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Information production in homogeneous isotropic turbulence
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We study the Reynolds number scaling of the Kolmogorov-Sinai entropy and attractor dimension for three-
dimensional homogeneous isotropic turbulence through the use of direct numerical simulation. To do so, we
obtain Lyapunov spectra for a range of different Reynolds numbers by following the divergence of a large number

of orthogonal fluid trajectories. We find that the attractor dimension grows with the Reynolds number as Re

2.35

with this exponent being larger than predicted by either dimensional arguments or intermittency models. The
distribution of Lyapunov exponents is found to be finite around A ~ 0 contrary to a possible divergence suggested
by Ruelle. The relevance of the Kolmogorov-Sinai entropy and Lyapunov spectra in comparing complex physical

systems is discussed.
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One of the most striking features of turbulent fluid flows is
their seemingly random and unpredictable nature. However,
since such fluids are described by the Navier-Stokes equa-
tions, which are entirely deterministic in nature, their motion
cannot be truly random. In reality, turbulent flows exhibit
what is commonly referred to as deterministic chaos [1,2].
The time evolution of such systems is characterized by an
extreme sensitivity to initial conditions which has profound
consequences for their predictability.

Studying turbulence through the lens of chaos theory and
the related, but wider encompassing, area of dynamical sys-
tems theory has its roots in the seminal work of Ruelle and
Takens [3] alongside that of Lorenz [4]. This approach differs
from the more standard statistical approach [5] in the sense
that, instead of considering averaged properties of flows, we
consider the properties of individual trajectories in a suitably
defined state space of the system. Through such methods, a
diverse range of problems in fluid dynamics have been studied
including in weather and atmospheric predictability [6-8], as
well as for the solar wind and other magnetohydrodynamic
systems [9-12].

A central theme for a large proportion of the literature
investigating the chaotic properties of homogeneous isotropic
turbulence (HIT) is the concept of the Lyapunov exponents.
Put briefly, these exponents describe the rate of exponential
stretching and contracting in the state space and are thus
intimately related to the aforementioned sensitivity to initial
conditions. For a given system, there exist as many Lya-
punov exponents as degrees of freedom, which for real world
Eulerian fluid turbulence is presumably infinite. To date the
majority of such work, at least in the case of direct numerical
simulation (DNS), has been concerned with the calculation of
only the largest Lyapunov exponent [13,14]. It is, however,
possible to compute multiple exponents, leading to a partial
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Lyapunov spectrum, to obtain a more in-depth understand-
ing of the chaotic properties of the system. Moreover, if
all positive exponents are calculated, the Kolmogorov-Sinai
(KS) entropy [15,16], which quantifies the rate of information
production, can be estimated.

This Rapid Communication presents a systematic study of
the KS entropy for homogeneous isotropic fluid turbulence,
providing a precise measurement. Using DNS to study the
exact evolution of the Navier-Stokes equations, we test a
Reynolds number scaling relation derived by Ruelle [17]. As
such, our results are only limited by the resolution of our
simulations and the enormous computational cost of these
measurements. Unfortunately, this restricts us to a limited
range of Reynolds numbers and thus the applicability to fully
turbulent flows is not yet conclusive. The results in this work
also offer numerically rigorous tests of the various mathemat-
ical relations and conjectures in the literature associated with
the KS entropy. Moreover, these results provide a benchmark
for comparing against approximate numerical methods for
computing the KS entropy.

It is of additional interest to compare the entropy scal-
ing presented in this Rapid Communication to that seen in
condensed matter [18] and quantum field theoretic systems
[19,20]. Indeed, if a similar scaling with a suitably defined
control parameter is observed, then through Ornstein’s iso-
morphism theorem [21] there may exist connections at the
level of information production between these seemingly
disparate systems. This approach strips away the qualitative
features that may distinguish different systems of complexity
and reduces them all to a common set of quantitative measures
that can be systematically cross compared. Such an approach
could be beneficial in utilizing theoretical knowledge for one
type of system to understand another with similar information
theoretic content, and likewise for transfer of applications
between such related systems. To develop such a program,
a key step is to have good measurements of the Lyapunov
spectra and KS entropy for a diverse set of complex systems.
HIT is one such benchmark system, and another purpose of
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this paper is to provide this measurement for it. For a detailed
discussion of such ideas see [22].

