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Anomalous diffusion under stochastic resettings: A general approach

Jaume Masoliver * and Miquel Montero†

Department of Condensed Matter Physics and Institute of Complex Systems (UBICS), University of Barcelona, Catalonia, Spain

(Received 15 May 2019; published 2 October 2019)

We present a general formulation of the resetting problem which is valid for any distribution of resetting
intervals and arbitrary underlying processes. We show that in such a general case, a stationary distribution
may exist even if the reset-free process is not stationary, as well as a significant decreasing in the mean
first-passage time. We apply the general formalism to anomalous diffusion processes which allow simple and
explicit expressions for Poissonian resetting events.
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I. INTRODUCTION

There has been in recent years a great deal of work on a
special type of composite random process known as stochas-
tic resetting, which basically consists of superposition of a
given underlying random process in line with the so-called
resetting events that bring the process into a fixed position
xr at random instants of time. The combined processes may
have two remarkable properties since, on one hand, it may
become stationary and, hence, in some way stabilized even
if the underlying process is not. On the other hand, and
most importantly, resettings may considerably diminish the
first-passage time to any preassigned value xc, which has a
great potential of applications in many fields, especially in
searching processes of all kinds, such as protein identification
in DNA [1–3], animal foraging [4,5], and data mining [6–8],
just to name a few. In recent years we have seen a large amount
of literature on the subject of which we cite just a small sample
[9–16].

To our knowledge resetting mechanisms have been am-
ply studied when the underlying process is the Brownian
motion, with some generalizations within continuous-time
random walks [12], Lévy flights [13], some bounded diffusion
processes [17,18], and very recently to telegraphic processes
[19]. Even though in most cases the resetting mechanism
is governed by Poisson processes, the fact that the two key
characteristics mentioned above appear for different kinds of
underlying processes suggests the universal character of the
resetting mechanism to stabilize the process and reduce the
first-passage time, as it has been explained from diverse points
of view in Refs. [14,15,20–26].

In the present paper we will insist on the universal char-
acter of the resetting mechanism by presenting a formulation
of the problem for any distribution of the resetting events and
underlying processes and apply the formalism for obtaining
explicit expressions for anomalous diffusions under reset-
tings. To our knowledge the study of the effect of resettings
on anomalous diffusion processes has been scarcely studied.

*jaume.masoliver@ub.edu
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A recent attempt in this direction is the work of Ref. [27],
which is, however, limited to the spectral analysis of fractional
Brownian motion with stochastic resettings. Another very
recent and independent approach, which is along the lines
presented here, deals with subdiffusion under resettings [28]
(see also Ref. [26] for interesting asymptotic results about the
same problem).

Anomalous diffusion shows up in the transport of particles
through extremely disordered media (random media, fractal
structures, and the like [29,30]). The most distinctive char-
acteristic is that the mean-square displacement follows an
asymptotic law of the form

〈x2(t )〉 ∼ tα, (t → ∞, α > 0),

showing subdiffusion when 0 < α < 1 and superdiffusion if
α > 1. The concept of anomalous transport has been the
object of very intense research during the past two decades
and it extends to many areas of physical research and not only
to transport phenomena (there are countless of excellent and
complete reports on the subject of which we cite a very few
[31–36]).

We will also address the resetting problem on anomalous
diffusion processes and explore the consequences of a quite
general resetting mechanism on the anomalous transport of
the underlying process. There is no unique mathematical
approach to anomalous diffusion processes (see Ref. [37] for a
recent report focused on subdiffusive processes). Among them
one of the most used approaches for anomalous diffusion is
that based on the continuous-time random walk (CTRW) of
Montroll and Weiss [32,38,39]. This is the procedure implicit
in our development.

To this end, and in tune with Ref. [26], we will consider a
broad framework in which an underlying process is brought
to a fixed location at random times, drawn from an arbitrary
distribution. Once we obtain general expressions for the dif-
ferent statistics of interest, we will specifically suppose that
the reset-free process is the time-fractional Brownian motion
on the line, whose probability density function (PDF) obeys
the time-fractional diffusion equation:

∂α p

∂tα
= D

∂2 p

∂x2
(1)
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(0 < α < 2), where ∂α/∂tα is the fractional Caputo derivative
to be formally defined in Sec. IV. Since we are interested in
finding and analyzing closed formulas not only in asymptotic
results [26], we will further assume that the inter-reset times
are Poissonian, which is not required within our setup but
approaches our results to those reported in Ref. [28] for
subdiffusive processes.

