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Tight focusing of electromagnetic fields by large-aperture mirrors
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We derive nonparaxial input conditions for simulations of tightly focused electromagnetic fields by means
of unidirectional nonparaxial vectorial propagation equations. The derivation is based on the geometrical
optics transfer of the incident electric field from significantly curved reflecting surfaces such as parabolic
and conical mirrors to the input plane, with consideration of the finite thickness of the focusing element and
large convergence angles, making the propagation vectorial and nonparaxial. We have benchmarked numerical
solutions of propagation equations initiated with the nonparaxial input conditions against the solutions of
Maxwell equations obtained by vectorial diffraction integrals. Both transverse and longitudinal components of
the electric field obtained by these methods are in excellent agreement.
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I. INTRODUCTION

From the development of high-power laser chains [1–4]
to laser writing in the bulk of optical materials [5] there
is a growing need for precisely describing focused electro-
magnetic fields with large numerical apertures. This requires
the solution of Maxwell’s equations to correctly describe
nonparaxial and vectorial effects in this regime or alternative
solutions that reduce the computational cost of Maxwell’s
solvers, e.g., based on transformation optics [6].

In the linear propagation regime, the solution to Maxwell’s
equations can be provided by vectorial diffraction integrals
(VDIs) [7–10], which generalize the Kirchhoff integral using
the Stratton-Chu theory [11]. VDIs naturally describe the
propagation of tightly focused radiation using input condi-
tions at the curved surface zs(x, y) of a focusing element.

The purpose of this work is to describe focused electro-
magnetic fields using a vectorial unidirectional propagation
equation from the focusing element to the focusing point
and suitable input conditions that remain valid in the tight-
focusing regime. A recent proposal in this direction was to
rely on the unidirectional Hertz vector propagation equation
(UHPE) [12]:

∂�̂(ω, kx, ky, z)

∂z
= ikz�̂(ω, kx, ky, z), (1)

where z is the longitudinal (propagation) coordinate, kz =√
k2(ω) − k2

x − k2
y is the longitudinal projection of the wave
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vector k = {kx, ky, kz}, the wave number is k(ω) = |k|, and
�̂(ω, kx, ky, z) is a spatiotemporal spectrum of the Hertz vec-
tor, from which both the electric and the magnetic field vectors
can be extracted [13]. Equation (1) describes vectorial and
nonparaxial propagation of laser pulses and keeps its validity
when nonlinearity sets in [14], at the only additional expense
of adding a nonlinear polarization source term describing
nonlinear interaction with the medium.

The Hertz vector propagation equation exhibits the univer-
sal form of unidirectional propagation equations and thus does
not require developing a different solver [15]. It encompasses
the unidirectional pulse propagation equation (UPPE) [16]
and its generalization the g-UPPE [17], as well as the prop-
agation equation for the vector potential [18,19] in problems
where backward-propagating fields can be neglected. The
UHPE automatically describes vectorial effects in the linear
regime, while the UPPE requires an explicit treatment of this
effect.

Simulations of the UHPE, (1), require starting from in-
put conditions, i.e., from the Hertz vector �̂(z = z0) in a
plane z = z0 as shown by the explicit solution �̂(z) = �̂(z =
z0) × exp[ikz(z − z0)]. High-aperture focusing elements usu-
ally yield the transmitted or reflected electric field on a surface
with significant curvature. Input conditions are then deter-
mined by a phase correction to the field that simulates the ac-
tion of the focusing element. This correction was shown to be
limited to beam focusing with low numerical apertures [12].
To overcome this limitation, input conditions for the UHPE
were constructed in Ref. [12] by a detailed calculation of
diffraction by VDIs from the surface of the optical element
to the plane of input conditions z = z0.
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Here, we demonstrate that this step can be advantageously
replaced by the construction of a suitable input light field
distribution for a wide class of optical elements. We verify the
validity of this nonparaxial input condition by successfully
comparing tightly focused electromagnetic fields obtained by
the UHPE with the results of the VDI. The proposed approach,
based on the geometrical optics transmission of the field from
the focusing element surface zs(x, y) to the plane of input
condition z = 0, allows us to obtain the analytical corrections
of the phase and the amplitude of the incident field.

