
PHYSICAL REVIEW E 100, 042102 (2019)

Localization behavior induced by asymmetric disorder for the one-dimensional Anderson model
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The behavior of the Lyapunov exponent under a small asymmetric disorder distribution is investigated for the
one-dimensional Anderson model in the vicinity of the band center and for finite in-band energies. The special
effect that could be found in systems with an asymmetric disorder distribution is shown to be small through a
perturbation calculation. We obtain a quadratic formula for the Lyapunov exponent and show the enhancement
of localization close to the band center induced by asymmetric disorder distribution. We find zero correction
for an asymmetric disorder distribution with finite in-band energies. This quantitative behavior of the Lyapunov
exponent explains why various asymmetric factors could be neglected in weakly disordered real systems. It also
shows in what situation the asymmetric property of the disorder distribution should be considered during study
of the localization behavior with a higher accuracy.
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I. INTRODUCTION

Since the ground-breaking work of Anderson [1], the
theory of particles moving in one-dimensional random po-
tentials has been well understood. In contrast to ordered sys-
tems, the one-dimensional wave functions are exponentially
localized, no matter how small the disorder strength is, which
implies the distinctive properties of disordered systems. The
phenomena were not only rigorously proved by analytical
approaches [2] but also observed in ultracold atomic systems
[3] and photonic systems [4]. The one-dimensional wave
function is characterized by the inverse localization length,
or the Lyapunov exponent. The Lyapunov exponent has been
extensively studied for various models depending on the dis-
order strength with or without correlation [5].

The one-dimensional Anderson model is not an exactly
solvable model. In the weak-disorder limit, employing the
regular perturbation theory, Thouless [6] obtained the leading-
order formula for the Lyapunov exponent. Soon, Kappus
and Wegner [7] found the anomalous behavior arising in the
vicinity of the band center, which deviated from the Thouless
formula. The anomaly effect was revealed by Derrida and
Gardner [8]. They proposed a perturbation method which
could overcome the divergence encountered in the standard
perturbation theory and demonstrated that similar anomalies
exist in the neighborhood of E = 2 cos απ for any rational
number α. A recent work [9] pointed out that the band center
and the band edge are the only points where the Thouless
formula fails. Tessieri and Izrailev [10] obtained the anomaly
using the Hamiltonian map method. New insight for the
single-parameter scaling theory of disordered systems was
provided for the band center [11].
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Most of the earlier studies focused on the Anderson model
with symmetric disorder distributions, such as Gaussian distri-
bution [12], Lévy type [13], or white noises with a zero mean
and a finite variance. And there are hardly any experimental
reports on effects for an asymmetric disorder distribution.
However, disorder distribution is not perfectly symmetric in
practice, for example, the ion doping potentials in layers
of semiconductor devices and laser speckle potentials [14].
Therefore, after the study of a symmetric disorder distribution,
the next interesting investigation should explain the absence of
asymmetric effects in experiments and the acceptance of the
symmetric model in real disordered systems. In this paper, we
explore the behavior of the Lyapunov exponent in weak asym-
metric disorder potential. Using a parametrization method
based on a transfer matrix, we analyze how the Lyapunov
exponent is modified in the presence of a small third mo-
ment of a disorder distribution in comparison to the disorder
strength. We show that at the band center there is a small, but
nonvanishing, contribution to the Lyapunov exponent from
the asymmetric property of the disorder distribution, and at
finite in-band energies the contribution from the asymmetric
property of disorder distribution is zero in the weak-disorder
limit.

The article is organized as follows. In Sec. II, the problem
is formulated using the parametrization method proposed in
our previous work [15]. The integral equation for stationary
distribution and the equation to obtain the Lyapunov exponent
are presented. In Sec. III, the corresponding partial differential
equation is derived in the weak-disorder limit for the band
center with a nonzero third moment of a disorder distribu-
tion. A perturbation solution is obtained from the differential
equation. In Sec. IV, we calculate the series expansion of the
Lyapunov exponent up to the second order in energy and the
third moment of a disorder distribution at the band center.
In Sec. V, we resolve the integral equation at finite in-band
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energies and obtain the Lyapunov exponent with the third
moment of a disorder distribution. A short summary then
closes this study.