The paper is organized as follows. In Sec. II we set the
general formalism and obtain overall expressions for the prop-
agator of the combined process and show the possible exis-
tence of a stationary distribution even if the reset-free process
is not stationary. In Sec. III we present the general approach
to the first-passage problem and obtain general expressions for
the mean first-passage time showing a considerable decrease
in the value of this statistic when the reset-free process has
an infinite time. In Sec. IV we apply the formalism to time-
fractional diffusion processes and some concluding remarks
are in Sec. V.

II. GENERAL FRAMEWORK

Let X (t ) be a random process on the line which, starting at
X (T0 = 0) = xr , undergoes resettings to this initial position xr

at times T1, T2, . . ., from where it continues afresh. Resettings
occur at random times and we denote by ψr (τ ) the PDF of the
time interval between two consecutive resettings, τn ≡ Tn −
Tn−1, n = 1, 2, . . .,

ψr (τ )dτ = Prob{τ < τn � τ + dτ }. (2)

In what follows we will assume that ψr (τ ) has finite moments
which in particular implies a finite mean time between con-
secutive resettings,

〈τn〉 =
∫ ∞

0
τψr (τ )dτ < ∞. (3)

In other words, the mean frequency of resetting (also called
resetting rate) defined as

r = 1

〈τn〉 > 0 (4)

is nonvanishing.1 The probability �r (τ ) that no resettings
occur for a time interval greater than τ is given by

�r (τ ) =
∫ ∞

τ

ψr (τ ′)dτ ′. (5)

Before proceeding further let us note that if we keep a
general resetting density ψr (τ ), then the combined process
with resettings is not Markovian, even if the evolution be-
tween resets is a Markov process. Specifically, this implies
that the propagator pr of the combined process is not simply
a function of the present state of the system, X (t0) = x0, but

1This assumption is needed for obtaining a stationary distribution
[see Eq. (16)]. We, therefore, deal with a resetting mechanism which
is not governed by a power law (see, for instance, Ref. [40] for a very
recent generalization along these lines). Even so, most of the general
expressions to be derived will remain valid in this case.

also a function of the last resetting event previous to t0:

pr (x, t |x0, t0; xr, tr )dx

= Prob{x < X (t ) � x + dx|X (t0) = x0; X (tr ) = xr},
where tr is the time of the last reset before t0,

tr ≡ max{Tn|Tn � t0}.
The only exception to this rule is when t0 exactly coincides
with a reset, t0 = tr , since then

pr (x, t |x0, t0; xr, tr ) = pr (x, t |x0, t0) (6)

and, hence, x0 = xr . However, for the sake of clarity in the
upcoming development we will keep x0 as the position asso-
ciated to t0, and eventually set x0 = xr when required.

To obtain an expression for the complete propagator pr ,
we will first address the case when t0 coincides with a reset
time tr and briefly postpone the analysis of the general case.2

Note that when t0 = tr the propagator pr (x, t |x0, t0) obeys
the following renewal equation in terms of the reset-free
propagator p0(x, t |x0, t0):

pr (x, t |x0, t0) = �r (t − t0)p0(x, t |x0, t0)

+
∫ t

t0

ψr (t ′ − t0)pr (x, t |xr, t ′)dt ′, (7)

where the first term on the right-hand side accounts for the
probability density when no reset event has occurred up to
time t . The second term represents the probability density that
the first resetting (ulterior to the one at t0 and bringing again
the process to xr = x0) occurred during any intermediate time
t0 < t ′ � t .

In what follows we will assume that the underlying process
is not only Markovian but also time homogeneous, which
implies that the propagator only depends on time differences,
p0(x, t |x0, t0) = p0(x, t − t0|x0). This leads to the conclusion
that the same property holds for the combined process when t0
coincides with a reset, that is, pr (x, t |x0, t0) = pr (x, t − t0|x0),
and Eq. (7) can be written as

pr (x, t |x0) = �r (t )p0(x, t |x0)

+
∫ t

0
ψr (t ′)pr (x, t − t ′|xr )dt ′. (8)

After taking the Laplace transform,

p̂r (x, s|x0) =
∫ ∞

0
e−st pr (x, t |x0)dt,

the integral Eq. (8) reduces to the following algebraic equa-
tion:

p̂r (x, s|x0) = L{�r (t )p0(x, t |x0)} + ψ̂r (s) p̂r (x, s|xr ),

and, since x0 = xr , we get [26]

p̂r (x, s|xr ) = 1

1 − ψ̂r (s)
L{�r (t )p0(x, t |xr )}. (9)

2We will show below that in the case of Poissonian resettings for
which ψr (τ ) = re−rτ , as in Ref. [19], it is not necessary to consider
such a distinction.
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In all these expressions, L{·} represents the Laplace transform
with respect to the time variable, and L−1{·} its inverse.

