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In this paper, the multicomponent lattice Boltzmann flux solver (LBFS) is developed for simulation of
two-dimensional compressible viscous reacting flows. This work is based on the existing LBFS for simulation
of single-component compressible flows. The present solver applies the finite volume method to discretize
the multicomponent Navier-Stokes equations and evaluates the numerical flux at the cell interface by local
solution of the lattice Boltzmann equation. To evaluate numerical flux, the original non-free parameter D1Q4
model in the existing LBFS is extended to the multicomponent counterpart in which the total density at
the cell interface is computed directly by summing the density distribution functions, and the densities of
different species are calculated from the mass fractions at the left and right sides of cell interface. The
internal energy is evaluated from the enthalpy which considers the different physical properties of the species,
and the temperature at the cell interface is obtained by Newton iteration. In addition, an improved switch
function which takes into account the reacting effects and aspect ratio of the grid is introduced to control
the numerical dissipation. Several benchmark problems are simulated to validate the present multicomponent
LBFS. It is shown that the present solver is carbuncle-free for the unfavorable aspect ratio grid in the test
cases here and has a satisfied performance for simulation of multicomponent compressible viscous reacting
flows.
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I. INTRODUCTION

As an alternative approach to simulate fluid flows, the
lattice Boltzmann method (LBM) has received much attention
in recent years. The standard LBM has many advantages as
it is much simpler to implement than conventional methods
[1], and it is appropriate for simulating mesoscopic physics
phenomena, which are hard to describe macroscopically [2].
LBM has achieved great success in the simulation of various
flows, such as multiphase flow [3], porous media flow [4],
suspended particle flow [5], and rarefied flow [6]. However,
there are few applications of LBM for the reacting flow,
which involves chemical reactions, turbulent mixing, heat
transfer, radiation, and many other fluid phenomena. This
limitation is mainly due to the lack of proper multicomponent
lattice Boltzmann (LB) models for compressible reacting
flows.

In the field of LBM, there are two major kinds of mul-
ticomponent LB models. One considers the density as a
constant in combustion flow. Succi et al. [7] first simu-
lated the methane-air laminar flame under the hypothesis
of a cold flame. In their work, two passive scalars were
used to describe temperature and the fraction of the fuel in
the mixture. Subsequently, Yamamoto et al. [8] developed
a new combustion LB model by using two disconnected
distribution functions to describe the density field and the
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temperature field, respectively. Since the density is considered
as a constant, this kind of multicomponent LB model may
cause a deviation from the real physical phenomenon, and
the thermal flow simulations may not accurate [1]. Another
kind of multicomponent LB model considers the temperature
and density fields simultaneously, which can be viewed as
the coupled multicomponent LB model. Filippova and Hanel
[9] developed a coupled multicomponent LB model by the
low-Mach-number approximation and solved the tempera-
ture field by the finite difference scheme. The disadvantage
of this model is its limited temperature range, which does
not satisfy the requirement of real combustion. Yan et al.
[10] developed a coupled multicomponent LB model for
simulation of the detonation process based on the assump-
tion of a compressible fluid. In this model, the chemical
reaction process and fluid dynamics process are coupled
into one distribution function. It is noted that the coupled
multicomponent LB model is difficult to use for describing
the complex chemical kinetic model. As described above,
to establish a multicomponent LB model that conforms to
real physical processes and fits for a wide range of Mach
number, consideration of the compressibility effect is essen-
tial. Aiming at the isothermal compressible flow, Alexan-
der et al. [11] proposed a compressible LB model with
adjustable sound speed to simulate fluid flows with differ-
ent Mach numbers. Qu et al. [12] replaced the Maxwellian
distribution function with a circular function and developed
several one- and two-dimensional compressible LB models.
However, in their models, the lattice velocities are kept
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constant, which are determined by the initial Mach number
and internal energy. Yang et al. [13] recently developed a
platform for the derivation of non-free parameter LB mod-
els. In this platform, both the equilibrium distribution func-
tions and associated lattice velocities are given from physical
conservation laws.

