltonian ĤSE of Eq. (1). We begin with
a standard type of coupling, the random-matrix coupling, used
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FIG. 5. Histogram of total quantum state probabilities per unit
energy for an initial Gaussian state (a) and corresponding time-
evolved equilibrium state (b) with a random-matrix coupling with
k = 0.0027. The total probability per unit energy does not converge
to zero at high energy for the equilibrium state, indicating a problem
with the coupling.

to model systems with classically chaotic dynamics [12], and
often invoked in accounting for the existence of thermaliza-
tion in quantum thermodynamics [4,6,12]. We used this in
earlier simulations [1–3] with good results. However, we find
here that with the introduction of a variable temperature, the
random coupling introduces pathological behavior of runaway
spreading of the wave packet. Furthermore, the random cou-
pling is a serious limitation in itself—many important real
systems do not have a random coupling. Thus, to understand
thermalization for more realistic systems, we will want to
explore more discriminating coupling forms.

The construction of ĤSE in Eq. (1) as a random-matrix
coupling begins with a matrix R̂ filled with off-diagonal
elements

〈n|〈ε|R̂|ε′〉|n′〉 = Rnε,n′ε′ . (28)

The Rnε,n′ε′ are random complex numbers Rnε,n′ε′ = Xnε,n′ε′ +
iYnε,n′ε′ as in Ref. [4]. This is more generic than our previous
work in Refs. [1–3], where we used real Rnε,n′ε′ to minimize
numerical effort. We generate the real and imaginary parts
Xnε,n′ε′ and Ynε,n′ε′ each as random numbers from a Gaussian
distribution with standard deviation σ = 1 with probabilities

p(Xnε,n′ε′ ) ∼ e−X 2
nε,n′ε′ /2σ 2

, (29)

and similarly for the imaginary parts Ynε,n′ε′ . We set the
diagonal elements to zero to preserve the oscillator energies in

the zero-order basis, as was done previously in Ref. [3]. The
interaction Hamiltonian is then constructed by multiplying
R̂ by a parameter k that sets the overall coupling strength,
ĤSE = kR̂. This multiplication scales the random numbers so
that their standard deviation becomes σ = k, consistent with
the description in our earlier work [1–3] [e.g., in Eq. (10) of
Ref. [1]]. We chose k to be the size of the average level spacing
of the system-environment universe at our initial state energy
E0 = 5, since we have found that smaller k do not give proper
thermalization.

Figure 5 shows time evolution with this coupling. With
this coupling the initial Gaussian state associated with the top
panel evolves in time to the state of the bottom panel. The time
evolution evidently leads to runaway spreading of the wave
packet with probability in high-energy states that does not
appear to be converging to zero. This is not how a physically
reasonable state should behave.

It is important to understand why this coupling causes
runaway behavior here, because it was not observed, at least
so prominently, in our earlier simulations with a fixed tem-
perature bath. The coupling causes some spreading of the
wave packet to basis states of all energies, with the amount of
probability per basis state decreasing rapidly as the states get
farther off resonance from the initial state energy E0 = 5. This
might seem to entail decreasing probabilities at the top edge
of the basis. However, the number of E basis states per unit
energy increases very rapidly with increasing energy in the
variable temperature bath, as shown in Fig. 1, so that many
more basis states contribute to the total probability in each
successive energy unit. Taken together, the total probability
per unit energy does not converge to zero as it should, as
clearly seen in Fig. 5. This runaway coupling is a problem
that needs to be addressed next.

VI. SELECTIVE COUPLING “TAMES”
THERMALIZATION DYNAMICS

We will see that by defining a suitably much more selective
coupling, physical results are obtained with both thermaliza-
tion and contained spreading of the time-dependent quantum
SE state. The basic idea is to “tame” the coupling to limit the
range of transitions, especially to high-energy states.

As before with the random-matrix coupling, we begin with
a coupling constant k and a random matrix R̂ as in Eq. (28).
To construct ĤSE , we take each individual matrix element
of kR̂ and multiply it by an exponential “taming” factor that
depends on the quantum number differences between the
coupled states:

〈n|〈ε|ĤSE |ε′〉|n′〉

= kRnε,n′ε′ exp

(
−γS |n| − γE

η∑
osc=1

|nosc|
)

, (30)

where |n| = |n − n′| is the quantum number difference
between the coupled system states and

∑
osc |nosc| is the

total quantum number difference for the individual oscillators
in the coupled environment states. The parameters γS and
γE suppress the coupling between SE states depending on
how much they vary in quantum number; for example, the
coupling that moves one quantum between the system and
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FIG. 6. Time-evolved state with the “tamed” coupling Eq. (30)
has probabilities that converge to zero at high energy. The initial state
was the same as panel (a) of Fig. 5.

bath is stronger than the coupling that moves two quanta. This
limits the strength of transitions to high-energy states, since
they typically differ significantly in their quantum number
distributions, thereby addressing the runaway problem.