Taking the inverse Laplace transform of Eq. (9) we obtain
the following expression for the propagator of the combined
process in the form of a convolution integral:

pr (x, t |xr ) =
∫ t

0
Fr (t − t ′)�r (t ′)p0(x, t ′|xr )dt ′, (10)

where

Fr (t ) = L−1

{
1

1 − ψ̂r (s)

}
. (11)

Let us next consider the more general case in which
t0 does not coincide with a reset time, that is, t0 > tr
and x0 can take arbitrary values. The complete propagator,
pr (x, t |x0, t0; xr, tr ), is now given by

pr (x, t |x0, t0; xr, tr ) = �r (t − tr )

�r (t0 − tr )
p0(x, t − t0|x0)

+
∫ t

t0

ψr (t ′ − tr )

�r (t0 − tr )
pr (x, t − t ′|xr )dt ′,

(12)

where pr (x, t − t ′|xr ) is given by Eq. (10). Equation (12) is the
generalization of Eq. (7) in which the probability of having a
reset at time t after t0 = tr has been replaced by the conditional
probability of having a reset at time t knowing that no reset has
occurred yet at t0 (tr < t0 � t), that is,

ψr (t − t0) −→ ψr (t − tr )∫ ∞
t0

ψr (t − tr )dt
= ψr (t − tr )

�r (t0 − tr )
. (13)

Note also that in general pr (x, t |x0, t0; xr, tr ) is a function
of two time intervals t − tr and t0 − tr , except for Poissonian
reset times. Indeed, if the random instants of time when
resettings occur are a Poissonian set of events, then the density
ψr (τ ) and the probability �r (τ ) are given by

ψr (τ ) = re−rτ , �r (τ ) = e−rτ , (14)

where r is the mean rate of resettings. In such a case,

ψr (t − tr )

�r (t0 − tr )
= re−r(t−t0 ),

�r (t − tr )

�r (t0 − tr )
= e−r(t−t0 ),

and from Eq. (12) we see that pr (x, t |x0, t0; xr, tr ) is no longer
a function of tr , and the process becomes Markovian.3

The stationary distribution

We know that the stationary distribution is defined as the
long-time limit of the propagator:

p(st)
r (x) ≡ lim

t→∞ pr (x, t |x0, t0; xr, tr ).

From Eq. (12) and recalling the definition of �r (t ) we have

p(st)
r (x) = lim

t→∞ pr (x, t |xr ),

3Obviously, pr (x, t |x0, t0) still depends on xr .

which, using a well-known property of the Laplace transform,
can be written as

p(st)
r (x) = lim

s→0
[sp̂r (x, s|xr )],

and from Eq. (9) we conclude that

p(st)
r (x) = lim

s→0

[
s

1 − ψ̂r (s)

∫ ∞

0
e−st�r (t )p0(x, t |xr )dt

]
. (15)

Note that we are dealing with a time-interval PDF ψr (t )
having finite moments which implies that the Laplace trans-
form ψ̂r (s) can be expanded as

ψ̂r (s) = 1 − s

r
+ O(s2),

where r = 〈τn〉−1 is the mean rate of resettings. Substituting
into Eq. (15) yields

p(st)
r (x) = r

∫ ∞

0
�r (t )p0(x, t |xr )dt . (16)

Let us recall that a random process is stationary if there
exist a nonnull stationary density p(st)

r (x) defined as the long-
time limit of the complete propagator pr (x, t |x0, t0; xr, tr ),
which is independent of x0. Note that if p(st)

r (x) = 0 the
process in the long-time limit cannot be found at some state
x. In other words, the existence of p(st)

r (x) 	= 0 stabilizes the
process around some equilibrium point which in our case is
the resetting position xr .

In the present case of a combined process with stochastic
resettings, the stationary distribution in the most general case
is given by Eq. (16). Let us note that, attending the positive
character of both �r (t ) and p0(x, t |x0), the integral in Eq. (16)
will not vanish in general, even if

p(st)
0 (x) = lim

t→∞ p0(x, t |x0) = 0.

That is to say, the combined process is always stationary
regardless the stationary character of the underlying, reset-
free, process. This proves, in a rather general manner, the
stabilizing effect of resettings which otherwise is a rather
intuitive effect.

