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Parametric resonance is a complex phenomenon that touches many aspects of scientific and technical society,
but is still not well understood because of the intensive calculations required to describe the behavior. Thus
the importance of developing simple mathematical approaches to describe parametric resonance cannot be
overstated. Here a consistent theory of the parametric resonance of a harmonic oscillator under any periodic
frequency modulation is constructed. Using a Hamiltonian approach and resonance approximation, simple
equations were derived and critical amplitudes for all parametric resonance orders were obtained for any periodic
modulation function. The theory agrees with the well-known result for the main resonance and gives correct
power dependence on damping. In addition, the theory qualitatively predicts behavior at large modulations.
This simplified approach revealed unique features—“safety windows” at large modulation amplitudes where
parametric resonance does not occur which were then qualitatively confirmed with numerical simulations. The
Hamiltonian approach should serve as a framework that a greater understanding of parametric resonance at large
amplitudes and higher orders can be built upon.
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I. INTRODUCTION

The parametric resonance of a harmonic oscillator is a
well-known phenomenon that manifests in oscillating systems
with periodic modulation of the frequency, whereby when a
certain threshold amplitude is reached leads to an exponen-
tially rapid increase in the amplitude of the excited oscilla-
tions. This common interdisciplinary effect manifests itself in
many completely different areas and environments, such as in
mechanics [1–5], electronics [6–8], ion traps [9,10], atomic
microscopy [11], DNA [12], Bose-Einstein condensate [13],
nanoparticles [14], and many other phenomena. Sinusoidal
modulation is usually considered with the Mathieu equation
whose mathematical analysis is extremely complex. In the
approximate and somewhat heuristic method of analyzing
this model (see, e.g., [1,2,5]), small oscillations and small
deviations from the resonant frequency are considered using
perturbations in the dynamic equation of motion. In this
approach each resonance condition should be in a certain
level of accuracy and calculated separately, which is very
inconvenient and restricts the physical picture. Usually the
main resonance at double frequency is considered and the
thresholds of other resonances are assumed to be very high
and not of interest.

In this Rapid Communication we study periodic frequency
modulation of the harmonic oscillator using the classical
Hamiltonian formalism. The use of such an approach is logi-
cal because Hamiltonian formalism is the natural language for
describing nonlocal oscillations of the medium and it has been
used to consider the well-understood behavior of first-order
parametric resonance of waves [15–18]. Building upon this
work, here we demonstrate the power of this technique to
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simplify and describe parametric resonance under conditions
that are typically very computationally challenging. More
specifically, this Rapid Communication serves to demonstrate
that the Hamiltonian approach significantly simplifies the
analysis of parametric resonance conditions at large ampli-
tudes and higher-order resonances. The only assumption of
the theory that we use is a validity of the resonance approx-
imation, in which variables are selected in the linear model
that oscillate with only one frequency, while the role of the
other oscillations is considered negligible. To understand the
limitations of the expressions obtained, numerical simulations
were conducted and compared with the theory.

II. HARMONIC OSCILLATOR

Without loss of generality, we consider the Hamiltonian of
the LC circuit of the form

H = p2

2L
+ Lω2

0q2

2
, (1)

where ω0 = 1/
√

LC is the resonance frequency, L is the
inductance and C is the capacitance. For the generalized co-
ordinate q, describing the charge, and the generalized angular
momentum p = Ldq/dt , we have the following equations of
motion:

d p

dt
= −∂H

∂q
,

dq

dt
= ∂H

∂ p
. (2)

Let us introduce complex variables

a = 1

2

(
q

q0
+ i

p

p0

)
, a∗ = 1

2

(
q

q0
− i

p

p0

)
, (3)

where q0 = √
κ/2Lω0 and p0 = √

κLω0/2; κ is a dimen-
sional (energy×time) constant which is introduced here for
convenience so that the complex variables are dimensionless
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[19]. Thus, the Hamiltonian (1) takes the form

H/κ = ω0a∗a. (4)

