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Droplets on chemically patterned surface: A local free-energy minima analysis
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Droplet wetting on solid surfaces is a ubiquitous phenomenon in nature and applications. The wetting behavior
of droplets on homogeneous surfaces has been accurately elucidated by the quintessential Young’s law. However,
on heterogeneous substrates, due to the energy barriers and contact line pinning effect, more than one equilibrated
droplet pattern exists, which is more close to reality. Here, we propose a concise mathematical-physical model
to delineate the droplet patterns on chemically patterned surfaces: stripe, “chocolate,” and “chessboard.” The
present concept is capable of predicting the number as well as the morphologies of the equilibrated droplets on
chemically patterned surfaces. We anticipate that the current work can be applied to fabricate programmable
surfaces involving droplet manipulation in integrated circuits, biochips, and smart microelectronics.
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The wetting of droplets on a solid substrate is omnipresent
in nature [1]. When the substrate is homogeneous, the equi-
librium shape of the droplet is unique, as predicted by the
classic Young’s law [2–4]. However, in most technological
and engineering applications [5–11], the substrate is pre-
sumably heterogeneous. The heterogeneities of the surfaces
most probably lead to various local energy minima [12–25],
corresponding to multiple equilibrium droplet morphologies.
In such an intricate case, neither the Young’s law nor the
classic Cassie-Baxter model [26] is sufficient to describe
the equilibrated droplet patterns. In contrast to a unique
droplet shape on homogeneous substrates, droplet morpholo-
gies on heterogeneous substrates, which provide more ap-
pealing freedom for droplet manipulation as well as design
of programmable surfaces in applications, are far from being
understood.

In this work, we propose a concise mathematical-physical
model to address the droplet patterns on chemically patterned
surfaces. Three typical heterogeneous substrates, namely,
stripe, “chocolate,” and “chessboard” (Fig. 1), are con-
templated. Our concept is based on the physical prin-
ciple of surface energy minimization, following the sec-
ond law of thermodynamics. The present model creates a
way to recount the potential existing equilibrated droplet
patterns on flat and chemically patterned surfaces based
on a finite dimensional energy landscape. The results of

our model show good conformity with the phase-field
simulations.

We consider a sessile droplet on a chemically patterned
solid surface surrounded by a gas phase, as illustrated in
Fig. 1. The droplet arrives at the equilibrium state by minimiz-
ing the total interfacial energy E = Algγlg + ∫

Als
(γls − γgs)dA.

Here, Alg and Als denote the areas of the liquid-gas and
liquid-solid interfaces, respectively. The parameters γlg, γls,
and γgs indicate the liquid-gas, liquid-solid, and gas-solid
interfacial and surface energies, respectively. It is assumed
that the droplet baseline (red dashed line) forms an ellipse
with semiaxes a and b. The liquid-gas interface is described
with circular arcs (yellow dashed line) passing through the
droplet apex and the contact line. These circular arcs have a
varying curvature radius rc(ϕ) = [r2

b (ϕ) + h2]/2h, where rb,
h, and ϕ are the base radius, droplet height, and polar angle
of the base ellipse, respectively. Mathematically, the area of
the droplet cap (i.e., the liquid-gas interface) Alg can be fully
described by a, b, and h. For a given volume Vd (a, b, h), Alg is
further reduced to be a function with two degrees of freedom,
i.e., Alg = Alg(a, b). Thus, the first term of the total interfacial
energy is γlgAlg = E1(a, b). For convenience, we set γlg a
dimensionless value γlg = 1.