Previous studies in this area have typically relied on em-
ploying methods to reduce the number of degrees of freedom,
for example, by using shell models [23-25] or highly sym-
metric flows [26]. For the case of DNS there has, however,
been far less work completed in this area, presumably due to
the high computational cost. Nonetheless, a small number of
low resolution studies have been conducted, although these
were focused primarily on estimating the dimension of the
attractor for the flow [27,28]. Even at the low Reynolds
numbers achieved in these studies, the dimension of the
attractor, and by extension the number of positive Lyapunov
exponents, is in the order of hundreds. Hence, HIT is a
distinctly high-dimensional chaotic system and methods used
for low-dimensional systems are likely to give poor estimates
of both the KS entropy and the attractor dimension [29].

Theoretical predictions for the KS entropy in HIT are
typically mathematically complex. One of the most notable
of these predictions was proposed by Ruelle [17], which
can be simplified if we ignore the effects of intermittency.
This assumes the energy dissipation takes its average value
everywhere in the flow, and works in the framework of Kol-
mogorov’s 1941 theory (K41) [30]. In doing so, we come to
the relation for the KS entropy, Ags, in HIT

1 /L 1
th~—<—) N?Re“/“. (1)

Here, the Kolmogorov microscale is given by n = (v?/g)3/*
and the corresponding timescale by 7, = (v/¢)'/? in which v
and ¢ are the viscosity and energy dissipation, respectively.
The integral length scale, L = (37 /4E) [ dk E(k)/k, gives
the size of the largest eddies in the flow [5] and Re = UL /v
is then the integral scale Reynolds number, where U is the
rms velocity. Finally, the large eddy turnover time is defined
asT =L/U.

Deviations from K41 have been well studied in the liter-
ature [31-34], with both intermittency and finite Reynolds
number effects claimed to be possible causes [35-38]. In
studies of the maximal Lyapunov exponent [13,14] for HIT,
different scaling behavior than that predicted by both K41 [39]
and the multifractal model [40] was observed. As such, exact
agreement with this simplified prediction for the KS entropy
would be very unexpected, and indeed our results also display
a conflicting scaling behavior.

In order to conduct a model-independent test of this pre-
diction, we perform DNS of the incompressible Navier-Stokes
equations, using a fully dealiased pseudospectral code [41] in
a periodic box of side length 27,

du+u-Vu=—-VP+vwWou+f, V-u=0. (2

Here u and P are the fluid velocity and pressure fields,
respectively, and f is an external forcing defined as

2E u(k,t) if0 <k <k
f(kﬁ):{(e/ Pk, 1) if0 <k < ky )

0 else,

where E; = fokf dk E (k) is the energy in the forcing band. The
main advantages of this form of forcing are that it allows for

the energy dissipation, &, to be set exactly and, since it simply
feeds the velocity field back into itself, it does not introduce
a stochastic element to the system. In all cases we have set
e =0.1.

In this work we take the KS entropy to be given, as is
standard [2], by the sum of positive Lyapunov exponents

s = 3 )

x>0

As such, we need to measure a number of exponents for
each case. This leads to various difficulties: a priori we do
not know ahead of time the number of positive exponents,
the method used to obtain exponent values requires many
iterations for averaging, and each exponent requires the simul-
taneous integration of another velocity field. Consequently,
the computational cost involved in computing the KS entropy
for fully resolved turbulent flows is high, and indeed we
will show that even at moderate Re the number of positive
exponents is in the thousands.