A coupling scheme similar to Eq. (30) has been put for-
ward by Gruebele [33,34] in the context of intramolecular
vibrational energy transfer, where he has argued that the ex-
ponential quantum-number dependence of the coupling is an
approximate generic feature in molecular vibrational systems.
Deutsch [12] has also said that a similar exponentially-tamed
random-matrix coupling can be obtained through a second-
order perturbation theory analysis and that the exponential
taming is needed to prevent runaway behavior in large quan-
tum thermodynamic systems.

The tamed coupling has three parameters k, γS , and γE
that we choose somewhat arbitrarily for our model, with an
aim towards obtaining physical thermalization behavior. The
k sets the “baseline” coupling strength; if k is too small,
then thermalization will be impossible. The γE restricts the E
transitions to address the runaway problem; it must be large
enough to restrict the spreading with large energy differences,
as needed for convergence, but also small enough to allow
transfer between nearby E levels, as needed for thermaliza-
tion. The γS controls how easily the system can transition
between its levels; it must be small enough that all of the
system levels can be accessed during the dynamics.

In our simulations we choose a coupling constant k = 0.15.
This is much larger than the k we used with the random-
matrix coupling, to balance the exponential taming factors.
We choose a relatively small system taming factor γS = 0.125
and a large environment factor γE = 1. This parameter choice
gives good system thermalization behavior while limiting the
environment transitions strongly enough to get good conver-
gence within our basis. The effectiveness of this coupling and
parameter choice is demonstrated by the time-evolved state
in Fig. 6. The state corresponding to this figure began as an
initial Gaussian state as seen in the top of Fig. 5, then it was
evolved in time to equilibrium under the full Hamiltonian,
Eq. (1), containing the tamed coupling interaction ĤSE from
Eq. (30). As seen in the histogram boxes in Fig. 6, the total
probability per unit energy is converging to zero at the top
edge of the basis. This shows that the tamed coupling has

fixed the runaway problem of the random-matrix coupling that
was seen in the bottom of Fig. 5. Using the tamed coupling
we found good convergence with a maximum SE energy
Emax = 13 for the simulations in this paper.

VII. RESULTS: EQUILIBRATION AND
THERMALIZATION IN THE SIMULATIONS

Now we examine key aspects of the system dynamics
during the approach to equilibrium: behavior of the time-
dependent temperature, and the question of equilibrated
Boltzmann distribution with thermalization. Is there thermo-
dynamiclike behavior? But do we also see anomalous small-
size temperature effects suggested by Fig. 3?

A. Variable temperature and small-size effects

First we consider the computed time evolution of a set of
initial states, constructed as described in Sec. IV with different
initial system levels n0 but the same nominal energies E0 = 6.
The total energies for the various n0 are somewhat larger, as
discussed in Sec. IV, with 6.116 � 〈Ĥ〉 � 6.156, where Ĥ is
the total Hamiltonian, Eq. (1). Taking E = 〈Ĥ〉 in Eq. (23) we
get for these states a narrow range of equilibrium microcanon-
ical temperatures 1.912 � TSE � 1.922. Roughly speaking,
we can think of all the states as sharing the common energy
E ≈ 6.14, hopefully corresponding in the simulations to a
common final equilibrium temperature TSE ≈ 1.92, where
1/TSE is the weighted average over all the initial state 1/TE
at the common energy E , as in Eq. (23). We therefore test
in the simulations whether the time-dependent temperature
TSE (t ) of Eq. (24) equilibrates to the common temperature
TSE ≈ 1.92.

Figure 7 shows the time-dependent behavior of the temper-
atures TSE (t ) for each of the initial states n0. For each n0, the
temperature begins in its respective value for an isolated sys-
tem and environment, TSE (t = 0) = TE [from Eqs. (24) and
(13)]. Time evolution takes the temperatures to equilibrium,
where they do in fact fluctuate around the common approx-
imate value TSE ≈ 1.92. Thus, we are getting the common

 1.6
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 2
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Time
n0=0
n0=1
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FIG. 7. Time-dependent temperatures TSE (t ) [Eq. (24)] for a
series of calculations with approximately the same SE energy E ≈
6.14 but different starting S levels n0. Each temperature evolves to
approximately the same final temperature TSE ≈ 1.92 from Eq. (23).
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FIG. 8. System level probabilities evolve in time to the Boltz-
mann distribution at temperature TSE (E = 〈Ĥ〉) from Eq. (23). The
decay of the initial state n0 = 0 is described by Eq. (31) with τ =
1.02 ± 0.03 and δ = 2.38 ± 0.06.

microcanonical TSE value corresponding to energy E ≈ 6.14,
as hoped for. This result validates the path of development
in Sec. III regarding a variable temperature. Observed small
temperature fluctuations at equilibrium are due to the time-
dependent fluctuations in the system density operator ρ̂S (t ),
whose behavior will be discussed shortly in Sec. VII B.