The chemical heterogeneities of the solid surface γls −
γgs = fk (rb, ϕ) (k = 1, 2, 3 denote the striped, chocolate, and
chessboard patterns, respectively) are described as follows:

γls − γgs =
⎧⎨
⎩

f1(rb, ϕ) = γm + γ0 tanh(ξ cos δ1), striped pattern
f2(rb, ϕ) = γm + γ0 tanh[ξ (cos δ1 cos δ2 − cos δ1 − cos δ2)], chocolate pattern
f3(rb, ϕ) = γm + γ0 tanh(ξ cos δ1 cos δ2), chessboard pattern

(1)
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with δ1 = [πrb sin ϕ + iπL]/L and δ2 = [πrb cos ϕ +
jπL]/L. γm and γ0 are the mean surface energy difference and
the amplitude of the heterogeneity, respectively. Presently,
we set γm = 0, γ0 = 0.5, i.e., the static equilibrium contact
angles on the hydrophilic and hydrophobic areas are 60◦
and 120◦, respectively. The characteristic length L denotes
the width of the stripe for the striped pattern and the lattice
length for the chocolate and chessboard patterns. ξ is a
constant parameter controlling the sharpness of the chemical
pattern and i, j = 0,±1,±1/2,... are parameters depicting
the center point position of the droplet baseline, which will
be specified in the following. The interfacial energy of the
liquid-solid interface has four degrees of freedom, namely,∫

Als
(γls − γgs)dA = E2(a, b, i, j). For a certain patterned

surface and droplet position (i.e., for certain values of
i, j), E2 can be described as a function of a and b. The
equilibrium droplet shapes are predicted by minimizing the
total interfacial energy E in terms of a and b when i, j are
fixed. A detailed discussion about the influence of i, j for
given parameters a and b is elucidated in the Supplemental
Material [27].

To capture the complex morphologies of droplets on chem-
ically patterned surfaces and their relaxation into equilibrium
shapes, an Allen-Cahn-type phase-field model (PFM) is em-
ployed [28,29]. This is a computationally efficient method for
solving wetting phenomena, which has been experimentally
validated [30,31]. In the PFM, the phase state is character-
ized by a continuous space and time dependent order pa-
rameter φ(x, t ). The time evolution of this order parameter
is such as to reduce the free-energy functional, which is
expressed as

F =
∫

V

[
1

ε
w(φ) + g(φ) + εγlg|∇φ|2

]
dV. (2)

Here, V is the spatial domain and ε is a modeling parame-
ter related to the thickness of the liquid-gas interface. The
first term w(φ) is an obstacle potential, which is written as
w(φ) = (16/π2)γlgφ(1 − φ), if φ ∈ [0, 1] and w(φ) = ∞,
if φ /∈ [0, 1] (see Ref. [28]). The second term g(φ) is to
ensure the volume preservation [28,29]. The last contribution
εγlg|∇φ|2 denotes a gradient energy density. In order to fulfill
the wetting condition, a solid-fluid interfacial energy density
fw is added to the free energy F , such that Ftotal = F +∫
Als

fw(φ)dA. Here, fw = γgsh(φ) + γls[1 − h(φ)] is a wall
free-energy density [30], where h(φ) is an interpolation func-
tion. Through the functional derivative of Ftotal, the evolution
equation for the phase order parameter reads

τε∂tφ = 2εγlg�φ − g′(φ) − 16

επ2
γlg(1 − 2φ) in V , (3)

with the natural boundary condition [32,33]:

2εγlg∂nφ = (γgs − γls )h′(φ) on Als. (4)

Here, τ in Eq. (3) is a relaxation parameter. In Eq. (4), n
denotes the normal vector of the solid-fluid boundary Als.
At equilibrium, this boundary condition leads to the Young’s
law.

We now present the analytical predictions and simulation
results of droplets on a chemically striped patterned surface

FIG. 1. (a) A sessile droplet on chemically patterned surface.
The dashed ellipse (with center O1 semiaxes a and b) is the droplet
baseline. The dashed circular arc is on the liquid-gas interface with
the circle center O2 and curvature radius rc. β depicts the polar
angles on the surface of the yellow dashed arc. θe,1 to θe,4 describe
the intrinsic contact angles on the pattern lattices. (b)—(d) Selected
chemically patterned surfaces: stripe, “chocolate,” and “chessboard,”
defined by the arrangement of the intrinsic contact angles.