We make use of the algorithm proposed by Benettin [42] in
order to measure a large number of exponents, which we will
briefly summarize here. After allowing time for the flow to
reach steady state, we make M copies, labeledu;, i =1... M,
of the reference velocity field, uy. Each copy is then perturbed
using a Gaussian vector field with zero mean and a variance of
size &y, chosen such that the perturbation may be considered
infinitesimal. To measure the exponents we use the finite
time Lyapunov exponent (FTLE) method [2] and track the
growth of the difference fields §;(t) = u; — uy, rescaling the
difference to its original size at time intervals of Af,

u;(k, At) —uy(k, At)
o '

such that each perturbation continues to grow in the correct
direction. The FTLEs are then given by

I&'(AI)I>
s )

and the Lyapunov exponents A; are found by averaging over
many iterations. As it stands, this algorithm will simply
measure the largest Lyapunov exponent M times, due to a
tendency for all difference fields to align along the direction
of the state space associated with this exponent. To prevent
this, we make use of the modified Gram-Schmidt algorithm
to orthogonalize the §; after each measurement of the y;. By
repeating this procedure for an infinite number of iterations,
the exponents would become ordered such that A; > A, >
. > Ay. In our results, due to the finite number of iterations,
the spectra are not monotonically decreasing, but reasonable
ordering is achieved as in [28]. This can also be seen in Fig. 2.
Due to this ordering property, we can ensure we have obtained
all the positive exponents for the system by choosing M such
that a tail of negative exponents persist after averaging. The
number of operations in the orthogonalization step scales with
M? and thus quickly becomes computationally prohibitive.
Our results span a range from Re =~ 50 to Re =~ 212.
Unfortunately, the number of positive exponents scales so
quickly it would take excessive computational effort to ex-
plore higher Re flows. To guarantee our datasets are fully
resolved, we maintain a minimum of kp.xn > 1.25, where

ui(k, At) =up(k, At) + 5)

1
Yi(Ar) = Eln( (6)
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FIG. 1. The main plot shows Re vs higsT with the fit 0.0008Re>%
as a dashed black line. To improve clarity, errors are not shown on
this log-log scale.

kmax 18 the maximum wave number in the simulation de-
termined by dealiasing using the two-thirds rule [43]. As
such, runs were performed on grids ranging from 48> to 1503
collocation points. In doing so, we can be confident that the
small scales of the flow are adequately resolved. This is a
nontrivial requirement for such a study, as it was observed
in [28] that the number of positive exponents measured can
be underestimated if the resolution used is too low. After
nondimensionalizing the KS entropy by multiplying by the
large-eddy turnover time, we find our data is well fit by a
power law of the form AgsT = CRe®. A plot of this scaling
behavior is shown in Fig. 1. The exponent is found to take
the value o = 2.65 & 0.06 with the constant given by C =
0.0008 £ 0.0002.

Previous studies using shell models [24,25] found the Re
scaling behavior for both the maximal Lyapunov exponent
and the KS entropy to be the same and to follow the K41
prediction of Re®> at odds with what is observed in our DNS.
Meanwhile, using a multiaffine field [44], it is shown that the
space-time entropy of the entire velocity field should scale
according to the simplified prediction we are considering here.
The reason for the large discrepancy between these results is
well elucidated in [45], where on dimensional grounds they
find the shell model result corresponds to measurement of the
velocity at a single point, whilst the Ruelle result is for the
KS entropy of the entire field. Since in our DNS we study the
Lyapunov exponents for the entire velocity field, the Ruelle
entropy result is the appropriate prediction for this work.