It is a noteworthy prediction based on the considerations of
Sec. III that the finite bath equilibrium temperatures in Fig. 7
should be considerably higher than would be expected using
the infinite bath T from Eq. (14) based on the average number
of quanta per degenerate oscillator 〈nosc〉 = 〈Eosc〉. To test this,
we calculated 〈Eosc〉 = 〈EE〉/η as the time-averaged equilib-
rium value for times 30 < t � 60 averaged over all of the
simulations shown in Fig. 7, giving 〈Eosc〉 = 1.117 ± 0.004.
The infinite bath limit temperature, Eq. (14), from this 〈Eosc〉
is T = 1.564 ± 0.004, much smaller than our temperature
TSE = 1.92. This is because the finite bath temperatures TE in
Eq. (13) [which go into the calculation of the TSE via Eq. (23)]
increase more rapidly with energy than the infinite bath T ,
as was seen in Fig. 3. Thus, the anomalous temperature
scaling of the small environment is demonstrably evident from
this analysis of Fig. 7. We will have more to say about the
anomalous temperature in the next section.

B. Approach to thermal equilibrium and anomalous size effects

Next, we consider the behavior of the system in the ap-
proach to thermal equilibrium. Figure 8 shows an example of
the time-dependent system probabilities ρn,n

S from the reduced
density operator for an initial S level n0 = 0 (the dynamics
are similar for the other n0). As the state begins to evolve
in time, much of the initial state probability is quickly lost
to the other levels, followed by a much slower decay to
the equilibrium Boltzmann distribution marked by the dotted
lines. The behavior can be fit by an empirical power law

ρ
n0,n0
S (t ) = 1√

1 + (t/τ )δ

(
1 − e−En0 /TSE

Z

)
+ e−En0 /TSE

Z
,

(31)

TABLE II. Energy and temperature data for Fig. 9. The energies
E = 〈Ĥ〉 are from the full Hamiltonian in Eq. (1) and the TSE (E )
were calculated from Eq. (23). The average bath-oscillator energies
〈Eosc〉 = EE/η were averaged over the same time window 30 < t �
60 as the system probabilities in Fig. 9 and the infinite bath T were
calculated from Eq. (14) with 〈nosc〉 = 〈Eosc〉.

State E TSE 〈Eosc〉 T [Eq. (14)]

(a) 4.148 1.422 0.750 ± 0.005 1.180 ± 0.006
(b) 6.118 1.913 1.121 ± 0.003 1.568 ± 0.003
(c) 8.099 2.406 1.499 ± 0.002 1.957 ± 0.002

where τ and δ are fit parameters and exp(−En0/TSE )/Z is
the equilibrium Boltzmann probability at the temperature
TSE , as will be discussed further shortly. Power-law decays
have been discussed by Gruebele [34,38] as a generic feature
in molecular vibrational systems that can be described by
couplings similar to our Eq. (30). The decay describes the
nearly exponential drop of the initial state n0 probability at
short times and the longer decay to equilibrium. The other
levels n reach equilibrium at different timescales depending
on how far they are from the initial level n0 = 0; for example,
n = 1 reaches its equilibrium probability relatively quickly,
whereas it takes much longer for the n = 4 level. This stands
in contrast to the dynamics under the simple random-matrix
coupling, where each system level evolves at approximately
the same rate [1], without any sense of “proximity” between
nearby energy levels that facilitates their energy transfer.
Beyond simply being essential to converge the calculations,
as discussed in Sec. VI, it seems to us that the tamed coupling
is also giving a much more realistic dynamics.