II. PARAMETRIZATION METHOD

The Anderson model is known as the simplest one to
describe the behavior of electrons moving through a disorder
lattice, whose Schrödinger equation can be expressed as

ψi−1 + ψi+1 = (E − εi )ψi, (1)

where ψi is the wave function on the ith site, E is the eigenen-
ergy. εi are random on-site energies, which are uncorrelated to
each other and share the same normalized distribution pε (ε).
The hopping energy has been set as a unit, so E and εi are
dimensionless here. In this paper, we do not address any exact
form of disorder distribution but assume that

〈ε〉 = 0, 〈ε2〉 = σ 2, 〈ε3〉 = m3σ
3, (2)

where σ 2 is the variance of disorder distribution and m3

is a constant satisfying m3σ � 1. We investigate the effect
of the 〈ε3〉 term, the asymmetric property for the disorder
distribution pε (ε).

In the transfer matrix method, we can rewrite the
Schrödinger equation by two component vectors �i =
(ψi ψi−1)T ,

�L+1 =
(

E − εL −1
1 0

)
�L = T L · · · T1�1, (3)

where T i is the transfer matrix. In the parametrization method
proposed in our previous work [15], an orthogonal matrix
U (θL ) is used to diagonalize the product of transfer matrices
ML = T iT i−1 · · · T 1. We obtain the recursion relation of the
parameter θL in the thermodynamic limit:

tan θL+1 = 1

E − εL+1 − tan θL
. (4)

We focus on the large-L limit, L → ∞, and do not restrict to
any sequence realization of εi. The recursive relation gives the
exact integral equation for the stationary distribution function
p(θ ) of variable θ ,

p(θ ) sin2 θ =
∫ ∞

−∞
pε (ε)p(θ ′) cos2 θ ′dε, (5)

where tan θ ′ = E − ε − 1
tan θ

. As we can seen from the inte-
gral equation, the disorder distribution pε (ε) and the energy
E totally determine the properties of system.

With the normalized solution p(θ ) of the integral equation,
the inverse localization length, or the Lyapunov exponent can
be expressed as

γ = −
∫ π/2

−π/2
p(θ ) ln | tan θ |dθ

= 1

2

∫ π/2

−π/2
dθ

∫ ∞

−∞
dε p(θ )pε (ε)

× ln [1 + (E − ε)2 cos2 θ − (E − ε) sin 2θ ]. (6)

The first expression used by Ishii [2] for the Lyapunov expo-
nent is equivalent to the second one. We see that the second

expression is more practical to obtain the expansion in small
values of σ 2 and m3σ

3 for |E | � 1 in the band center region,
while the first expression is better to calculate the expansion
of the Lyapunov exponent at finite in-band energies.

III. EXPANSION NEAR THE BAND CENTER

The behavior of the Lyapunov exponent near the band
center is dominated by the ratio of energy to disorder strength.
In the case near the band center and with a weak-disorder limit
with small asymmetry, |E | � 1, σ 2 � 1, and m3σ � 1. In
this section, we utilize the small value expansion method to
obtain the differential equation for the stationary distribution
p(θ ) and then derive perturbation terms for the Lyapunov
exponent in the next section.

From Eq. (5), considering the precondition σ 2 → 0 and
E → 0, we can easily verify that p(θ ) = p(θ − π

2 ). We cannot
directly expand Eq. (5). This difficulty can be avoided by
iterating the recursive integral equation twice:

p(θ ) =
∫ ∞

−∞

∫ ∞

−∞
dε1dε2

cos2 θ2 pε (ε1)pε (ε2)

sin2 θ tan2 θ1
p(θ2), (7)

where tan θ1 = E − ε1 − 1
tan θ

, tan θ2 = E − ε2 − 1
tan θ1

. The
advantage gained by iterating twice is that θ2 differs from θ

in a small magnitude when σ 2 → 0, E → 0. Hence p(θ2) can
be written in terms of p(θ ) and its derivatives.