Our data shows the Re scaling exponent is less than
expected when following the simplified prediction, although
only slightly. Intermittency is often invoked to explain such
differences; however, the multifractal model predicted devia-
tions [46,47] in the opposite direction than that observed in
DNS [13,14] for the related largest Lyapunov exponent. As
such, it is hard to make the claim that this is an adequate
explanation for our results, although we cannot rule it out
definitively. Another possible interpretation is that the discrep-
ancy is due to finite Re effects. This is an attractive hypothesis,
considering the modest Re values achieved, and indeed the
K41 scaling is predicated on the existence of an inertial range,
which will be limited in these simulations.

A“")\;/hKS
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FIG. 2. Lyapunov spectra for Re = 90 (A), 123 (o), 153 (1),
and 212 (x) rescaled by /s and the number of positive exponents,
N. Using this normalization, Lyapunov spectra measured at different
Re are shown to collapse onto the same curve, indicating a scaling

property.

Beyond the Re scaling of the KS entropy there are also
conjectures related to the shape of the Lyapunov spectrum for
fluid turbulence. The main question raised is related to the
distribution of exponents about A ~ 0, and whether or not it
diverges around this point [48]. In the 8 model of turbulence,
which attempts to extend the K41 theory to account for
intermittency, the spectrum of exponents can become singular
at A~ 0 [17]. This simple fractal model has since been
superseded by the multifractal model, but to our knowledge
there does not exist a prediction for the distribution using
this theory. Measurements of the spectrum in shell models
seemed to confirm this divergence [24]; however, this was
later suspected to be the result of the discretization in wave-
number space [49], which is also present in the 8 model.

For the range of Re tested in our DNS results there is no
singularity in the Lyapunov spectra at A & 0. To demonstrate
this, we will need to obtain an estimate for the dimension of
the attractor underlying the flow at each Re. Firstly, in order to
make a sufficient estimate, we relate the attractor dimension
to the Lyapunov exponents via the Kaplan-Yorke conjecture
[50]. To do so, we require the integer j such that

J+l1

J
> x>0 and ) <0, (7)
i=0 i=0

and the attractor dimension is then

sz:o Ai

D=j+ .
A1l

®)
Clearly, this requires far more exponents to be obtained than
for the KS entropy calculation, meaning the computational
cost becomes unfeasible at relatively low Re. Secondly, fol-
lowing [28], we can identify an Re scaling behavior for
the shape of the Lyapunov spectra in the region of positive
exponents, which allows us to estimate the dimension of the
higher Re cases. This can be seen in Fig. 2 and if we consider
the Re as a control parameter for the system, then this scaling
is also seen in other systems of differential equations [51,52].
Due to the spectra exhibiting a universal shape upon rescaling,
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FIG. 3. Lyapunov spectra normalized by /s and the (estimated)
attractor dimension D. The inset shows the same plot zoomed in on
the region around A =~ 0, highlighting the lack of divergence. The
spectrum represented by A is normalized using a directly computed
dimension whilst the other cases use dimensions estimated from this.

we can take the attractor dimension to be proportional to the
number of positive exponents. Explicitly, if we have one case
where we know the attractor dimension, D, for a given Re
value which has N, positive exponents, then for any other Re
we can estimate the attractor dimension as D; &~ (N;/N;)D,
even if we only know N;.

For a small subset of cases at lower Re, it is computa-
tionally feasible to measure enough exponents to make use
of the Kaplan-Yorke dimension formula. Using these directly
measured dimensions, we then estimate the attractor dimen-
sion for the higher Re cases. We find that in our Re ~ 212
simulation the attractor dimension is D ~ 5704. This result
highlights that HIT is in a class of extremely high dimensional
systems, even when compared to other chaotic fluid systems,
such as Rayleigh-Bernard convection [53]. Finally, in Fig. 3
we present a different method of normalizing the spectra,
this time using the estimated dimensions rather than the total
number of positive exponents. This normalization was used
in [24] to provide evidence of a divergence in the Lyapunov
spectra around A = O for a shell model. Therefore, as we set
out to demonstrate for the case of the full evolution of the
Navier-Stokes equations, as studied in our DNS, Fig. 3 shows
no such divergence at this point across a range of different Re
values.