For an ultrashort broadband pulse propagation the suitable
input light field distribution should be found for each har-
monic ω of an incident pulse. In this respect our approach
is similar to the one used in Ref. [9], where VDIs were
applied to find the spatiotemporal light field distribution of
a femtosecond pulse in the tight focus of a parabolic mirror.

The advantage of launching the initial light field from
the plane z = 0 and applying a propagation equation for
calculating the light field at a distance z > 0 becomes obvious
compared with using the VDI if the medium’s response is
nonlinear. Exactly this situation is relevant for numerous laser-
matter interaction studies [20–24]. Adding the nonlinear term
in the propagation equation results in the solution of the direct
problem consisting in the successive transition of the field in
the z direction with a fine step. Using the VDI in a nonlinear
medium requires the solution of the inverse problem, as the
nonlinear polarization of the medium depends on the light
field itself (see Eq. (14) in [11]). Besides, for transmission
of the light field from the curved surface to the plane using
the VDI the number of operations has a quadratic dependence
on the grid size, while for the proposed geometric optics
approach the dependence is linear.

II. DERIVATION OF NONPARAXIAL INPUT CONDITIONS
FOR NONPARAXIAL PROPAGATION EQUATIONS

A. Requirements for nonparaxial input conditions

In numerical simulations of unidirectional propagation
equations where z denotes the propagation axis, the effect
of a focusing optical element is usually described by adding
a beam curvature to the incident field via a field spatial
phase [25],

ϕp = γ k(ω)zs(x, y), (2)

where γ is a dimensionless coefficient. For a reflective focus-
ing element, γ = 2 is used in Eq. (2) and zs(x, y) is a mirror
surface. If transmission rather than reflection optics is used,
γ = n − 1 represents the difference between the refractive
index of the lens n and that of the surrounding vacuum (or
air), and zs(x, y) is understood as the element thickness along
z. The input condition for the propagation equation is then
assumed to be defined on the exit surface of the focusing
element.

Consider the incident field Ẽi(ω, x, y), of frequency ω,
on a reflecting optical element with a curved surface [see
Fig. 1(a)]. After reflection of the incident wave, both the local
wave vector and the electric field change their directions.
Let us denote the reflected field Ẽr (ω, x, y, zs). If focusing
is moderate, Ẽr (ω, x, y, zs) = −Ẽi(ω, x, y, zs) and a paraxial

FIG. 1. (a) The geometry of reflection on an axially symmetric
optical element. Solid red lines show the incident and reflected rays
at an angle α with the normal n to the mirror at the reflection point
{r, zs(r)}. Green arrows show the optical path if the reflection point
on the mirror surface is replaced by an effective emitter in the plane
z = 0. Blue arrows show the optical path if the reflection point is
projected on the same plane z = 0 in the paraxial approximation.
(b) Illustration of energy flux conservation in the ray tube (filled);
Sr and Se are the Poynting vectors of reflected and emitted waves,
respectively.

propagation equation is initiated by the input field,

Ẽe(ω, x, y, z = 0) = Ẽr (ω, x, y, zs)eiϕp(ω,x,y), (3)

defined on the plane z = 0, which is assumed to correspond
to the exit surface of the focusing element, the thickness of
which can be neglected as long as the beam curvature is
accounted for in ϕp [25]. This corresponds to the standard
input condition.

In the case of a high-aperture axially symmetric re-
flective optical element with a significantly curved surface
zs(r =

√
x2 + y2 ) [see Fig. 1(a)], we look for an input field

Ẽe(ω, X,Y, 0) that can be viewed as being generated by
effective emitters located in the plane z = 0, which produce
exactly the reflected field Ẽr (ω, x, y, zs) on the exit surface of
the focusing element. Note that X and Y will not necessarily
coincide with x and y [see Fig. 1(a)].