In practical applications, there are some drawbacks for
LBM [14], such as tie-up of mesh spacing and time intervals.
In addition, since the boundary conditions are not directly
applied and the lattice models are uniform, the standard LBM
is usually limited to a uniform mesh with simple boundaries.
To overcome the drawbacks of the standard LBM, an alter-
native method is to solve the discrete velocity Boltzmann
equation (DVBE) with well-established numerical methods
[15,16]. Solving the DVBE can eliminate the tie-up between
time interval and mesh spacing of the standard LBM, but
it also encounters problems such as poor numerical stability
and large numerical dissipation [17,18]. Moreover, both the
LBM and numerical methods for solving DVBE are mem-
ory intensive for simulation of multidimensional flows [19].
To avoid solving the lattice Boltzmann equation (LBE) and
DVBE directly, Shu and his co-workers [20–23] proposed the
lattice Boltzmann flux solver (LBFS) for simulation of single-
component compressible flows. In LBFS, the Euler/Navier-
Stokes (N-S) equations are discretized by the finite volume
method and the numerical flux at the cell interface is evalu-
ated by applying the local solution of one-dimensional LBE.
Compared with other well-established computational fluid
dynamics solvers, in LBFS, the numerical flux is evaluated
by a virtual physical process. Moreover, LBFS is applied
locally at each cell interface, and the streaming time step has
nothing to do with the physical time step for evolution of the
macroscopic variables. Therefore, LBFS can be effectively
applied for complex geometry and unsteady flow simulation.
Recently, LBFS is extended to simulate multiphase flow [21]
and compressible viscous flow [22–25]. The existing LBFS
considers both the equilibrium part and nonequilibrium part
of the distribution function in evaluating the numerical flux
at the cell interface. In order to capture strong shock waves,
the influence of the nonequilibrium part of distribution func-
tion is treated as the numerical dissipation and controlled
by a switch function. However, it is found that the exist-
ing LBFS has a high requirement for grid quality, and for
simulation of multicomponent compressible viscous reacting
flows, the numerical dissipation is still too large in the smooth
region.

In this work, we extend the existing LBFS to simulate
the multicomponent compressible viscous reacting flows.
The inviscid flux is evaluated by multicomponent LBFS
with the multicomponent non-free parameter D1Q4 model,
while the viscous flux is calculated by the traditional central
difference scheme. At first, the multicomponent non-free pa-
rameter D1Q4 model is derived from the conservation forms
of moments. In this process, we can obtain the relationship
between the inviscid flux of multicomponent Navier-Stokes
equations and the distribution function. Like the existing
LBFS, the distribution function at the cell interface consists
of an equilibrium part and a nonequilibrium part. According
to the Chapman-Enskog analysis, the equilibrium part corre-
sponds to the inviscid flux and the nonequilibrium part can be

FIG. 1. Definition of a finite control volume (fixed in space).

viewed as the numerical dissipation. Given this, the numerical
flux attributed to the equilibrium part should be dominant in
the smooth region, while the numerical dissipation originating
from the nonequilibrium part should be mainly added near
the shock wave and combustion front for numerical stability.
This requirement can be achieved by using a modified switch
function, which considers the influence of the grid aspect
ratio and combustion effect. To validate the developed solver,
three different cases with a large temperature range, complex
chemical reaction model, fast- and slow-reacting flow field,
and complex geometry and flow field structure are simulated.
The results of multicomponent LBFS are compared with
those of the AUSM+ scheme [26] and reference data in the
literature.

II. MULTICOMPONENT NAVIER-STOKES EQUATIONS,
MULTICOMPONENT NON-FREE PARAMETER D1Q4

MODEL, AND THEIR CONNECTIONS

A. Multicomponent Navier-Stokes equations

In this work, we solve the conserved Navier-Stokes (N-S)
equations discretized by fixed control volume, which is shown
in Fig. 1. The integral form of two-dimensional multicompo-
nent force–free and heat source–free N-S equations [27] can
be written as

∂

∂t

∫
�

Wd� +
∮

∂�

(Fc − Fv )dS =
∫

�

Qd�, (1)

where � is the control volume, �� is the surface of the control
volume, and S is the area of the surface. In Eq. (1), the con-
servation laws of mass, momentum, and energy are applied
to the conservative variables W to describe their variation
of time in the fixed control volume �. The inviscid flux Fc

and viscous flux Fv represent the amount of the conservative
variables entering the control volume through the boundary
dS with the influent velocity u and transport phenomena,
respectively. The source term Q gives the mass change of each
species caused by chemical reaction in the control volume
[28].
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The conservative variables W, inviscid flux Fc, viscous flux Fv , and source term Q are given by

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ1
...

