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Reentrant phase transitions in threshold driven contagion on multiplex networks
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Models of threshold driven contagion explain the cascading spread of information, behavior, systemic risk,
and epidemics on social, financial, and biological networks. At odds with empirical observations, these models
predict that single-layer unweighted networks become resistant to global cascades after reaching sufficient
connectivity. We investigate threshold driven contagion on weight heterogeneous multiplex networks and show
that they can remain susceptible to global cascades at any level of connectivity, and with increasing edge density
pass through alternating phases of stability and instability in the form of reentrant phase transitions of contagion.
Our results provide a theoretical explanation for the observation of large-scale contagion in highly connected but
heterogeneous networks.
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Information-communication technology has radically
transformed social and economic interactions [1], introducing
new means of transmitting ideas, behavior, and innovation
[2,3], and overcoming limitations imposed by time and
cognitive constraints [4,5]. The same technology provides an
increasingly accurate picture of human interactions, mapping
the underlying network structures that mediate dynamical
processes, such as epidemics [6,7]. In complex contagion
[3], characteristic of the spreading of innovation, rumors, or
systemic risk, transmission is a collective phenomenon in
which all social ties of an individual may be involved. The
node degree, or number of links, is therefore critical to the
dynamical outcome [8]; a large relative neighbor influence is
easier to achieve the smaller the ego network. This behavior
is well captured by threshold models of social contagion on
single-layer unweighted networks, which predict large-scale
cascades of adoption in relatively sparse networks [8–12]. In
empirical social networks, however, individuals can maintain
hundreds of ties [5,13], with interaction strength varying
across social contexts [14–16], yet still exhibit frequent
system-wide cascades of social contagion [17–21].

We address this issue by incorporating the relevant features
of empirical social networks into a conventional threshold
model. We consider that network ties are heterogeneous, and
can be characterized by edge “types.” In the case of social
networks, these edge types vary in “quality” [22,23], usually
associated with the intimacy or perceived importance of a
relationship between individuals [24], and scale with the
strength of interpersonal influence [25,26]. Heterogeneity in
tie quality is well modeled by multiplex structures, as has been
recognized in both network [27,28] and social science [29,30],
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particularly regarding social contagion [31–34]. In multiplex
models of social networks, individual layers represent the so-
cial context of a relationship (e.g., kinship, acquaintance), al-
lowing us to classify ties by social closeness, as recognized by
Dunbar’s intimacy circle theory [24]. According to this theory,
due to cognitive and time resources being finite but necessary
to maintaining social ties, individuals actively cultivate a lim-
ited number of relationships, organizing them into intimacy
circles that increase in size as they decrease in importance.
Ego networks thus comprise a small but high-intimacy circle
of close relationships, such as family and long-term friends,
followed by large but low-intimacy circles of distant friends
and acquaintances. Empirical evidence shows the distribution
of dyadic social commitments (number of interactions or time
devoted to peers) to be strongly heterogeneous [35,36]. Strik-
ingly, this inverse relation between the cost of maintaining an
edge type, and the abundance of that edge type, can be seen
as an entropy maximization process [37] that applies to any
system with a heterogeneous cost of edge formation and finite
node resources. As such, although we use the language of
social networks, our results are of relevance to other systems,
e.g., financial [38–40] and biological [6,7] contagion.

Using analytical and numerical tools, we show that layer
hierarchy can lead to global cascades in multiplexes with an
average degree in the hundreds or thousands, perturbed by
a single initial adoption. We report the observation that in
a multiplex network with increasing link density a sequence
of phase transitions occurs, resulting in alternating phases of
stability and instability to global cascades.

Our model builds upon previous studies of threshold driven
processes [8–11] and multiplex networks [27,28]. We define
contagion as a binary-state dynamics over a weighted, undi-
rected multiplex network of N nodes connected throughout M
layers (Fig. 1). A node represents an individual u, and layer i
the social context in which individuals interact, 1 � i � M.
The degree of u in each layer i takes discrete values ki =
0, . . . , N − 1 according to the degree distribution Pi(k). Edge
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FIG. 1. (a), (b) Egocentric view of a multiplex structure with
M = 2 layers, where edge density increases (δz > 1) and edge weight
decreases (δw < 1) in each layer i. (c) Egocentric network overlap
between layers. (d) Emergent edge types in the overlapping network.
In the multiplex, the central node has a degree vector k = (2, 8, 1)T ,
encoding layer overlap.