During the virtual propagation from z = 0 to z = zs, the
large beam curvature affects not only the spatial phase but also
the amplitude of the input field Ẽe. Hence, these fields are
linked by an amplitude and phase transformation,

Ẽe(ω, X,Y, z = 0) = Ẽr (ω, x, y, zs) ϒ(r, R) eiϕ(ω,r), (4)

where R = √
X 2 + Y 2. Equation (4) encompasses the case of

standard input conditions (for optical elements with a low
aperture). Indeed, the substitution,

X = x, Y = y, R = r, se = 2zs,

Ẽr = −Ẽi, ϒ = 1, (5)
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makes the nonparaxial input condition, Eq. (4), identical to
the standard input condition, Eq. (3). The optical path se then
corresponds to the blue arrows in Fig. 1(a).

We are looking for expressions for the field amplitude
ratio ϒ(r, R) and the phase ϕ(ω, r) = k(ω)se(r), where se(r)
represents the radius-dependent optical path difference using
r = 0 as a reference ray as well as the connection between the
coordinates r, x, y and R, X, Y .

Since Eq. (1) is written in the frequency domain, the input
condition for a specific field harmonic is obtained in the same
way as for a monochromatic beam, therefore we henceforth
omit the explicit ω dependence in all fields without loss of
generality.

To find the unknown functions in Eq. (4) we apply local
geometric optics, which is justified by (i) the high Fresnel
number r2/(zλ) � 103, where z is the thickness of the optical
element zs(r0) at the incident beam edge r = r0, and (ii) the
much greater diameter (aperture) of the optical element in
comparison with the wavelength λ = 2π/k(ω). From addi-
tional simulations with the wavelength changed we estimate
an applicability threshold of our method as r2

0/(zs(r0)λ) > 50.
Our goal is to find an analog of Eq. (5) for high-aperture

optical elements. Let the angle

α(r) = atan

(
dzs

dr

)
(6)

between the tangent to the reflective surface and the plane
z = 0 be large. In terms of geometric optics the ray rotates
after reflection by the angle 2α relative to the incident one [see
Fig. 1(a)], and the electric field of the reflected wave is [7]

Ẽr = 2n(n · Ẽi ) − Ẽi, (7)

where n is the inward surface normal

n = {nx, ny, nz} = {−∂zs/∂x,−∂zs/∂y, 1}√
(∂zs/∂x)2 + (∂zs/∂y)2 + 1

. (8)

The intersection of the reflected ray with the plane z = 0
determines the coordinate of the emission point

R(r) = r + zs(r) tan 2α(r), (9)

where

tan 2α = 2dzs/dr

1 − (dzs/dr)2
. (10)

Equation (9) can be resolved analytically to find r(R) for the
surfaces zs(r) = Arp/2, where A is positive and p � 2 is an
integer number. This includes the practical cases of parabolic
or conical (reflective axicon [26]) mirrors. The corresponding
expressions can be found in Appendix A.

Ray optics is described by the equations [27]

∇s · ∇s = 1, (11a)

∇ · (|Ẽ|2 ∇s) = 0, (11b)

where the eikonal s of the electric field is connected to the
phase by ϕ = ks and its increment denotes the optical path
of the ray; |Ẽ| is the amplitude of the electric field. Since
the refractive index is uniform and only frequency dependent,
we assumed that it is unity in Eq. (11a), while dispersion is
fully accounted for via k(ω) in the propagation equation, (1).

Physically, Eq. (11a) describes the trajectory of optical ray,
and Eq. (11b) is responsible for the energy flux conservation.

B. Phase correction for nonparaxial input conditions

Let us find the correction of the phase ϕ in Eq. (4). For
this purpose we rewrite Eq. (11a) as ds = dξ , where ξ is the
coordinate along a ray. For the incident ray ξ = −z. If we
calibrate the eikonal of the incident wave to be zero at z = 0,
it is equal to s = −zs(r) at the point of reflection {x, y, zs}. The
eikonal s of the equivalent ray emitted from the point {X,Y, 0}
to the point {x, y, zs} is s = ξ − se, where ξ = z/ cos 2α and
se determines the optical path in Eq. (4). The eikonals of the
reflected and equivalent rays should match exactly on their
way to focus, including the point {x, y, zs}, therefore, one can
conclude that

se(r) =
(

1 + 1

cos 2α(r)

)
zs(r), (12)

where

cos 2α = 1 − (dzs/dr)2

1 + (dzs/dr)2
. (13)

Note that the transverse component of the wave vector kr =
k dse/dR = k sin 2α, so the local wave vector points exactly to
the reflection point. The optical path se determined by Eq. (12)
allows the simple geometrical interpretation: the lag of the
effective emitted ray is the sum of the distances from the
surface zs(x, y) to the plane z = 0 and from the point {X,Y, 0}
to the point {x, y, zs}; see green arrows in Fig. 1(a).