We now turn to the scaling behavior for the number of posi-
tive exponents, N, with Re (Fig. 4). Due to the shape similarity
of the Lyapunov spectra, this scaling is also indicative of that
for the attractor dimension, and hence the number of active de-
grees of freedom in the flow. Theoretically, the standard scal-
ing for K41, based on purely dimensional grounds, was given
by Landau and Lifshitz [54] and gives N ~ Re”/*. A number
of additional mathematically derived estimates for the attrac-
tor dimension scaling have also been proposed [55,56], which
predict scalings of Re® and Re'®/3, respectively. There also
exists a prediction which makes use of the multifractal model
for intermittency, where the scaling exponent is found to be
slightly less than the K41 value [57]. Remarkably, the estimate
made on dimensional grounds is closest to what is observed in
our DNS data, where we find the best fit to be of the form
N = bRe” with y =2.35£0.05 and b = 0.008 £ 0.002.

//
£
/
A
1000 | K ]
/
7N
= J
g
P
AT
100 it ]
10 100 1000
Re

FIG. 4. Plot of Re against the number of positive exponents N.
The dashed line shows the fit to the data of 0.008Re**>.

Thus, our data suggests that the number of positive exponents,
and therefore the attractor dimension, grows with Re at a rate
slightly faster than the Landau estimate. This result is in line
with the findings in [13,14] concerning the largest Lyapunov
exponent, whereby the correction to the K41 result is in the
opposite direction when compared to the multifractal model
value. As such, this suggests that if intermittency corrections
are responsible for the deviations for K41 scaling seen here,
then a different intermittency model, which captures the be-
havior seen in our results, is needed.

If we consider that the number of operations in a DNS
grows as Re’, then the scaling of N suggests that, as a lower
bound, upon doubling Re, 2°3 ~ 40 times more operations
are needed to measure the entropy. Thus, at present, the results
in this study are on the limit of what is computationally
possible.

To summarize, we have shown that in HIT the KS entropy
exhibits a scaling law of the form hgsT ~ Re*® and this
exponent is less than that predicted using the K41 theory.
Further to this, Ruelle raised a question [17] concerning the
distribution of Lyapunov exponents in fluid turbulence and
a possible divergence around A = 0. Our results demonstrate
that the Lyapunov spectrum for the incompressible periodic
Navier-Stokes equations at the Re studied do not exhibit a
divergence at this point. Moreover, we identify a Re inde-
pendent shape of the spectra, allowing us to conjecture that
there is no divergence at any Re. Additionally, we have also
investigated the scaling of the number of positive Lyapunov
exponents with Re. This, coupled with the Re-independent
spectra shape, allows us to also estimate the scaling behavior
of the attractor dimension. We found that this quantity scales
faster than is predicted using K41 physical arguments, and
the opposite of what is predicted if intermittency is accounted
for via the multifractal model. Caution should, however, be
applied given the low Re values that could be studied via this
method using current computing power. The nature of these
results may exhibit differences to flows at higher Re which
will be of interest to study when the requisite computational
resources become available.

Through the use of numerical experiment, this study ex-
tends the understanding of the links between Eulerian turbu-
lence and deterministic chaos. By utilizing the KS entropy
as a measure of information production in HIT, it may also
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be possible to make a connection from HIT to information
theory and related areas such as algorithmic complexity [58],
which we will examine in future investigations. Further to
this, through the work of Ornstein [21], all systems satisfying
certain technical conditions with the same KS entropy are
isomorphic to each other. Following this line of argument,
it may then be possible that other physical systems and HIT
are in fact related at the level of information production. The
results presented in this Rapid Communication may then be
relevant to a wide range of chaotic systems. In particular, the

idea that other strongly coupled systems may be connected to
HIT is already being explored through the AdS/CFT fluid-
gravity correspondence [59], which may have a counterpart in
information theory.
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