[see Fig. 1(b)]. In Figs. 2(a)–2(c), we illustrate the surface
energy landscapes of droplets in terms of the parameters a and
b as well as the corresponding snapshots of the equilibrated
droplets via PFM. In the simulations, the droplets with a
given volume initially have a form of cuboid with various
aspect ratios in the contact area. Suitable aspect ratios and
initial positions of the droplets are chosen (see Supplemental
Material [27]), such that the surface energy minima predicted
by the analytical model can be reached. As shown in the first
picture of Fig. 2(a)(III), a and b are the semiaxes of the elliptic
baseline of droplets, which are parallel and perpendicular to
the stripes, respectively. The surface energy minima indicated
by different numbers in the energy diagrams correspond to the
snapshots labeled with the same number. The effective droplet
radii R = (3Vd/4π )1/3 in Figs. 2(a), 2(b) and 2(c) are 40, 50,
and 90, respectively. The blue and red stripes in the snapshots
denote the hydrophilic and hydrophobic ones with the same
stripe width L = 20. In Fig. 2(a)(III), the red dashed ellipses
denote the analytical results, corresponding to the coordinate
of the energy minimum points in the energy diagrams. A good
agreement is observed between the analytical solution and
the numerical simulations and three equilibrated droplets are
found. Similarly, as illustrated in Figs. 2(b) and 2(c), 4 and 5
equilibrium shapes are found for the droplets with R = 50
and R = 90, respectively. By using the same methods, we
obtain droplet configurations for different droplet sizes, as
depicted in Fig. 2(d), where the ratio R/L ranges from 2 to 9.
Both the number of the equilibrium shapes and the tendency
of the analytical results show a satisfactory agreement with
the simulation results. Because of the contact line pinning in
the direction perpendicular to the stripes, the value of b is
well predicted by the analytical model. However, for large a,
the analytical predictions of a deviate from the simulations,
which is caused by the assumption of the analytical model
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FIG. 2. (a)–(c) Surface energy landscapes in the a-b space and snapshots of sessile droplets on chemically striped patterned surfaces
with different droplet sizes [(a) R/L = 2, (b) R/L = 5, (c) R/L = 9]. The chemical heterogeneities are described by f1(rb, ϕ) in Eq. (1).
At equilibrium, the droplet base center stays either on the center of the blue (hydrophilic) stripe (namely, position 1 and i = 1) or on
the center of the red (hydrophobic) one (i.e., position 2 and i = 0). The energy landscapes are accordingly calculated when the droplet
base centers are on these two different positions. The contour lines indicate the energy levels (red for low energy and blue for high
energy states) and the color changes from blue to red illustrate the decrease of the energy. The energy minima are indicated by different
numbers, corresponding to the snapshots labeled with the same number. The red dashed ellipses in (a)(III) denote the analytical results,
which can be read from the corresponding energy landscapes. (d) Predicted droplet configurations for different droplet sizes. The filled and
empty symbols describe the simulation and analytical results, respectively. The two dashed lines are guide lines to highlight a trend in the
data.

that the liquid-gas interface is described with circular arcs;
while this is obviously not the case when the droplet aspect
ratio a/b is relatively large and the deformation of the contact
lines takes an important role. From Fig. 2(d), we conclude
that the number of the equilibrium droplet shapes (or the
local energy minima) remains constant as the droplet volume
increases within a certain range (e.g., R/L = 2, 3, 4), while
a further rise of the droplet volume results in an increase in
the number of equilibrium droplets (e.g., from R/L = 4 to
R/L = 5).