For Poissonian resettings the expression given by Eq. (16)
is simpler and more explicit. In this case, �r (t ) = e−rt and
Eq. (16) reduces to

p(st)
r (x) = r p̂0(x, r|xr ), (17)

where p̂0(x, s|xr ) is the Laplace transform of the reset-free
propagator. In this case the possible stationarity of the com-
bined process depends on the existence of the Laplace trans-
form of the reset-free propagator.

III. THE FIRST-PASSAGE PROBLEM

We next address within the general framework described
above the first-passage problem for a random process with
stochastic resettings. This has been the object of intense re-
search because resettings may significantly reduce the mean-
first passage time, a fact with many practical applications and
that, in particular, optimizes any search process based on the
combined process.
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The characterization of the first-passage problem under
resettings has been mostly addressed for the Brownian motion
(i.e., unbounded diffusion process) under Poissonian reset-
tings even though there have been recent works stressing
the universal character of resetting processes [14,15,24,25].
In this section we present another view on this universal
character.

Let us focus on the first-passage problem to some preas-
signed value xc, also called critical value or threshold. The
problem is characterized by the survival probability (SP) to
threshold xc, Sr (t |x0, t0; xr, tr ), which is the probability that the
process, being in x0 at t0, does not reach xc during the interval
[t0, t]. As before tr denotes the last reset time prior to t0, tr �
t0. For diffusion processes with Poissonian resettings [9] the
survival probability obeys an inhomogeneous Fokker-Planck
equation with initial and boundary conditions, respectively,
given by Sr (t0|x0, t0) = 1 and Sr (t |xc, t0) = 0, independent
of tr .4

As in the previous section with the analysis of the propaga-
tor and the stationary distribution, we can also obtain a general
equation for the survival probability for any distribution of
resetting events and any class of underlying process. Such an
equation is an integral equation based on the renewal principle
and a version of it has been recently used by Pal, Kundu, and
Evans [11] in their study of diffusions with time-dependent
resetting rates.

Let us denote by S0(t |x0, t0) the survival probability to
threshold xc for the underlying (i.e., reset-free) process, while
Sr (t |x0, t0; xr, tr ) denotes the SP to xc for the combined pro-
cess with resettings. Once again, we begin by assuming that
at time t0 a resetting event has occurred which implies that
tr = t0 and xr = x0. In this case, the integral equation for the
SP of the combined process Sr (t |x0, t0) is

Sr (t |x0, t0) = �r (t − t0)S0(t |x0, t0)

+
∫ t

t0

ψr (t ′ − t0)S0(t ′|x0, t0)Sr (t |xr, t ′)dt ′, (18)

where the first term on the right-hand side gives the probabil-
ity that neither a reset has occurred at time t nor any hitting
to threshold xc between t0 and t . The second term represents
the probability that the first resetting (after the one at t0) to
position xr

5 occurred at some instant of time t ′ with no hitting
to xc between t0 and t ′ and no hitting either from t ′ and t , all
of this integrated over any intermediate time t ′ ∈ [t0, t].

Since we are assuming time homogeneity we have that
S0(t |x0, t0) = S0(t − t0|x0) and similarly for Sr (t |x0, t0). This
allows us to set t0 = 0 and rewrite Eq. (18) in the simpler
form:

Sr (t |x0) = �r (t )S0(t |x0)

+
∫ t

0
ψr (t ′)S0(t ′|x0)Sr (t − t ′|xr )dt ′. (19)

4For telegraphic processes with Poissonian resettings Sr (t |x0, t0 )
obeys an inhomogeneous telegrapher’s equation [19].

5In fact xr = x0 although we keep x0 and xr for the clearness of the
exposition.

We can easily solve this integral equation in the Laplace
space. To this end we first define the auxiliary quantities

H (t |x0) ≡ �r (t )S0(t |x0), h(t |x0) ≡ ψr (t )S0(t |x0), (20)

which allow us to write Eq. (19) as

Sr (t |x0) = H (t |x0) +
∫ t

0
h(t ′|x0)Sr (t − t ′|xr )dt ′. (21)

The Laplace transform,

Ŝr (s|x0) =
∫ ∞

0
e−st Sr (t |x0)dt, (22)

turns Eq. (21) into the simple algebraic equation

Ŝr (s|x0) = Ĥ (s|x0) + ĥ(s|x0)Ŝr (s|xr ),

whose solution reads (recall that here x0 = xr)

Ŝr (s|xr ) = Ĥ (s|xr )

1 − ĥ(s|xr )
, (23)

where Ĥ (s|xr ) and ĥ(s|xr ) are the Laplace transform of the
functions H (t |xr ) and h(t |xr ) defined in Eq. (20).