The right-hand side of the above integral equation is ex-
pressible as a series in powers of E , ε1, and ε2. Keeping terms
up to E and 〈ε3〉, and neglecting all the other higher-order
terms in the limit of σ 2 → 0, E → 0, we get the following
differential equation:

p(θ ) = p(θ ) + E p′(θ )

+ σ 2

[
(3 + cos 4θ )p′(θ )

8
− (sin 4θ )p(θ )

4

]′
− m3σ

3

×
{[

(3 cos 4θ + 5)p′(θ )

48

]′
− (3 cos 4θ + 1)p(θ )

12

}′
,

(8)

where p′(θ ) means d p(θ )
dθ

, and the primes over the groups of
expressions are the derivative with respect to θ . This equation
possesses the effect for the third moment of the disorder
distribution, which gives asymmetric features.

In the weak-disorder limit, we define x = E/σ 2, y =
m3σ = m3σ

3/σ 2 as small parameters. Then we look for a se-
ries solution of the differential equation (8) for the stationary
distribution p(θ ),

p(θ ) = p0(θ )[1 + xpx(θ ) + ypy(θ )

+ x2 pxx(θ ) + xypxy(θ ) + y2 pyy(θ ) + · · · ]. (9)

Substituting Eq. (9) into Eq. (8), we obtain the differential
equation for each order of x and y. p(θ ) should meet require-
ments for normalization and periodicity condition,∫ π/2

−π/2
p0(θ )dθ = 1,

∫ π/2

−π/2
p0(θ )pxn,ym(θ )dθ = 0,

pxn,ym(θ ) = pxn,ym(θ + π ), (10)

where pxn,ym represents the perturbation term of order xnym.
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P0

Px
Py

FIG. 1. p0(θ ), px (θ ), and py(θ ), the zero- and the first-order
expansion terms for the stationary distribution in Eq. (9).

The differential equation for the first term p0(θ ) corre-
sponding to the limit σ 2 → 0, E = 0 without asymmetry is

3 + cos 4θ

8
p′′

0(θ ) − 3 sin 4θ

4
p′

0(θ ) − (cos 4θ )p0(θ ) = 0. (11)

The normalized solution to this equation is

p0(θ ) = 1

K
(

1√
2

)√
3 + cos 4θ

, (12)

where K ( 1√
2

) is the complete elliptic integral of the first kind,

K (k) = ∫ π/2
0 dφ/

√
1 − k2 sin2 φ. Equation (11) is consistent

with the results of Refs. [16] and [17] obtained by the
quasidegenerate perturbation theory and the Hamiltonian map
method, respectively.

First, let us consider the leading perturbation terms. It is
clear that px stands for the energy perturbation term with
a zero asymmetric property, and py is induced by the third
moment of the disorder distribution when energy equals zero
strictly. We calculate them from the differential equation up to
their order, respectively:

px(θ ) =
∫ θ

0

[
2
√

2π p0(φ) − 8

3 + cos 4φ

]
dφ, (13)

py(θ ) =
∫ θ

0

[
π p0(φ)

4
√

2
− 8 sin2 4φ

(3 + cos 4φ)3

]
dφ. (14)

Both px(θ ) and py(θ ) can be written out in elliptic integral
functions. We plot the zero-order stationary distribution p0(θ )
and the first-order corrections px(θ ) and py(θ ) in Fig. 1.
It shows that the magnitude of py(θ ) is smaller than the
magnitude of px(θ ).