C. Amplitude correction for nonparaxial input conditions

To find the amplitude correction of the emitted field ampli-
tude |Ẽe(X,Y )| with respect to the amplitude of the incident
field |Ẽi(x, y)| we integrate Eq. (11b) over the volume � of
the ray tube [filled area in Fig. 1(b)] bounded by surface �

using the divergence theorem,∫
�

∇ · (|Ẽ|2∇s)dV =
∮

�

|Ẽ|2(∇s · dσ )

= |Ẽr |2σ1 cos α − |Ẽe|2σ2 cos 2α = 0,

(14)

where σ1 = 2πrdr / cos α, σ2 = 2πR dR are the areas of the
surfaces bounding the ray tube on the mirror surface z = zs(r)
and plane z = 0, respectively. The energy flux through the
lateral surface area of the ray tube is zero. Equation (14) can
be interpreted as the conservation equation for the electromag-
netic energy in the volume �, i.e., the flux for the Poynting
vector S = ε0c(|Ẽ|2∇s) through the surface � is zero (ε0 is
the vacuum permittivity). We obtain from Eq. (14) the explicit
expression for the correction factor ϒ(r, R) = |Ẽe|/|Ẽr | in
Eq. (4):

ϒ(r, R) =
√

r dr

R dR

1

cos 2α
. (15)

D. Construction of nonparaxial input conditions

Nonparaxial input conditions consist in the electric field
distribution, (4), the reflected field, (7), the transformation of
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coordinates, (9), the phase ϕ = k se(r) with optical path se(r)
given by Eq. (12), and the amplitude correction factor, (15).
In the limit of small angles α → 0 Eqs. (7), (9), (12), and (15)
coincide with the standard input conditions and the paraxial
approximation, Eqs. (2) and (3) and (5).

The construction of nonparaxial input conditions from the
knowledge of the input field Ẽi(x, y) leads to the definition of
Ẽe(X,Y ) in five steps:

1. Definition of the spatial grid (X,Y ) for the propagation
solver.

2. Mapping of (X,Y ) onto (x, y) in the following way:
{x = Xr/R, y = Y r/R}, with R = √

X 2 + Y 2 and r obtained
by solving Eq. (9) analytically or numerically.

3. Calculation of the field phase ϕ(r(R)) = kse(r(R)) and
amplitude correction ϒ(r, R) according to Eqs. (12) and (15).

4. Calculation of the reflected field Ẽr (x, y) according to
Eq. (7).

5. Calculation of the field Ẽe(X,Y ) according to Eq. (4).
The field distribution Ẽe(X,Y ) is then Fourier-transformed

and its initial angular spectrum Ê(kx, ky ) is transformed to
an input Hertz vector spectrum according to Eq. (B4) and
provided to the solver for propagation Eq. (1). Applying
discrete Fourier transformation in simulations assumes peri-
odicity of the light field in both spatial (k-vector) and temporal
(frequency) domains. Tight focusing is typically considered
for the beam distribution with the maximum on-axis intensity
and zero boundary conditions in space and time. Mathemat-
ically required periodicity should be ensured by a light field
distribution in the center of the solver grid surrounded by a
large zero buffer zone in all the domains.

The time required for this routine is proportional to the
number of nodes Nx × Ny. Had the input field been recon-
structed using VDIs, ∝N2

x × N2
y operations would have been

required, because the value of the field Ẽe(X,Y ) at each node
of the two-dimensional grid is obtained as an integral over the
mirror surface [9].