The equations of motion become classical analogs of the
Heisenberg equations

i
da

dt
= [a,H/κ]c, i

da∗

dt
= [a∗,H/κ]c, (5)

where

[A,B]c = ∂A
∂a

∂B
∂a∗ − ∂B

∂a

∂A
∂a∗ (6)

is the classical analog of operator commutator.
Usually, the LC circuit equation contains a term describing

ohmic losses:

d2q

dt2
+ 2η

dq

dt
+ ω2

0q = 0. (7)

Here η = R/L; R is the resistence in the circuit. The above
losses can be accounted for in the system (5) if we supplement
these equations with the damping η:

i

(
da

dt
+ ηa

)
= ∂H/κ

∂a∗ ,

(8)

i

(
da∗

dt
+ ηa∗

)
= −∂H/κ

∂a
.

Here we neglect the nonsecular damping terms ηa∗ and ηa,
respectively. Since the second equation is simply complex
conjugate to the first one, it is not necessary to write it down.
Note that the method of complex variables for oscillatory
processes that we use has long been known in the literature,
e.g., [6,15,20].

III. TIME-DEPENDENT PARAMETER

Without loss of generality, we can consider a parametric
change in the frequency of the form

ω2
0 ⇒ ω2

0[1 + f (t )] = ω2
0 + ω2

0 f (t ). (9)

Then the Hamiltonian (1) becomes

H = p2

2L
+ Lω2

0q2

2
+ Lω2

0 f (t )q2

2
. (10)

Using complex variables (3), from (10) we get

H/κ = ω0

[
1 + f (t )

2

]
a∗a + ω0

4
f (t )(a2 + a∗2). (11)

Then Eq. (8) acquires the following form:

i

(
da

dt
+ ηa

)
= ω0

[
1 + f (t )

2

]
a + ω0

2
f (t )a∗. (12)

Here as expected, dimensional constant κ dropped out of the
equations.

One can apply a change of variable

a = b exp

[
−i

ω0

2

∫ t

0
f (t ′)dt ′

]
(13)

and obtain from Eq. (12)

i

(
db

dt
+ ηb

)
= ω0b + ω0

2
F (t )b∗, (14)

where

F (t ) = f (t ) exp

[
iω0

∫ t

0
f (t ′)dt ′

]
. (15)

Let us now consider a periodic time dependence f (t ) =
f (t + T ), where T is a period. Then the function (15) can be
expanded in the Fourier series and Eq. (14) becomes

i

(
db

dt
+ ηb

)
= ω0b + ω0

2

∞∑
n=−∞

Fn exp(inωt )b∗, (16)

where ω = 2π/T and

Fn = F ∗
−n = 1

T

∫ T

0
F (t ) exp (−inωt )dt . (17)

IV. RESONANCE ω0 � nω/2 APPROXIMATION

The fast-oscillating dependence on time in Eq. (16) can be
partly eliminated by transforming b and b∗ to so-called, slow
variables c and c∗ as follows:

b = ce−inωt/2, b∗ = c∗einωt/2. (18)

As a result one obtains

i
dc

dt
=

(
ω0 − nω

2
− iη

)
c + ω0

2
[F ∗

n + F∗
n (t )]c∗,

(19)

i
dc

dt

∗
= −

(
ω0 − nω

2
+ iη

)
c∗ − ω0

2
[Fn + Fn(t )]c,

where

Fn(t ) =
∑
ν �=n

Fν exp[i(ν − n)ωt].

It is easy to see that in Eq. (19) the only term with an explicit
time dependence is Fn(t ). If |ω0 − nω/2| � ω, then the func-
tion Fn(t ) consists of rapidly oscillating terms compared to
the slow dynamics of the rest of the system. The resonance
approximation consists in the assumption that we can neglect
the role of the rapidly oscillating terms (their average is
assumed to be zero) and consider slow dynamics of c and
c∗ variables which describe the behavior of the system in the
vicinity of the resonance ω0 	 nω/2. Thus from Eq. (19) one
obtains

i
d

dt

(
c
c∗

)
=

(
ω0 − nω

2 − iη ω0F ∗
n

2
−ω0Fn

2 −ω0 + nω
2 − iη

)(
c
c∗

)
.