weights wi(u, v) follow the continuous distribution Pi(w) and
capture the total capacity of nodes u and v to influence each
other via layer i. The network allows for layer overlap [41]
as nodes may be connected in multiple layers, modeling
individuals who share several social contexts [Fig. 1(c)]. For
simplicity, we assume that node degree is independent across
layers, and that degree and weight distributions Pi(k) and
Pi(w) differ by layer explicitly in their means zi = ∑

k kPi(k)
and wi = ∫

wPi(w)dw, but otherwise retain their functional
form. In order to reproduce the hierarchical organization of
edges suggested by intimacy circle theory [24], we assume
that the mean degree zi and weight wi scale with layer index i
as

zi+1 = δzzi and wi+1 = δwwi, (1)

with δz � 1 and δw � 1. In other words, ego networks com-
prise a small number of high-intimacy neighbors [Fig. 1(a)]
and a larger number of low-intimacy neighbors [Fig. 1(b)].
We fix the average total degree z = ∑

i zi as well as δz, which
determines zi. We also impose the arbitrary constraint 〈w〉 = 1
and fix δw, which determines wi (see Supplemental Material
(SM) [42]).

In a binary-state model of contagion, nodes are in one of
two mutually exclusive states, susceptible or infected (also
called adopter or activated in the social contagion literature).
Since nodes must be either connected or disconnected via each
of the M network layers, their interaction is characterized by
one of 2M − 1 resultant edge types [Fig. 1(d)], disregarding
nodes disconnected in all layers, and indexing by j such that
1 � j � 2M − 1. Node configuration is thus described by the
number of neighbors k j and infected neighbors mj across
edges of type j, with 0 � mj � k j . We store k j and mj in the
degree vector k and partial degree vector m, respectively (of
dimension 2M − 1). Note that we consistently index the layer
by i and the resultant edge type by j.

The threshold rule proposed by Watts [8–11] defines the
fraction φ of neighbors that must be infected for a susceptible
ego to adopt. This rule can be extended to multiplex networks
in several ways (Table I). Denoting the set of neighbors of
node u in layer i by Ni(u), the total influence upon u in layer
i is qki = ∑

v∈Ni (u) wi(u, v). Restricted to infected neighbors
Ni(u)|I , this gives qmi = ∑

v∈Ni (u)|I wi(u, v). In one variant
of the threshold rule, nodes perceive influence in aggregate,
summed over layers (reminiscent of neural networks [43,44])
and adopt with respect to a single threshold if qm � φqk ,

TABLE I. Extensions of the Watts threshold rule to multiplex
networks. Node state is determined by a single threshold φ and
a weighted sum of influence over layers, or by individual layer
thresholds φi and influence within each layer. In the former, the
multiplex can be projected to a single weighted layer without loss
of information relevant to the dynamics.

Weighted sum Multiplex or Multiplex and

qm � φqk ∃i s.t. qmi � φiqki qmi � φiqki ∀i

where qk = ∑
i qki and qm = ∑

i qmi (weighted sum rule).
In another variant, the node state is determined by M layer
thresholds φi, along with influence qki and qmi within layers. A
node activates when qmi � φiqki in every layer (multiplex and
rule by Lee [33]), or in at least one layer (multiplex or rule
[33]). Our aim is to show that multiplex networks following
the structure of intimacy circle theory exhibit reentrant phase
transitions for both the weighted sum and the multiplex or
threshold rules. Note that if weights are uniform within each
layer and the node state is determined by decisions within
layers (and and or rules), then the structure is effectively
unweighted. We show that even with this loss of weight
information, reentrant phase transitions can still emerge due
to contagion within layers.

We solve for our model using the approximate master
equation (AME) formalism [45,46]. Similar to earlier solu-
tions [10,15,17], at time t , the density of infected nodes ρ

and the average probability ν j that a j-type neighbor of a
susceptible node is infected are governed by the system of
coupled differential equations,

ν̇ j = g j (ν, t ) − ν j,

ρ̇ = h(ν, t ) − ρ,
(2)

where gj (ν, t ) and h(ν, t ) are known functions (see SM and
Ref. [15]). A numerical solution of Eq. (2) provides the
dynamical evolution of each threshold rule, and linear stabil-
ity analysis (LSA) [47] the region in (φ, z) space allowing
global cascades (dashed-dotted lines in Figs. 2 and 3; shaded
intervals in Fig. 4) (further details in SM). We derive a global
cascade condition via the Jacobian matrix J corresponding to
Eq. (2), evaluated at the fixed point ν∗ = 0,

J∗
i j = −δi j + ∂gi(ν)

∂ν j

∣
∣
∣
∣
ν = ν∗

, (3)

which has eigenvalues λ j . Global cascades occur if Re(λ j ) >

0 for any j = 1, . . . , 2M − 1. In what follows we study the
response of the network to an infinitesimal perturbation, or
single infected seed, and record the relative frequency fg of
global cascades via Monte Carlo (MC) simulations. Regions
in (φ, z) space with nonzero fg in the N → ∞ limit are
well predicted by the spectrum of Eq. (3). For simplicity we
assume uniform edge weights with value wi within layers,
which can be easily generalized (see SM).