III. SIMULATIONS OF FOCUSING USING NONPARAXIAL
INPUT CONDITIONS

Numerical simulations were performed with the
UHPE, (1), initiated by nonparaxial input conditions
to propagate tightly focused beams from the mirror
plane to the focal plane. Referring to frequently used
experimental or numerical focusing conditions we use a
top-hat monochromatic beam at the wavelength of 800 nm
and a large numerical aperture [1,6,28],

Ẽi(r) = exE0 exp

(
− r16

r16
0

)
, (16)

where r0 = 1 mm is the beam radius.
First, we study focusing by the parabolic mirror

zs(r) = r2

4 f
(17)

in the case of moderate focusing and assume the focal length
f ≈ 3 mm [ f -number = 0.5/ tan 2α(r0) = 1.5 and numerical
aperture NA = sin 2α(r0) = 0.33], for which the paraxial in-
put, (3), is not suitable [12]. Therefore, we calculate the input
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FIG. 2. Focusing by the parabolic mirror with the focal length
f ≈ 3 mm ( f /1.5, NA = 0.33). (a) Variation of |Ex|2 on the beam
axis r = 0 with propagation distance z calculated by the UHPE with
paraxial or standard (solid black curve) and nonparaxial input condi-
tions (red curve). Comparison is made with vectorial diffraction in-
tegrals (black dots). (b) Phase and (d) amplitude of standard (dashed
curve) and nonparaxial (solid curve) input conditions. (c) The log-
scaled difference between nonparaxial ϕ and standard ϕp phases.

field Ẽe from Eq. (4) and its spectrum Êe. The corresponding
input Hertz vector is calculated according to the procedure
described in Appendix B, Eq. (B4). After propagation, the
electric field components are reconstructed from the Hertz
vector as indicated in Appendix B, Eq. (B1).

Figure 2(a) shows the on-axis intensity of the x component
of the electric field as a function of the propagation distance
z. For the sake of comparison, propagation is initiated with
standard or nonparaxial input conditions and results are con-
fronted with the results obtained with VDI. Our correction to
the input field provides results in excellent agreement with the
intensity distribution obtained from VDI while the standard
input condition fails to reproduce it.

A comparison of the phase and amplitude of the electric
field at the initial plane z = 0 for standard, (2) and (5), and
nonparaxial input conditions is shown in Figs. 2(b)–2(d). Both
the phase difference and the amplitude difference do not seem
significant, however, the phase difference crucially influences
the field propagation. The phase difference between nonparax-
ial and paraxial inputs ϕ − ϕp reaches π at r ≈ 0.55 mm,
where the field amplitude is about unity [see Fig. 2(c)].
A phase difference of 10π at r ≈ 1 mm corresponds to
a field amplitude of 0.5 [trace gray line from Fig. 2(c)
to Fig. 2(d)]. This is enough to make the standard input
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(a) (b) (c)

FIG. 3. Focusing of the beam, (16), by the parabolic mirror, (17),
with the focal length f ≈ 1.2 mm ( f /0.6, NA = 0.64). The trans-
verse (X,Y ) distributions of (a) |Ex|2, (b) |Ey|2, and (c) |Ez|2 in
the focus (upper row; in each panel the squared modulus of the
field is normalized by its maximum value). Marked panels show
the longitudinal distributions with propagation distance z of the
quantities |Ex|2 (left column), |Ey|2 (middle column), and |Ez|2 (right
column) in the transverse positions indicated by the corresponding
markers in the upper row. Simulation results are obtained from the
UHPE with nonparaxial input conditions (solid curve) and the VDI
(dots).

condition insufficiently accurate to describe focusing under
these conditions.

For NA = 0.33 vectorial effects are not significant yet.
This means that the amplitude correction can be relaxed. We
obtained almost the same results as in Fig. 2(a) by using the
scalar unidirectional pulse propagation equation with axial
symmetry, initiated with a relaxed nonparaxial input condi-
tion, i.e., a nonparaxial input condition with Ẽr = −Ẽi instead
of Eq. (7).

We consider the case of tighter focusing of the beam, (16),
by a parabolic mirror with focal length f ≈ 1.2 mm
( f -number = 0.6 and NA = 0.64). Intensity patterns in the
focus and profiles along the propagation distance are shown
in Fig. 3 for the three components of |Eη|2, where η = x, y, z.
These intensity distributions are typical for such focusing con-
ditions [7,9,12,18,23]. We found excellent agreement between
the profiles obtained by propagation using the UHPE with
nonparaxial input conditions (red curve) and their counter-
parts obtained by vectorial diffraction integrals (dotted black
curve), both for the beam center and for the periphery. Thus,
the UHPE with nonparaxial input conditions allowed us to
simulate the propagation of all components of the electric
fields under tight focusing conditions, in agreement with the
results of vectorial diffraction integrals.
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FIG. 4. Same as Fig. 3, for the propagation after reflection from
a conical mirror, (18), with angle α = 20◦ ( f /0.6, NA = 0.64). The
upper row corresponds to z = 1.26 mm.