As in the previous section, we can recover the general
solution for the SP Sr (t |x0, t0; xr, tr ), when tr � t0 and x0 is
any point, by using the rule Eq. (13) in Eq. (18):

Sr (t |x0, t0; xr, tr ) = �r (t − tr )

�r (t0 − tr )
S0(t − t0|x0)

+
∫ t

t0

ψr (t ′ − tr )

�r (t0 − tr )
S0(t ′ − t0|x0)

× Sr (t − t ′|xr )dt ′, (24)

where Sr (t − t ′|xr ) appearing on the right-hand side is given
by Laplace inverting Eq. (23). Let us, however, note that
Sr (t |x0, t0; xr, tr ) thus defined does not guarantee that the
process has never reached xc before t0 and, in particular,
during the interval [tr, t0). Indeed, recall that tr is the time
of the last reset before t0, in consequence the evolution of
the process between tr and t0 could have perfectly crossed
threshold xc and go afterwards to x0 at time t0 > tr . To avoid
that eventuality we must perform the additional replacement

S0(t − t0|x0) −→ S0(t − t0|x0)

×
[

1 − p0(2xc − x0, t0 − tr |xr )

p0(x0, t0 − tr |xr )

]

in Eq. (24), where we have applied the reflection principle
which is valid for underlying processes that are symmetric and
space homogeneous [41].

In what follows we will, therefore, restrict our attention to
the situation in which t0 = tr and thus x0 = xr . In such a case
and taking into account time homogeneity we can set t0 = 0
and the SP is given by the Laplace inversion of Eq. (23).
Knowing Sr (t |x0), the mean first-passage time (MFPT) to
threshold xc from x0 in the presence of random resettings is
given by the integral

Tr (x0) =
∫ ∞

0
Sr (t |x0)dt,
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which in terms of the Laplace transform of the SP is simply
given by

Tr (x0) = Ŝr (s = 0|x0). (25)

From Eqs. (20), (23), and (25) we see that

Tr (x0) =
∫ ∞

0 �r (t )S0(t |x0)dt

1 − ∫ ∞
0 ψr (t )S0(t |x0)dt

. (26)

Therefore, the MFPT will be finite as long as the integrals in
the right-hand side of Eq. (26) exist even if the MFPT for the
reset-free process,

T0(x0) =
∫ ∞

0
S0(t |x0)dt,

is infinite. Since the existence of the integrals in Eq. (26)
is ensured for a wide class of sojourn densities ψr (t ) that
have finite moments, we see that resettings may considerably
reduce the MFPT with the subsequent increase of efficiency.

A key property of Poissonian resettings on diffusion pro-
cesses is the nonmonotonous behavior of the MFPT as a
function of the resetting rate r. In other words, the MFPT
attains a minimum for a particular value of r. Let us now argue
that this characteristic is kept for a wide class of resetting
mechanisms and underlying processes. Indeed, as seen in
Sec. II, any resetting mechanism governed by a PDF ψr (t )
with finite and nonzero mean, has a finite resetting rate r
defined in Eq. (4). Note that as r → 0 the complete process
approaches the reset-free process, so that Tr (x0) → T0(x0).
Let us also assume that, as in Brownian motion, T0(x0) = ∞.
Therefore,

lim
r→0

Tr (x0) = ∞. (27)

However, as r → ∞ the average time between consecutive
resettings tends to 0 which means that the system becomes
circumscribed to a shrinking neighborhood around x0 = xr if
the underlying process is continuous enough. Let us further
assume that r is the only scale parameter of ψr (t ), that is,

ψr (t ) = r f (rt ), (28)

for a certain nonnegative function f (u) which, due to the
normalization condition of ψr (t ) and Eqs. (3) and (4), satisfies∫ ∞

0
f (u)du =

∫ ∞

0
u f (u)du = 1. (29)

Therefore, the scaling Eq. (28) allows us to express Eq. (26)
as

Tr (x0) =
∫ ∞

0 du f (u)
∫ u/r

0 S0(t |x0)dt

1 − ∫ ∞
0 f (u)S0(u/r|x0)dt

. (30)

Taking the limit r → ∞, applying L’Hôpital’s rule and bear-
ing in mind the initial condition S0(0|x0) = 1 and Eq. (29), we
get

lim
r→∞ Tr (x0) = − 1

∂t S0(t |x0)|t=0
, (31)

whenever xc 	= x0. Hence, as long as S0(t |x0) satisfies the
condition

∂t S0(t |x0)|t=0 = 0, (32)

the MFPT also becomes infinite as r → ∞:

lim
r→∞ Tr (x0) = ∞. (33)

Since under mild conditions Tr (x0) is a continuous function of
r, from Eqs. (27) and (33) we see that the MFPT must attain a
minimum value for r somewhere in between 0 and ∞. This is
a complementary discussion to that of Refs. [14,15,20–25] on
the generality of resettings.