Afterwards, a two-dimensional periodic solid surface pat-
tern, the chocolate pattern, is considered [see Fig. 1(c)]. In
this pattern, the size of the lattices and the distance between

them both are set to be 20. The effective droplet radius
is R = 40. In the simulations, the droplets initially have a
cuboid form with different aspect ratios and then evolve
to equilibrium shapes. Figures 3(a)–3(c) show the surface
energy landscapes for droplets with the base center points on
P1 ( j = 0, i = 0), P2 ( j = 1, i = 0), and P3 ( j = 1, i = −1),
respectively [see Fig. 3(d)]. Figure 3(e) illustrates the sim-
ulation results of the equilibrium shapes of droplets. The
energy minima indicated by different numbers correspond to
the snapshots in Fig. 3(e) labeled with the same number. The
red dashed ellipses in Fig. 3(e) are the analytical predictions,
which show good agreement with the simulation results. It is
found that the energy diagrams (a) and (c) are symmetric with
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FIG. 3. (a)–(c) Surface energy landscapes for chocolate-
patterned surfaces. The chemical heterogeneities are described by
f2(rb, ϕ) in Eq. (1). The energy minima are indicated by different
numbers, corresponding to the snapshots in (e) labeled with the same
number. (d) Sketch of the surface topology and three base centers of
droplets (gray, hydrophobic; white, hydrophilic). The droplet shapes
in (a), (b), and (c) correspond to the positions P1, P2, and P3. (e)
Snapshots of equilibrated droplets through PFM (blue, hydrophilic;
red, hydrophobic). The red dashed ellipses denote the analytical
results. (f) The number N of equilibrium shapes of droplets as a
function of R/L. The black dashed line is the guide line.

respect to the line a = b, while in (b) this symmetric charac-
teristic disappears. This is because the topologies in a and b
directions are the same for the points P1 and P3, while for the
point P2 the topologies vary in the two directions. In compari-

son to the droplets with the same size (R = 40) on the striped
patterned, more local energy minima are found for droplets on
the chocolate-patterned surface. Furthermore, by changing the
droplet volume, we have found a functional relation between
the number of equilibrium shapes of droplets N and the
droplet size R/L, as illustrated in Fig. 3(f). The red points
indicate the predicted values of N for different R/L. The black
dashed line highlights the functional tendency, showing that
larger droplets tend to have more equilibrium patterns.

We further utilize the analytical model and PFM to scru-
tinize the equilibrated droplets on a more complex pattern,
the chessboard pattern [see Fig. 1(d)]. The effective droplet
radius is R = 40 and the lattice length of the chessboard is
L = 20. Figures 4(a) and 4(d) show the energy landscapes
for droplets deposited on the positions P1 ( j = 0, i = 0) and
P2 ( j = 0, i = 1), respectively. Figures 4(b), 4(c) and 4(e),
which is achieved by rotating the coordinate system by 45◦
[the directions of a and b are shown in Fig. 4(g)5], illustrate
the energy landscapes corresponding to the positions P1,
P3 ( j = −1/2, i = 1/2), and P2, respectively. It is found that
the analytical predictions [red dashed ellipses in Fig. 4(g)]
match very well with the PFM simulations. With the aid of the
present model, 11 equilibrated droplet patterns are found for
the chessboard-patterned surface with the initial setup R = 40
and L = 20. The number N of equilibrium shapes of droplets
as a function of the droplet size R/L is displayed in Fig. 4(h).
The results reveal that the increase in the droplet size leads
to more equilibrium shapes of droplets. Currently, we focus
on the equilibrium features of droplets on the chemically
patterned surface and the capabilities of the analytical model.
Systematic studies of parameters such as contact angles will
be presented in a future work.

Figure 5 illustrates how the complexity of the pattern
influences the number of equilibrated droplets. Here, we in-
troduce a parameter, energy discontinuous line density ρ (see
the caption in Fig. 5), to characterize the complexity of the
pattern. From striped patterned surface to chocolate-patterned
and chessboard-patterned surface, the density of the energy
discontinuous line rises, which increases the complexity of the
energy landscape [e.g., see energy landscapes in Figs. 2(a), 3,
and 4] and thus leads to more and more equilibrated droplets.
This increase tendency is more pronounced for larger droplets
(R/L = 2) than for smaller ones (R/L = 1.5 and 0.5). The
underlying reason is that more energy discontinuous lines
are covered by the large droplets and therefore more stable
states tend to occur, whereas for small droplets, the number
of covered discontinuous lines is relatively reduced and the
equilibrated states are not as many as that for large droplets.