Repeating the same procedure as above, perturbation terms
of the second order are given by

pxx(θ ) = C1 −
∫ θ

0

8

3 + cos 4φ
px(φ)dφ, (15)

pxy(θ ) = C2 + 3 cos 4θ + 5

6(3 + cos 4θ )
p′

x(θ )

−
∫ θ

0

[
8(sin2 4φ)px(φ)

(3 + cos 4φ)3
+ 8py(φ)

3 + cos 4φ

]
dφ, (16)

Pxy

Pxx

Pyy

FIG. 2. pxy(θ ), pxx (θ ), and pyy(θ ), the second-order expansion
terms for the stationary distribution in Eq. (9).

pyy(θ ) = C3 + 3 cos 4θ + 5

6(3 + cos 4θ )
p′

y(θ )

−
∫ θ

0

8(sin2 4φ)py(φ)

(3 + cos 4φ)3
dφ, (17)

where C1, C2, and C3 are integral constants. These constants
are calculated by normalizing the correction terms of the sta-
tionary distribution to zero numerically: C1 = 0.0816, C2 =
0.00953, and C3 = 0.000966. We plot the second-order terms
pxy(θ ), pxx(θ ), and pyy(θ ) in Fig. 2. It shows that the mag-
nitude of the pyy(θ ) correction is smaller than the magnitude
of pxx(θ ). After obtaining all the perturbation terms up to the
second order for the stationary distribution, we calculate the
Lyapunov exponent up to the order of σ 2 next.

IV. LYAPUNOV EXPONENT NEAR THE BAND CENTER

The first expression in Eq. (6) requires the σ 2-order term
of the stationary distribution p(θ ) in order to give the σ 2-order
term for γ . Alternatively, we use the second expression for the
Lyapunov exponent in Eq. (6) for the band center, by which
we only need the terms of zero order of σ 2 for the stationary
distribution p(θ ), and these terms have been obtained in the
previous section. We expand the logarithmic function in the
second expression for the Lyapunov exponent in Eq. (6), and
integrate ε out up to 〈ε3〉 terms:

γ = σ 2

2

∫ π/2

−π/2
dθ p(θ )

[
1 + 2 cos 2θ + cos 4θ

4

− x sin 2θ − y(sin 2θ )
2 + 3 cos 2θ + cos 4θ

6

]
. (18)

After integrating ε out, we find that the second expression for
the Lyapunov exponent in Eq. (6) gives zero coefficient for
the zero order of σ 2 when E = 0. It is the convenient way to
evaluate γ for the band center region.

We write γ in power expansion of x and y:

γ = γ0 + xγx + yγy + x2γxx + xyγxy + y2γyy + · · · . (19)
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FIG. 3. Dependence of Lyapunov exponent on x = E/σ 2. The
lines are for several small values of the third moment y = 〈ε3〉/σ 2.
The location of minimum points of each curve is at x = −0.086y,
with a lifted Lyapunov exponent as the absolute magnitude of y
increases.

Inserting into Eq. (18) the stationary distribution p0(θ ) for
E = 0 and 〈ε3〉 = 0, we have

γ0 =
[
�(3/4)

�(1/4)

]2

σ 2, (20)

which was obtained in Refs. [8,16,17]. From the symmetry
of px(θ ), py(θ ), one immediately knows that the terms cor-
responding to order x and y in γ equal zero. Substituting the
expansions of p(θ ) into Eq. (18) and summing up all terms in
each order of x2, xy, and y2, we obtain the power series for γ

numerically,

γ = γ0 + σ 2(0.00533x2 + 0.000912xy + 0.000387y2). (21)

The coefficients before y terms are much smaller than the one
before x2. We plot γ as the function of x and y in Fig. 3. It
shows that γ is affected little by the small asymmetric shape
of the disorder distribution pε (ε).