For Poissonian resettings, the above expressions are sim-
pler and more explicit. Indeed, substituting the exponential
forms given in Eq. (14) into the definitions Eq. (20) of the
auxiliary quantities h(t |x0) and H (t |x0) and taking the Laplace
transform we get

Ĥ (s|x0) = Ŝ0(r + s|x0), ĥ(s|x0) = rŜ0(r + s|x0),

which finally results in [9]

Ŝr (s|x0) = Ŝ0(r + s|x0)

1 − rŜ0(r + s|x0)
(34)

and

Tr (x0) = Ŝ0(r|x0)

1 − rŜ0(r|x0)
. (35)

This last equation showing that for Poissonian resettings the
MFPT of the combined process is finite regardless the exact
nature of the reset-free process which is a direct consequence
of the fact that the Laplace transform of any survival proba-
bility always exists.6

IV. ANOMALOUS DIFFUSION AND RESETTINGS

We will next address the resetting problem when the un-
derlying is a time-fractional diffusive process or fractional
Brownian motion.

A. Stationary distribution

In this case the propagator of the reset-free process,
p0(x, t |x0), obeys the time-fractional diffusion-wave equation
[19,39,42]

∂α p0(x, t |x0)

∂tα
= D

∂2 p0(x, t |x0)

∂x2
, (36)

(0 < α < 2)7 with the initial condition

p0(x, t = 0|x0) = δ(x − x0). (37)

6Indeed, the survival probability (like any probability) is always
less or equal to one, S0(t |x0) � 1, and hence Ŝ0(s|x0) � 1/s is finite
(we thank an anonymous referee for recalling us this elementary
result).

7In the literature the most frequently studied case of time-fractional
diffusion equation corresponds to the subdiffusive case where 0 <

α < 1. In our opinion the main reason for such a restriction on the
values α can take lies in the fact that this subdiffusive case can be
easily derived from microscopic models based on the continuous
time random walk (see, for instance, Ref. [44] for a short review).
However, the superdiffusive case where 1 < α < 2, which is also
included in the time-fractional diffusion-wave Eq. (36), can be
derived from microscopic models based on the fractional persistent
random walk (see Ref. [39] for details).

042103-5



JAUME MASOLIVER AND MIQUEL MONTERO PHYSICAL REVIEW E 100, 042103 (2019)

When 1 < α < 2 the initial condition Eq. (37) has to be
supplemented with a second initial condition, which usually
is

∂ p0(x, t |x0)

∂t

∣∣∣∣
t=0

= 0. (38)

The operator ∂α/∂tα is the fractional Caputo derivative
defined as

∂αφ(t )

∂tα
=

⎧⎨
⎩

1
	(n−α)

∫ t
0

φ(n)(t ′)dt ′

(t − t ′)1+α−n , n − 1 < α < n,

φ(n)(t ), α = n
(39)

(n = 1, 2, 3, . . . ). Using this definition the Laplace transform
of the Caputo derivative is found to be [43,44]

L
{

∂αφ(t )

∂tα

}
= sαφ̂(s) − sα−1φ(0) −

n−1∑
j=1

sα−1− jφ( j)(0) (40)

(n = 1, 2, 3, . . . ; n − 1 < α < n), where φ̂(s) = L{φ(t )}.
Note that when 0 < α < 1 we have n = 1 and this transform
reduces to

L
{

∂αφ(t )

∂tα

}
= sαφ̂(s) − sα−1φ(0). (41)

We also observe that if 1 < α < 2 but φ′(0) = 0, the Laplace
transform for the Caputo derivative is also given by Eq. (41).