At long times, the system level probabilities fluctuate about
a Boltzmann-appearing distribution ρn,n

S ∼ exp(−En/TSE ) at
the temperature TSE , shown as a black dotted line for each
En. The agreement with the Boltzmann distribution at TSE
is examined in Fig. 9 across a range of initial state energies
E = 〈Ĥ〉 and corresponding temperatures listed in Table II.
The time-averaged system probabilities from the simulations
are in very good agreement with the analytical Boltzmann
distributions at temperatures TSE from Eq. (23). For com-
parison, in Fig. 9 we also show the Boltzmann distributions
for the infinite bath temperatures T calculated for the states,
based on the average energy per bath oscillator observed
in the simulations (see Table II and the discussion in the
last paragraph of Sec. VII A). The resulting temperatures are
systematically lower than the TSE values, and the correspond-
ing Boltzmann distributions do a poor job of describing the
system probabilities. Thus, the observed thermalization to
TSE strongly reinforces that this is the correct thermodynamic
temperature to describe the total system SE .

At this point it is appropriate to remark on the question of
“eigenstate thermalization” in our simulations. The eigenstate
thermalization hypothesis (ETH), that eigenstates of a suitable
system-environment Hamiltonian reflect thermal properties
[12–14], is widely regarded as an explanation for thermaliza-
tion phenomena. The ETH is often justified through an appeal
to chaotic dynamics of the kind that classically corresponds to
a random-matrix Hamiltonian. Chaotic dynamics become less
certain the more that there is a “taming” of the coupling, as
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FIG. 9. Time-averaged equilibrium system probabilities for three initial states (a), (b), and (c) with the energies and temperatures in
Table II. The Boltzmann distributions ρn,n

S ∼ exp(−En/TSE ) at the analytical temperatures TSE give very good descriptions of the system level
probabilities ρn,n

S , while the Boltzmann distributions at the infinite bath T do not.

used in this paper to get convergence of the dynamics, and the
ETH thereby becomes less certain as well. Nonetheless, all
of our initial states thermalize to their expected temperatures,
and this is consistent with the ETH. In future work, we plan
to explore the breakdown of the ETH as reduced coupling
strength makes questionable chaotic dynamics, ETH behavior,
and thermalization itself.

Another point worth remark is alternatives to the random-
matrix-based couplings used in this paper. Simple couplings
based on linear combinations of raising and lowering opera-
tors are used in many quantum thermodynamic investigations
[14]. Accordingly, we have run calculations where we adopt
a linear kx̂ix̂ j coupling. We find that this gives controlled
spreading with semiquantitative thermalization. However, in
comparison the thermalization is significantly better with the
random-matrix tamed coupling calculations reported above.
The likely reason the random matrix works better for our setup
is that our five-oscillator bath has approximate frequency
resonances. This is typical of many physical systems, e.g., a
molecule embedded in a bath, which will almost inevitably
have such “anharmonic resonances.” A random coupling will
better capture the effects of these resonances. On the other
hand, there are systems, e.g., of coupled bosons, where the
x̂ix̂ j-type coupling is more appropriate. Based on our cal-
culations, we believe that variable temperature baths can be
devised appropriate to a variety of physical situations in
“tailor-made” fashion.

VIII. SUMMARY AND PROSPECTS

This paper has considered a quantum description of energy
flow from a system into a very small variable temperature
bath. We defined a system, consisting of a finite number of
levels, and an environment, consisting of levels of a finite
collection of harmonic oscillators (which constitutes the bath).
A set of identical oscillators was first considered, paralleling
the Einstein heat capacity model. To get something more like
a continuous state distribution, we then took a collection of
nonidentical oscillators. This gives a distribution of levels
that closely tracks that of the bath of identical oscillators,
but also has the desired feature of breaking the degeneracy,
giving a quasicontinuous level distribution. The level pattern

of this bath has a density of states that gives temperaturelike
behavior, using the standard statistical thermodynamic micro-
canonical relation between temperature, energy, and density
of states. This defines the “temperature” TE for the finite
bath. This temperature differs significantly from that of the
infinite oscillator bath, as seen in simulations with a bath with
only η = 5 oscillators. We compared the energy-temperature
relations for a single oscillator within the infinite bath (the
well-known result of Einstein from his famous heat capacity
paper) to the corresponding relation for a finite bath. There are
systematic differences, which are pronounced for η = 5, and
asymptotically approach the infinite bath at large η. The small
bath has higher temperature for a given amount of energy per
oscillator. Very unlike the infinite bath, it also terminates at a
temperature TE > 0, as seen in Fig. 3.

Having devised the finite bath with temperature TE, we
considered the process of heat flow from the system into this
bath. Simulations were performed of the process of heat flow
to the finite bath in quantum time evolution. First we used a
random-matrix coupling of the kind that has been employed in
many contexts, including successful quantum thermodynamic
simulations [1–4]. This, however, led to “runaway spreading”
of the quantum SE wave function. This is closely connected
with the variable temperature of the bath—a feature not
present in earlier thermodynamic simulations. The problem
is that the density of states increases rapidly with increasing
temperature, and the nondiscriminate random coupling over-
powers the quantum time evolution. To solve this, we switched
to a more selective coupling similar to the kind that has long
been used [33,34] in molecular simulations. This selective
coupling “tames” the spreading of the wave function, so that
runaway behavior is avoided. The tamed coupling appears to
be a realistic new feature needed to solve a real problem in the
simulations.