The weighted sum rule leads to a high-z cascading phase,
and thus reentrant phase transitions for constant φ, in an M =
2 layer multiplex with a log-normal (LN) degree distribution
in each layer (Fig. 2, distribution details in SM). In two layers,
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FIG. 2. Emergence of a high-z cascading phase in (φ, z) space
for the weighted sum rule, for LN degree distribution, fixed δz = 50,
γ = 0.5, and decreasing δw . The standard deviation of the LN distri-
bution is σki = 2zi. MC simulations provide the relative frequency fg

of global cascades, after 103 instances of single node perturbation, in
a configuration-model multiplex with N = 106. In (a) we recover the
classic Watts phase diagram (δw = 1). The constraint 〈w〉 = 1 means
w = (1, 1)T , (6, 0.9)T , and (11, 0.8)T , in panels (a), (b) and (c). The
outer contour (dashed-double-dotted white line) in (c) shows the case
δw → 0 [δw = 10−3; see heat map in Fig. 3(a)]. Dashed-dotted red
lines show agreement with LSA prediction.

we define layer overlap as γ = |E1 ∩ E2|/|E1|, where Ei is
the edge set in layer i = 1, 2 (|E1| < |E2|). We can increase
weight heterogeneity by decreasing the weight scaling factor
δw, resulting in a second cascading regime. As explained in
Ref. [8], global cascades are due to “vulnerable” nodes with
threshold sufficiently low that a single neighbor can infect
them. A cascading phase is formed in (φ, z) space when
vulnerable nodes form a percolating cluster. In single-layer
unweighted networks, large z results in most nodes being sta-
ble against neighbor infection, and cascades becoming expo-
nentially rare. However, under the weighted sum rule, weight
heterogeneity allows one high-influence infected neighbor
to dominate a node’s total received influence if remaining
neighbors have low influence. Crucially, such configurations
are abundant when the conditions δz > 1 and δw < 1 are
satisfied simultaneously, resulting in a percolating vulnerable
cluster at high z. In the low-z phase, cascades are mediated
by the connectivity of the weak layer, since the strong layer
is too sparse to percolate. In the high-z phase, strong edges
percolate and determine the stability of adjacent nodes that
are otherwise stable to the dense weak layer. Both regions
are accurately predicted by LSA [see Fig. 2 and velocity
field analysis of Eq. (2) in SM]. Note that other mechanisms
are able to generate additional transitions in (φ, z) space (e.g.,
degree assortativity in Ref. [34]).

We compare the behavior induced by the threshold rules of
Table I for configuration-model multiplexes with LN degree
distributions and a real-world multiplex extracted from Twit-
ter (TW) (Fig. 3). TW comprises a sparse, strongly interact-
ing layer (z1 = 5.4) formed by mutual-mention interactions
between N = 3.7 × 105 users, and a dense layer of weak
links (z2 = 163) formed by the follower network of the same
users. The two layers (taken as undirected; data details in SM)
exhibit an overlap γ = 0.45. In order to explore the effect of
single node perturbation over (φ, z) space, we remove edges
uniformly at random from TW, decreasing its average degree z
below its observed value of 165.8 [dashed lines in Figs. 3(d)–

FIG. 3. Relative frequency fg of global cascades in LN (top)
and TW (bottom) multiplexes with M = 2 layers. LN networks in
(a)–(c) are synthetic (standard deviation σki = 2zi, overlap γ = 0.5,
and density scaling δz = 50). (a) Maximal weight heterogeneity
(δw = 10−3) leads to reentrant transitions in the weighted sum rule.
(b) Reentrant phase transitions also appear for the or threshold rule.
(c) Under the and rule only one global cascading phase emerges,
which vanishes when γ = 0. Decreasing δz and increasing γ ex-
pands the region of susceptibility to global cascades. See the outer
dashed-double-dotted white contours (the LSA solution for δz = 1,
with γ = 0.5 and 1). (d)–(f) Reentrant phase transitions under the
weighted sum and or rules in an empirical Twitter network (δz =
30.2 and γ = 0.45). The dashed horizontal line at z = 166 is the
empirical density, with sparsification providing lower z values, and
densification higher z (see SM). (f) A single phase region observed
in the and multiplex rule. LN and TW networks have size N = 105

and N = 3.7 × 105. We obtain fg via 103 realizations of single node
perturbation. Dashed-dotted red lines show the LSA prediction.