The joint Fourier-Laplace transform of the free propagator
p0(x, t |x0) is defined as

ˆ̃p0(ω, s|x0) =
∫ ∞

−∞
e−iωxdx

∫ ∞

0
e−st p0(x, t |x0)dt,

and the use of Eq. (41) leads to the following solution of the
initial-value problem Eqs. (36)–(38),

ˆ̃p0(ω, s|x0) = sα−1e−iωx0

sα + Dω2
. (42)

Recalling the Fourier inversion formula

F−1

{
ae−iωx0

b + c2ω2

}
= a

2
√

bc
e−|x−x0|b1/2/c,

we get [28]

p̂0(x, s|x0) = sα/2−1

2
√

D
e−|x−x0|

√
sα/D. (43)

The Laplace transform can also be inverted with the result
[44]

p0(x, t |x0) = 1

2
√

Dtα
Mα/2

( |x − x0|√
Dtα

)
, (44)

where Mα/2(·) is the Mainardi function defined by the power
series [42,45]

Mβ (z) =
∞∑

n=0

(−1)nzn

n!	(−βn + 1 − β )
, 0 < β < 1. (45)

Mainardi’s function Mβ (z) is an entire function of z for
0 < β < 1 [42]. It is a special case of the Wright function
[45,46] which is closely related to the rather cumbersome Fox

function, the latter frequently used in the anomalous diffusion
literature [32].

The reset-free process is not stationary because as we can
easily see from Eq. (44),

p(st)
0 (x) = lim

t→∞ p0(x, t |x0) = 0.

However, as we have seen in Sec. II, the addition of a resetting
mechanism turns the process into an stationary one with a
nonzero stationary density given by Eq. (16). For Poissonian
resettings, cf. Eq. (14), the stationary density is given by
Eq. (17), which for the anomalous diffusion process yields the
tent-shape density [cf. Eq. (43)]

p(st)
r (x) = rα/2

2
√

D
e−|x−x0|

√
rα/D, (46)

an expression which has been very recently derived indepen-
dently in Refs. [26,28].

B. Survival probability

The survival probability to some critical value xc of the
underlying reset-free process, S0(t |x0), is the solution to the
following equation:

∂αS0(t |x0)

∂tα
= D

∂2S0(t |x0)

∂x2
0

(47)

(0 < α < 2), with the initial and boundary conditions

S0(t = 0|x0) = 1, S0(t |xc) = 0. (48)

Similar to the case of the propagator discussed above, when
1 < α < 2 these conditions have to be supplemented with

∂t S0(t |x0)|t=0 = 0,

which has implications in the behavior of Tr (x0), as we have
seen [cf. Eqs. (31)–(33)].

In the Laplace space, and after using Eq. (41), this problem
simply reads

D
∂2Ŝ0(s|x0)

∂x2
0

− sα Ŝ0(s|x0) = −sα−1, Ŝ0(s|xc) = 0. (49)

As can be seen by direct substitution, the solution to this
problem that is finite as x0 → ±∞ is [28]

Ŝ0(s|x0) = 1

s
[1 − e−|x0−xc|

√
sα/D]. (50)

The Laplace inversion of this expression yields (see Ref. [44]
for details)

S0(t |x0) = 1 − φ(−α/2, 1,−|x0 − xc|/
√

Dtα ), (51)

where φ(ρ, β, z) is the Wright function, which can be defined
by the power series [46,47]

φ(ρ, β, z) =
∞∑

n=0

zn

n!	(nρ + β )
(52)

(ρ > −1, β > 0).
The Laplace transform, Ŝr (s|x0), of the survival probability

to threshold xc for the complete process with resettings is
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given by Eq. (23), after substituting for S0(t |x0) given in
Eq. (51) and evaluating the Laplace transforms ĥ(s|x0) and
Ĥ (s|x0). The resulting expression is virtually impossible to
handle for any resetting density ψr (t ). However, this can
be easily done for Poissonian resettings. In such a case,
substituting Eq. (50) into Eq. (34) yields

Ŝr (s|x0) = 1 − e−(r+s)α/2|x0−xc|/
√

D

s + re−(r+s)α/2|x0−xc|/
√

D
. (53)

C. Mean first-passage time

We will first check that the MFPT for the reset-free process
is infinite. In effect, expanding Eq. (50) for small values of s
we find

Ŝ0(s|x0) = |x0 − xc|√
D

sα/2−1 + O(sα−1).

Hence, for 0 < α < 2,

T0(x0) = lim
s→0

Ŝ0(s|x0) = ∞.