The terms corresponding to the first order of x and y vanish
in γ ; therefore, the Lyapunov exponent is given by a quadratic
form in x and y. The absence of the first-order terms can
be understood from the Hamiltonian of system (1). Let {ψi}
be the wave function for a realization {εi} of pε (ε). Then
{(−1)iψi} is a wave function for the Hamiltonian with energy
−E and disorder realization {−εi}, and we have tan θ ′ = E −
ε − 1/ tan θ → tan(−θ ′) = (−E ) − (−ε) − 1/ tan(−θ ). At
the order of x, no asymmetric property is needed and we can
take pε (−ε) = pε (ε). Consequently, it results in the relation
p(θ, E ) = p(−θ,−E ). By γ = − ∫ π/2

−π/2 p(θ ) ln | tan θ |dθ , an
even function of E , we reach γx = 0. Energy can be set as
zero when studying γy. When the asymmetry is included, we
have pε (ε) 	= pε (−ε). However, in the same way, {(−1)iψi}
is the wave function for disorder distribution pε (−ε), and
so p(θ, m3σ

3) = p(−θ,−m3σ
3). Therefore, γ is an even

function of y, and we get γy = 0.
As plotted in Fig. 3, when the third moment increases,

the position of the minimum point of the Lyapunov exponent
curve is gradually moving away from the band center. The
moving direction of the minimum position is opposite to the

P0
P2
P3

FIG. 4. The expansion of the stationary distribution at a finite
energy E = 0.8. The lines p0(θ ), p2(θ ), and p3(θ ) are defined in
Eq. (22).

sign of the third moment. It is evident that the shift comes
from the combined effect of nonzero energy and asymmetry.
The term γyy is responsible for adjustment of height. Figure 3
shows that the minimum value of the γ curve tends to increase
along with the absolute value of the third moment. It means
that, given a zero mean and a finite variance, a larger third
moment will lead to a more localized system.

V. LYAPUNOV EXPONENT FOR NONZERO ENERGIES

In this section we study the asymmetric correction for γ at
a finite in-band energy. We show this correction is zero at the
order of σ 2. For a continuous distribution with a zero mean, a
standard deviation σ 2, and a third moment 〈ε3〉 = yσ 2, setting
other higher-order moments as zero, we have the stationary
distribution for θ expanded up to the order of σ 2,

p(θ ) = p0(θ ){1 + σ 2[p2(θ ) + yp3(θ )] + · · · }. (22)

Following the procedure we did for the zero-energy region
in previous sections, we insert the above p(θ ) into Eq. (5),
then solve the equation up to the order of 〈ε3〉. We obtain

p0(θ ) =
√

4 − E2

π (2 − E sin 2θ )
, (23)

p2(θ ) = sin 4θ

E (2 − E sin 2θ )2
, (24)

p3(θ ) = 1

E3(E2 − 1)

[
2(E2 − 16)

E sin 2θ − 2
− 4(2E4 − 13E2 + 24)

(E2 − 4)2

+ 8(E2 − 7)

(E sin 2θ − 2)2
+ 8(E2 − 4)

(E sin 2θ − 2)3

]
, (25)

where the distribution p0(θ ) has been normalized to 1. In-
tegrations over [−π/2, π/2] for p0(θ )p2(θ ) and p0(θ )p3(θ )
are zero. We illustrate the obtained expansion in Fig. 4 for
E = 0.8.

The inverse of the localization length is obtained by the
first expression for γ in Eq. (6). The only nonzero result of
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the involved integrations is

−
∫ π

2

− π
2

p0(θ )p2(θ ) log | tan θ | dθ = 1

2(4 − E2)
. (26)

We obtain γ = σ 2

2(4−E2 ) , the same result found in previous
studies [6]. At a finite in-band energy the localization length
depends on σ 2 only. It is not affected by the small asymmetric
property of disorder distribution in the weak-disorder limit.
Therefore, we should not expect much experimental phenom-
ena from the asymmetric property of a disorder distribution
in the weak disorder. We found no experimental reports on
this aspect either. This conclusion is in agreement with one-
parameter scaling theory, which fails only for the zero-energy
region [11].