The aforementioned procedure is valid for a wide class
of reflective focusing elements. As a benchmark for focus-
ing by the parabolic mirror we used the VDI derived by
Varga and Török [7]. Following their derivation, we en-
sured that this form of the VDI can be applied for an ar-
bitrary surface zs(x, y), if one uses the corresponding ex-
pression for the inward surface normal, (8), through all the
formulas.

Figure 4 shows the the results of simulations for the
focusing by a conical mirror,

zs = r tan α, (18)

where the angle α = 20◦ between the plane z = 0 and the
mirror yields f -number = 0.6, NA = 0.64. The transverse
distributions of x and z components of the field (Fig. 4; upper
row) look similar to the ones measured and calculated in the
literature [29,30]. The intensity distribution at the focus of the
conical mirror exhibits the typical quasi-Bessel beam pattern
obtained by axicon focusing [31]. Energy is weakly localized,
in contrast with the focal spot of the parabolic mirror (cf.
Fig. 3 with Fig. 4). As a result, each component of the electric
field is an order of magnitude lower for the conical mirror than
for the parabolic one.

The results of our numerical simulations of beam focusing
by a conical mirror based on the UHPE with nonparaxial input
conditions reproduce well the features of axicon focusing
appearing in small angle axicons [32,33]. For example, the
linear dependence of the on-axis intensity on the propagation
distance shown in the profiles in Fig. 4 was simulated and
explained in terms of geometrical optics [33].

In order to generalize the results, we study the focusing
by a mirror of surface zs(r) that does not lead to an analytic
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(a) (b) (c)

FIG. 5. Same as Fig. 3, for the propagation after reflection from
the mirror zs ∝ r1.1 ( f /0.6, NA = 0.64). The upper row corresponds
to z = 1.195 mm.

solution of Eq. (9), in contrast with the parabolic or the conical
mirrors. The mirror surface is given by

zs ∝ r1.1 (19)

with effective f -number = 0.6, NA = 0.64 (the same as in
the previous cases).

The dependence r(R) was found numerically from Eq. (9)
as well as the derivatives in Eqs. (6), (8), and (15). Fig-
ure 5 shows intensity patterns at focus and intensity profiles
along the propagation axis in comparison with the results
of diffraction integrals. The excellent agreement between the
UHPE solution with nonparaxial input conditions and the VDI
(Fig. 5) evidences the applicability of the input conditions for
general optical elements.

Thus, the method developed for the simulations of beam
focusing by unidirectional nonparaxial vectorial propagation
equations is fully benchmarked, as it shows that the intensity
distributions found from the UHPE and VDI match, vali-
dating our method to construct nonparaxial input conditions.
Repeating the routine of building the Hertz vector for every
harmonic ω in a broadband spectrum of an ultrashort pulse
and taking the Fourier transform in time, one can obtain an
(x, y, z) distribution of electric and magnetic fields at any
given instant in time, which can be used as initial conditions
for finite-difference time-domain [34] or particle-in-cell [35]
simulations in the focal volume.

IV. CONCLUSIONS

In conclusion, we have derived input conditions compatible
with unidirectional nonparaxial vectorial propagation equa-

tions. We used geometrical optics to transfer the field from
a curved focusing surface to the plane of input conditions
for the unidirectional Hertz vector propagation equation. With
respect to standard input conditions, both the phase and the
amplitude must be modified in the case of nonparaxial vec-
torial propagation. The solutions to the propagation equation
initiated by the nonparaxial input condition are consistent with
exact solutions of Maxwell equations calculated by vectorial
diffraction integrals for the three components of the field and
a wide class of focusing surfaces.