For the combined process with resetting events governed
by any switch density ψr (t ), the MFPT Tr (x0) is given by
the general expression Eq. (26) after substituting S0(t |x0) by
Eq. (51). For Poissonian resettings we can write a simple and
explicit expression for Tr (x0) since in this case taking the limit
s → 0 in Eq. (53) yields [28]

Tr (x0) = 1

r
[e|x0−xc|rα/2/

√
D − 1]. (54)

From this expression we clearly see how Tr (x0) approaches
T0(x0) = ∞ as r → 0. Indeed,

Tr (x0) = |x0 − xc|√
D

rα/2−1[1 + O(rα/2)],

which diverges as r → 0 for 0 < α < 2.
As we have shown above, the MFPT in this case is a

nonmonotonous function of rate r presenting a minimum for
some rate located between 0 and ∞.8 For Poissonian reset-
tings we can be more specific and obtain the minimum rate.
In effect, in such a case the MFPT is given by Eq. (54) from
which we can obtain an explicit expression for the derivative
∂rTr (x0) and the minimum rate rm will be the solution to the
equation ∂rTr (x0) = 0. This elementary procedure leads to the
transcendental equation9

1 − α

2
ξ = e−ξ , (55)

for the variable ξ defined as

ξ ≡ |x0 − xc|rα/2
m /

√
D. (56)

Having obtained ξ from the numerical solution of Eq. (55) for
a given value of exponent α, the minimum rate is thus given

8A similar approach to this issue has been very recently and
independently derived in Ref. [28].

9In the particular case of ordinary diffusion, α = 1, Eq. (55) has
been recently obtained in Ref. [15] with the result ξ = 1.594 . . . .

by [28]

rm =
(

ξ
√

D

|x0 − xc|

)2/α

, (57)

a result that we can replace back in Eq. (54) to obtain

Tξ (x0) = αξ 1−2/α

2 − αξ
· |x0 − xc|2/α

D1/α
. (58)

Note how the prefactor in this expression is a numeric quantity
that only depends on α.

V. CONCLUDING REMARKS

We have analyzed the effects of general resetting mech-
anisms on anomalous diffusion processes, specifically on
the time-fractional Brownian motion. Although our primary
purpose has been focusing on anomalous diffusion as under-
lying process, we have addressed the problem from a general
point of view, assuming that both resettings and underlying
processes are described in a general fashion with an arbi-
trary resetting density, ψr (τ ), and an unspecified propagator,
p0(x, t |x0), for reset-free processes.

From this general analysis we have shown that, under
rather general assumptions—basically the existence of a finite
first moment for ψr (τ )—resettings first stabilize the underly-
ing process, in the sense that a nonstationary process becomes
stationary under resettings. Second, resettings may greatly
reduce the mean first-passage time to some critical value and
presents a minimum value for some critical rate to be deter-
mined after the details of the whole process are known. This
constitutes a complementary view of the universal character
of resettings that has been recently brought forward in the
literature [14,15,20–25].

We have finally performed a thorough study of the subject
when the underlying process is a time fractional diffusion with
exponent α ∈ (0, 2), covering subdiffusion when 0 < α < 1
and superdiffusion when 1 < α < 2. The reset-free process
possesses no stationary distribution and the mean first-passage
time is infinite. We have shown that for Poissonian resettings
the stationary distribution has the form of a tent-shape density
(i.e., Laplace distribution) given in Eq. (46). We have finally
obtained explicit expressions for the survival probability—in
Laplace space [Eq. (53)]—and the mean first-passage time
[Eq. (54)]. We have shown that this is a nonmonotonous
function of the resetting rate r and have obtained the minimum
rate.
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[13] Ł. Kuśmierz and E. Gudowska-Nowak, Phys. Rev. E 92, 052127

(2015).
[14] S. Belan, Phys. Rev. Lett. 120, 080601 (2018).
[15] S. Reuveni, Phys. Rev. Lett. 116, 170601 (2016).
[16] T. S. Biró and J. Néda, Physica A 499, 335 (2018).
[17] A. Pal, Phys. Rev. E 91, 012113 (2015).
[18] C. Christou and A. Schadschneider, J. Phys. A: Math. Theor.

48, 285003 (2015).
[19] J. Masoliver, Phys. Rev. E 99, 012121 (2019).
[20] T. Rotbart, S. Reuveni, and M. Urbakh, Phys. Rev. E 92,

060101(R) (2015).
[21] S. Eule and J. J. Metzger, New J. Phys. 18, 033006 (2016).
[22] A. Nagar and S. Gupta, Phys. Rev. E 93, 060102(R) (2016).
[23] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603 (2017).

[24] A. Chechkin and I. M. Sokolov, Phys. Rev. Lett. 121, 050601
(2018).

[25] J. Villarroel and M. Montero, J. Stat. Mech. (2018) 123204.
[26] A. Masó-Puigdellosas, D. Campos, and V. Méndez, Phys. Rev.

E 99, 012141 (2019).
[27] S. N. Majumdar and G. Oshanin, J. Phys. A 51, 435001 (2018).
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