(20)
Now we are looking for an instability of the form

c = c1eλt , c∗ = c∗
1eλt . (21)

From Eq. (20) follows

det

(
ω0 − nω

2 − i(η + λ) ω0F ∗
n

2
−ω0Fn

2 −ω0 + nω
2 − i(η + λ)

)
= 0.

(22)

As the result one gets

λ± = −η ±
√(ω0

2
|Fn|

)2
−

(
ω0 − nω

2

)2
. (23)
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FIG. 1. Solid lines represent the critical amplitudes for various
n versus relative damping obtained from Eq. (29). Points represent
the results of numeric simulation of Eq. (33). The up arrow indicates
the theoretical area of theoretical safety window, and the down arrow
indicates the result of the numerical simulation.

From the condition λ = 0 follows the threshold of parametric
resonance (ω0

2
|Fn|

)2
=

(
ω0 − nω

2

)2
+ η2, (24)

which is minimal at the exact resonance condition ω0 =
nω/2:

|Fn| = 2η/ω0. (25)

Thus, our theory suggests that the parametric resonance
should occur in the range

−�n <
2

n
− ω

ω0
< �n,

(26)

�n = 1

n

√
|Fn|2 − (2η/ω0)2,

provided �n � 1. If the latter strong inequality does not
hold, then the estimate of the interval where the parametric
resonance occurs unlikely can be done rigorously. But the
close vicinity ω/ω0 to 2/n may be hoped to be suitable even
in this case at least for �n ∼ 1 (see Fig. 1).

Formulas (25) and (26) represent a general solution in a
resonance approximation for the harmonic oscillator paramet-
ric resonance problem in a periodic field.

V. EXAMPLE: SINE FUNCTION

Let us consider f (t ) = h cos(ωt ); then one has∫ t
0 f (t ′)dt ′ = (h/ω) sin(ωt ). Using the following relation

TABLE I. Threshold coefficient Cn.

n 1 2 3 4 5
Our result, Eq. (31) 2 2 1.923 1.861 1.814
Numeric calculation [9] 2 2.03 1.83 1.73 1.73
From Mathieu equation [10] 2 1.144 1.165 1.030 0.945

[21]

exp (iz sin θ ) =
∞∑

k=−∞
Jk (z) exp(ikθ ), (27)

we obtain

Fn = ω

2π

∫ 2π/ω

0
h cos(ωt ) exp

[
ihω0

ω
sin(ωt ) − inωt

]
dt

= h

2

[
Jn−1

(
ω0h

ω

)
+ Jn+1

(
ω0h

ω

)]
. (28)

At the resonance ω0 = nω/2 from Eqs. (25) and (28) we
get the equation for critical amplitude h(n)

c ,

h(n)
c

∣∣∣Jn−1

(n

2
h(n)

c

)
+ Jn+1

(n

2
h(n)

c

)∣∣∣ = 4η

ω0
. (29)

Using Bessel function approximation Jn(x) 	 (x/2)n/n! at
x � 1, from (29) one obtains at nh(n)

c /2 � 1:

h(n)
c 	 Cn(2η/ω0)1/n, (30)

where

Cn =
(

4

n

)1−1/n

[2(n − 1)!]1/n. (31)

With the accuracy of notations from this relation we have
well-known results [1]: h(1)

c 	 4η/ω0 for the main resonance
n = 1 and dependence h(n)

c ∝ η1/n for n � 1. For n = 1 the
formula (26) coincides with the classical results [1]:

−
√(

ω0h

2

)2

− 4η2 < 2ω0 − ω <

√(
ω0h

2

)2

− 4η2. (32)

Several numerical values of the coefficient Cn from the
formula (31) are given in the first row of Table I. We note that
the relation of the form (30) was considered in Refs. [9,10].
In Ref. [9], the coefficient Cn was calculated numerically
with the accuracy 5% for n = 1, . . . , 5. These coefficients
are shown in the second row of Table I. It can be seen that
the results of our work and numerical calculation coincide
with good accuracy. In Ref. [10], an analytical expression of
the form (30) was obtained using the perturbation method in
the Mathieu equation with damping. For this case numerical
estimates of the coefficient Cn are given in the third row of
Table I. We see the agreement of this theory with numer-
ical calculation only for n = 1. As n increases, there is a
significant discrepancy between theory [10] and numerical
calculation [9].