Next came computational examination of the temperature
TSE defined for the microcanonical ensemble of the SE total
system “universe,” including the time-dependent temperature
TSE (t ) that varies continuously between the initial bath tem-
perature TE and the final SE temperature TSE . In simulations
with the η = 5 oscillator bath, starting with different initial
system states but the same total system-environment energy,
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we tracked the temperature from its various initial values (be-
cause the bath has different energies depending on the system
state) to its final value at equilibrium. All the simulations went
to essentially the same final temperature TSE , as desired. The
simulations with the bath of η = 5 oscillators with selective
coupling show equilibration to a Boltzmann-type distribution
at the temperature TSE implied by the initial energy of the total
system. As noted above, this temperature is markedly different
from that of an infinite bath with the equivalent energy per
bath oscillator. In short, there are marked effects of the small
finite bath on thermal behavior with variable temperature in
the quantum simulations.

It is interesting to consider real situations in which to ex-
plore these finite-size quantum thermodynamic effects. Exper-
iments on very small Bose-Einstein condensates, containing
as few as six atoms [7], may point the way to size-dependent
variable temperature behavior similar to the oscillator model
we have studied here. Several investigators have proposed
small molecules as laboratories for fundamental exploration
of quantum thermodynamics and statistical mechanics. Leit-
ner [9,10] has reviewed a method of using the eigenstate
thermalization hypothesis to understand ergodicity and local-
ization of energy within time-dependent molecular systems.
Pérez and Arce [8] performed simulations of dynamics on
a potential energy surface of the molecule OCS, which has
a long history as an exemplar of problems of classically
chaotic molecular dynamics. They treat one of the vibrational
modes of OCS as a “system,” and the other two modes as an
“environment,” akin to what we do here, but with a two-mode
bath that is much smaller even than what has been considered
here. They find a kind of thermalization of the system when
it is excited with sufficient energy to have chaotic classical
dynamics. However, they did not engage in the kind of ana-
lytic treatment of temperature of the present paper. If we go
to a four-atom molecule, for example the important species
C2H2 (acetylene) or H3O+ (hydronium ion), we could take
as system one of the modes, e.g., a C-H stretch, leaving five
vibrational modes as the bath, just as we do here. This ignores
rotational degrees of freedom; one could do experiments with
angular momentum J = 0; or alternately, allow J excitations,
which would become increasingly important at higher J ,
where rotation-vibration coupling would become important,
giving the rotational degrees of freedom as a second bath or

environment E ′. It is worth noting that molecular systems
interacting with small baths are of interest in other contexts
as well, e.g. in calculations of entanglement dynamics and
spectroscopic signals [39,40].

As an alternative to the molecular dynamics simulations
of Ref. [8], one could also use “effective Hamiltonians” of
the kind that have had vast use in molecular spectroscopy
[41,42]. It is notable that these Hamiltonians usually employ
one or more “polyad numbers” that constitute approximate
constants of motion, valid on a limited timescale. This makes
these attractive systems in which to explore the effects of
approximate constants as barriers to thermalization, a topic of
considerable interest [12] in contemporary theory of quantum
thermodynamics. The effective molecular polyad Hamiltonian
can then be enhanced with polyad-breaking perturbations
[43–45] that correspond to real molecular dynamical effects.
These hierarchical dynamical systems could be ideal laborato-
ries for investigation of thermodynamic processes on multiple
timscales.

As a final comment, taking a wider perspective on the work
here, it may be worthwhile to consider that there are (at least)
three dimensions of postclassical effects in quantum thermo-
dynamics. The first, of course, is quantization of energy levels,
introduced in the very beginnings of quantum physics by
Planck in his blackbody theory and by Einstein in his famous
heat capacity paper. A second is finite size, as exemplified
in this paper by the very small size (five oscillators) of the
variable temperature bath. A third involves quantum time
evolution. This might come with more complicated setups
of finite size and time evolution than explored here. One
might consider a system linking two baths of different sizes;
or a system linking two finite baths where the coupling of
the system to each bath is different. These would require
far larger simulations than performed here. We can readily
imagine experimental realizations of these situations, e.g.,
with supramolecular arrangements of two or more molecules
weakly linked by a third.
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