To conclude, we have presented a strategy for delineating
the equilibrated droplet patterns on programmable chemically
patterned surfaces via calculating the surface energy land-
scapes. We have applied and validated the strategy by studying
equilibrium shapes of droplets on three selected substrate
patterns. Together with numerical simulations, we have found
the potential existing energy minima and the corresponding
equilibrium droplet shapes, while this is not possible by the
Cassie-Baxter model. It has been revealed that the increase in
the droplet volume or the complexity of the surface (e.g., by
introducing more hydrophilic-hydrophobic boundary lines)
most likely gives rise to more surface energy minima. Hence,
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FIG. 4. (a)–(e) Surface energy landscapes for chessboard-patterned surfaces. (a) and (d) correspond to the situations when the directions
of a and b are horizontal and vertical, respectively, as shown in (g)2. The chemical heterogeneities are described by f3(rb, ϕ) in Eq. (1). (b),
(c), and (e) describe the energy landscapes in a rotated coordinate system and the directions of a and b are shown in (g)5. In the rotated system,
δ1 and δ2 in f3(rb, ϕ) are substituted by δ1

′ and δ2
′, respectively, with δ1

′ = (δ1 + δ2)/
√

2 and δ2
′ = (δ1 − δ2)/

√
2. The energy minima are

indicated by different numbers, corresponding to the snapshots in (g) labeled with the same number. (f) Schematic description of the surface
topology and three base center points of equilibrated droplets (gray, hydrophobic; white, hydrophilic). The two lines indicate two possible
directions of the semiaxis a. (a) and (b), (d) and (e), and (c) correspond to P1, P2, and P3, respectively. (g) Snapshots of equilibrated droplets
via PFM (blue, hydrophilic; red, hydrophobic). The red dashed ellipses denote the analytical results. (h) The number N of equilibrium shapes
of droplets as a function of R/L. The black dashed line is the guide line.

FIG. 5. The number N of equilibrium droplet shapes as a func-
tion of the energy discontinuous line density ρ := n/(2L)2 for dif-
ferent patterned surfaces, Here, n is the total effective number of
pinning lines within a square cell with an area of (2L)2. The three
insets indicate how ρ is calculated for different patterned surfaces.
The numbers “1” and “0.5” shown in the cells stand for the effective
number of pinning lines. The lines with different symbols denote the
results for droplets with different sizes (square, R/L = 0.5; circle,
R/L = 1.5; triangle, R/L = 2).

numerous droplet patterns can be quantitatively obtained by
tuning the droplet volume or the morphologies of the surfaces.
This new insight paves an alternative way to better understand
wetting behaviors on chemically patterned surfaces. Our ap-
proach can be straightforwardly extended to study droplets
deposited on a variety of chemically patterned surfaces and
offers essential guidelines for a vast range of applications in
microfluidics, inkjet printing, and biomedical science [34,35].
However, on real heterogeneous surfaces, the contact line
is highly nonlinear and far more complex than the present
approximation of an ellipse. In this case, an infinitely dimen-
sional Fourier series should be adopted to depict the triple line,
which gives rise to an infinitely dimensional energy landscape.
To find the complete set of the local energy minima in such
an infinitely dimensional energy landscape is challenging and
cannot be achieved by the present model.

The authors gratefully acknowledge funding of the re-
search through the Gottfried-Wilhelm Leibniz prize NE
822/31-1 of the German Research Foundation (DFG) (DE).
Aspects of modeling wetting behavior on a structured sur-
face, integrated in the present Rapid Communication, have
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