The results can be, in principle, applied to transmission
optics, because the main approximations used (high Fresnel
number for propagation through the focusing element and
absence of ray intersection) will be held as well. In this
case, the only change required in our procedure involves the
rotation of the wave vectors that must satisfy Snell’s law and
the rotation of the field vectors by Fresnel’s equations.
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APPENDIX A: NONPARAXIAL INPUT CONDITIONS FOR
VECTORIAL PROPAGATION EQUATIONS IN THE CASE

OF FOCUSING BY AXIALLY SYMMETRIC
LARGE-APERTURE PARABOLIC AND CONICAL

MIRRORS

Since beam focusing by the parabolic, (17), and coni-
cal, (18), mirrors are of the most practical importance, we
write out explicitly nonparaxial input conditions in these
cases. The incident electric field is assumed to be linearly po-
larized along the x axis Ẽi = {E0(x, y), 0, 0}. The transverse
grids {X,Y } on the plane z = 0 and {x, y} on the mirror zs(x, y)
are connected by x = Xr/R, y = Y r/R, where r =

√
x2 + y2,

R = √
X 2 + Y 2, and the dependence r(R) is given by the

solution of Eq. (9).
For a parabolic mirror of focal length f , the initial electric

field distribution for a harmonic of frequency ω with the wave
number k can be written as

Ẽe(X,Y, z = 0) = E0(x, y)
4 f 2 − r2

4 f 2 + r2

{(
x2 − y2

4 f 2
− 1

)
ex

+ xy

2 f 2
ey − x

f
ez

}
exp

(
i

2 k r2 f

4 f 2 − r2

)
,

(A1)

where the coordinate of the reflection point is

r(R) = 2 f

R
(
√

f 2 + R2 − f ). (A2)
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Similar equations are obtained for a conical mirror of angle α

between the reflecting surface and the plane z = 0,

Ẽe(X,Y, z = 0)

= E0(x, y)cos2 α
√

cos 2α

{(
x2 − y2

r2
tan2 α − 1

)
ex

+ 2xy

r2
tan2 α ey − 2x

r
tan α ez

}
exp (i k r tan 2α),

(A3)

and the coordinate of the reflection point is

r(R) = R cos 2α. (A4)

APPENDIX B: ELECTRIC FIELD–TO–HERTZ VECTOR
TRANSFORMATION

In our simulations we used the UHPE, Eq. (1), a vectorial
nonparaxial propagation equation for the Hertz vector �. In
general, the Hertz vector � is three-dimensional, and the
electric field E is obtained from � by the relation

E = − 1

c2

∂2�

∂t2
+ ∇(∇ · �), (B1)

where c is the speed of light in vacuum. The spectral com-
ponents of E and � obtained after Fourier transformation in
time and transverse directions from (t, x, y, z) to (ω, kx, ky, z)

satisfy

Ê(ω, kx, ky, z) = C�̂(ω, kx, ky, z), (B2)

where the matrix C is

C =
⎛
⎝k2(ω) − k2

x −kxky −kxkz

−kykx k2(ω) − k2
y −kykz

−kzkx −kzky k2(ω) − k2
z

⎞
⎠ (B3)

and kz is expressed via ω, kx, and ky as kz =√
k2(ω) − k2

x − k2
y . The matrix, (B3), represents a spectral

operator that cannot be inverted. This is due to the fact that
the Hertz vector, as for other electromagnetic potentials, can
be chosen so as to follow an additional gauge condition,
which amounts to selecting only two components for the
Hertz vector, from which the three components of the electric
field can be retrieved. We therefore require �z = 0 as in
Ref. [12], and only two components of the electric field must
be chosen so as to calculate the components of the Hertz
vector � = {�x,�y}. The third component of the field,
calculated according to Eq. (B1), automatically satisfies the
equation (∇ · E) = 0.

Our results were obtained by using the inverse transform
from the field E to the Hertz vector � using the main
two components for the field {Ex, Ez} and the two nonzero
components of the Hertz vector {�x,�y}:(

�̂x

�̂y

)
= 1

k2(ω)kzky

(−kykz kxky

kxkz k2(ω) − k2
x

)(
Êx

Êz

)
. (B4)

The third field component Ey was obtained from the corre-
sponding component of Eq. (B1).
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