3(f)]. Conversely, we use a model of network densification
known as the forest-fire process [48] to extrapolate to higher z
values (details in SM).

Assuming the weighted sum threshold rule [Figs. 3(a)
and 3(d)], we find reentrant cascading phases under maxi-
mal weight heterogeneity (δw = 10−3) [for the approach to
maximal heterogeneity see Figs. 2(a)–2(c) for LN, and SM
for TW]. The multiplex or condition also leads to reentrant
transitions in both LN and TW networks [Figs. 3(b) and 3(e)].
The onset of the high-z cascading phase, and thus of the
reentrant transition, is triggered by the structural percolation
of the sparse layer. Since the or rule considers influence within
layers, and Pi(w) is uniform here, the structure is effectively
unweighted, underlining that density skewness is sufficient
to trigger a reentrant phase when thresholds are layered. For
both LN and TW networks, overlap γ and density skewness δz

determine the stability under the and threshold rule [Figs. 3(c)
and 3(f)]. Being the most restrictive condition, the and rule
suppresses reentrant phase transitions and confines global
cascades to a single phase at low φ, with cascades vanishing
when γ = 0. As δz decreases and γ increases [Fig. 3(c)],
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FIG. 4. Steady-state global cascade size as a function of aver-
age degree z, for constant threshold φ = 0.15 and maximal weight
heterogeneity (δw = 10−6), using the weighted sum rule. Degree dis-
tributions are Poissonian and the overlap is γ = 0. Shaded intervals
due to LSA indicate systems with a positive leading eigenvalue (see
SM); dashed lines indicate the steady-state solution of Eq. (2); and
MC solutions are given by the solid curve (error bars narrower than
the linewidth). (a), (b) Increasing density skewness δz delays the
onset of high-z phases of contagion, and allows larger cascades in
low-z phases in an M = 2 layer multiplex. (c)–(e) Increasing the
number of layers to M = 3 and 4 induces 6 and 8 phase transitions in
cascade size, respectively. (d) Varying δz, such that z2/z1 = 100, and
z3/z2 = 10. MC results are averaged over 103 realizations of a single
node perturbation, with N = 107.

overlapping edges, necessary for mediating cascades under
the and rule, become more abundant and increase the area
of the unstable phase [Fig. 3(c)]. For simplicity, we set φi =
φ for the and and or rules. Inspection of the contours of
Figs. 3(a)–3(c) reveals that the weighted sum rule occupies an
area intermediate between the and and or rules; we perform a
comparative eigenvalue analysis in the SM to argue that this
is generally the case.

We illustrate using the weighted sum rule that density
skewness δz determines the average degree z at which reen-
trant phases are triggered [Figs. 4(a) and 4(b)]. This is because
the structural percolation transition of individual layers is nec-
essary for the percolation of a subgraph of vulnerable nodes;
the value of z at which this occurs depends on δz. Increasing

the number of layers in the network also creates additional
phases of contagion [see Figs. 4(c)–4(e) for M = 3, 4]. When
δz differs between layers, the onset of contagion phases may
be delayed or promoted [Fig. 4(d)]. In lower phases, strong
edges that are too sparse to percolate structurally inhibit
cascades driven by edges that are denser but weaker, leading
to “partial” cascades that are global but do not fill the network
[e.g., lower phase in Fig. 4(a)]. This is due to the immuniz-
ing effect of strong edges in information diffusion; pairs of
susceptible nodes connected by a sufficiently strong edge are
impossible to infect if all other neighbors are weak, even if all
those weak neighbors are infected. These configurations are
abundant when the strong layer is yet to undergo structural
percolation.

Our results demonstrate that global information cascades
emerge in arbitrarily dense networked systems, typically
viewed as stable against small perturbations. The types of
multiplex structure triggering this behavior are elementary,
and have even been derived from an entropy maximization
process. We have shown that skewness in edge density by
layer is necessary for the emergence of reentrant phase tran-
sitions under all variants of the threshold rule, but sufficient
only when thresholds are layered and the or rule applied.
When influence is summed over layers and evaluated with
respect to a single threshold, an additional weight skewness
condition is necessary. We confirm these phenomena using an
analytical formalism that we have extended to multiplex net-
works, as well as simulation, both on synthetic networks and
an empirical Twitter multiplex where all results are recovered.
Our results suggest approaches to network design that may
promote or suppress system-wide cascades of threshold driven
contagion.
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