Solid lines in Fig. 1 demonstrate several solutions of
Eq. (29). Consider the curve corresponding to the fourth
order of parametric resonance. It is clear that the threshold
of resonance monotonously increases only to some value of
attenuation. Then this function turns in the other direction and
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continues to grow to a certain point with a small attenuation.
Then there is another turn to the right, then (beyond the
framework of Fig. 1) another turn to the left, and so on. All
the orders of resonances show the same qualitative behavior;
only the vertical scale changes. The largest scale has the main
n = 1 resonance and with increasing order of resonance the
scale decreases. An “oscillating” behavior of critical fields
leads to “safety windows,” areas where even for large ampli-
tudes of modulation, parametric resonance does not occur.

To determine the range of applicability of the solutions
obtained, we carried out a numerical simulation of the para-
metric resonance threshold using the following equation:

d2q

dτ 2
+

(
2η

ω0

)
dq

dτ
+

[
1 + h cos

(
2τ

n

)]
q = 0, (33)

where τ = ω0t . Numerical calculation was carried out inde-
pendently by two different computer programs. In Mathe-
matica, the function NDSOLVE was used and in MATLAB,
the subroutine ode23 was used. Calculation results obtained
independently coincided. Points in Fig. 1 demonstrate the
results of simulations. It can be seen that the theory and
numeric results agree well enough for the critical field up
to h 	 1 and do not have large differences up to h 	 2. It
is also easy to see that on the fourth-order resonance curve
there is a bend to the left, and then to the right, which lead to
the appearance of a safety window shown by the down arrow
in Fig. 1. The up arrow shows the corresponding qualitative
theoretical prediction in a resonance approximation. Thus the
simple theory qualitatively captures this result. The safety
windows for first and second orders of resonances were found
at large amplitudes h > 5, but we did not study them in detail.

It should be noted that the resonance approximation and
the corresponding transition to slow variables [as in Eq. (18)]
in the vicinity of the resonance is a standard procedure in the
theory of oscillations. It has been used in the theory of para-
metric resonance of waves [15–18], in the theory of magnetic
resonance (transition to rotating frame) [22], and in quantum
optics [23]. The applicability of the resonance approximation

in the theory of oscillations was justified in the development
of the asymptotic Krylov-Bogolyubov-Mitropolsky methods
[24]. There is a regular procedure for finding corrections to the
resonance solution with respect to a small parameter h � 1
of the modulating function h cos (2τ/n). As we see from the
results obtained above, the resonance approximation leads
to satisfactory agreement with the numerical calculation far
above the perturbation approach, up to h 	 2 and for even
greater h shows the qualitative behavior of the system. From
these facts follows the need to develop a regular method for
calculating critical amplitudes in the region h � 1.

VI. CONCLUSION

The Hamiltonian theory of parametric resonance was con-
structed for the general case of any periodic frequency modu-
lation of a harmonic oscillator. The calculations were carried
out without using perturbation theory methods. We used the
resonance approximation within which the general formulas
(24)–(26) were obtained for all orders (n = 1, 2, 3, . . .) of
parametric resonance. At large modulation levels, the theory
qualitatively predicts safety windows, areas in which para-
metric resonance does not manifest (see Fig. 1). Numerical
simulations supported the validity of the formulas obtained for
high modulation amplitudes h ∼ 1. The work presented in this
Rapid Communication stands as strong support that exploring
parametric resonance with the Hamiltonian approach can be a
revealing alternative to the Mathieu equation under conditions
that are often considered prohibitively complex.
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