A refinement for the degenerate point E = 1 [8,9,16,18] is
worth noting. There is no further correction to γ = σ 2

6 at the
order of σ 2. However, p2(θ ) and p3(θ ) can be fixed only by
higher-order equations accurate for σ 4 with 〈ε4〉 terms. The
solutions for p2(θ ) and p3(θ ) presented in Eqs. (24) and (25)
are not correct for the E = 1 point.

Finally we should consider the boundary between the
two distinct behaviors in the weak-disorder limit. The small
asymmetric disorder has a positive effect on the Lyapunov
exponent close to the band center while it has no effect
away from it. The energy scale, beyond which the effect of
small asymmetric disorder vanishes, is E ∼ σ 2. The crossover
region cannot be quantified through perturbation series in
powers of σ 2/E or E/σ 2 from either side. We could examine
briefly the crossover region by numerical calculation.

To compute p(θ ) numerically from Eq. (5), we consider
terms up to the third moment 〈ε3〉 and neglect all the other
higher-order moments in Eq. (5),

p(θ ) sin2 θ = cos2 θ0

(
p(θ0) + σ 2

2
(cos2 θ0(cos2 θ0 p(θ0))′)′

−yσ 2

6
(cos2 θ0(cos2 θ0(cos2 θ0 p(θ0))′)′)′

)
,

(27)

where tan θ0 = E − 1/ tan θ , y = 〈ε3〉/σ 2, and the primes
over the groups of expressions are derivatives with respect to
θ0. We compute γ (E , y) through the numerical solution p(θ )
of the above differential equation for σ = 10−4.

The effect from small asymmetric disorders is too small to
display in a figure for γ (E , y) with different values of E and
y. We adopt δγ (E , y) to display this effect in Figs. 5 and 6:

δγ (E , y) = [γ (E , y) − γ (E , 0)]

σ 2/(1 − E2/4)
. (28)

In Fig. 5 we demonstrate the Lyapunov exponent close to the
band center. It shows that γ changes along with E and y as
Eq. (21) near the band center, and deviates from Eq. (21) when
E > 0.1σ 2. In Fig. 6 we demonstrate the Lyapunov exponent
out of the band center. It shows that γ changes along with E
and y with a y

E/σ 2
σ 2

1−E2/4 term when E is big. This kind of σ 4

term is not exactly zero in the perturbation series for finite E in
the weak-disorder limit. γ deviates from this finite E behavior
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y=0.10
y=0.15
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FIG. 5. Dependence of the Lyapunov exponent on asymmetric
disorder in the band center region. δγ is given in Eq. (28).

when E/σ 2 < 10. As in this brief numerical examination, the
energy of the crossover region is on the order of E ∼ σ 2.

VI. CONCLUSION

This study has been mainly concerned with the conse-
quence of an asymmetry disorder distribution in the one-
dimensional Anderson model. We analyzed the Lyapunov ex-
ponent of the one-dimensional Anderson model with diagonal
disorder. The third moment of a disorder distribution was used
to represent asymmetric property. A small third moment as a
perturbation term was included in a differential equation for
the model. A small third moment shifted the curve of the
Lyapunov exponent versus energy a little upward, and lifted
its minimum value around the band center. We found that
the small asymmetric property has no effect on the Lyapunov
exponent at finite in-band energies.

These results provide some understanding on the absence
of the effect of a small asymmetric disorder distribution in
real systems in experimental observations. They also provide
a quantitative estimation on the required precision of an
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FIG. 6. Dependence of the Lyapunov exponent on asymmetric
disorder out of the band center region. δγ is given in Eq. (28).
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experiment when the effect of a small asymmetric disorder
distribution is targeted. To approach the effect of disorder
strength as small but not in the weak-disorder limit, we expect
the problem to be much more formidable since the fourth
moment of the disorder distribution will come into play.
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