ρNS

ρu
ρv

ρE

⎤
⎥⎥⎥⎥⎥⎥⎦

, Fc =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ1un
...

ρNSun

ρuun + nx p
ρvun + ny p
(ρE + p)un

⎤
⎥⎥⎥⎥⎥⎥⎦

, Fv =

⎡
⎢⎢⎢⎢⎢⎢⎣

nx�x,1 + ny�y,1
...

nx�x,NS + ny�y,NS

nxτxx + nyτxy

nxτyx + nyτyy

nx�x + ny�y

⎤
⎥⎥⎥⎥⎥⎥⎦

, Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω̇1
...

ω̇NS

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2)

where NS is the number of species, and ρi and ω̇i are the den-
sity and net mass product rate of the ith species, respectively.
p and ρ are the pressure and density of the mean flow. u =
(u, v) and n = (nx, ny) are the velocity vector and unit normal
vector in the Cartesian system, respectively. τi j denotes the
components of the viscous stress tensor. The normal velocity
un is defined as the product of velocity vector and unit normal
vector as

un = u · n = nxu + nyv. (3)

The total energy of the mean flow E is defined as

ρE =
NS∑
i=1

ρihi + 1

2
ρ(u2 + v2) − p, (4)

where hi is the specific enthalpy of the ith species given by

hi =
∫ T

T0

cp,idT + h0
i . (5)

Here, the hi
0 and cp,i are the specific enthalpy of formation

at the reference temperature T0 and specific heat at constant
pressure of the ith species, respectively. T is the temperature
of the mean flow. In the viscous flux Fv , �i, j is the term of
species diffusion, and �i represents the term describing the
influence of viscous stress and heat conduction, which can be
written as

�x,i = ρDi
∂ci

∂x (6)
�y,i = ρDi

∂ci

∂y
,

�x = uτxx + vτxy + k
∂T

∂x
+ ρ

NS∑
i=1

hiDi
∂ci

∂x
(7)

�y = uτyx + vτyy + k
∂T

∂y
+ ρ

NS∑
i=1

hiDi
∂ci

∂y
,

where ci and Di are the mass fraction and mass diffusion
coefficient of the ith species, respectively.

The equation of state can be written as

p =
NS∑
i=1

pi =
NS∑
i=1

ρi
R

Mi
T , (8)

where R is the universal gas constant and Mi is the molecular
weight of the ith species.

In general, the chemical reaction can be written as [29]
NJ∑
i=1

αi,rxi

k f ,r−−−⇀↽−−−
kb,r

NJ∑
i=1

βi,rxi, (9)

where NJ is the total number of reacting species and catalytic
bodies. αi,r and βi,r are the stoichiometric coefficients of
reactants and products of the ith species xi in rth reactions,
respectively. k f ,r and kb,r are the forward and backward reac-
tion rate of the rth reaction. The net mass production rate of
the ith species is

ω̇i =Mi

NR∑
r=1

(βi,r − αi,r )

⎡
⎣k f ,r

NJ∏
j=1

(γ jρ )α j,r − kb,r

NJ∏
j=1

(γ jρ)β j,r

⎤
⎦,

(10)

where NR is the number of chemical reactions and γ is the
mole mass ratio.

In this work, the chemical kinetic model is assumed to obey
the modified Arrhenius equation as [30]

k = AT n exp

(
− Ea

RT

)
, (11)

where A is the pre-exponential factor, n is the temperature
exponent, and Ea is the activation energy for the reaction. For
the case that the backward reaction rate is not given explicitly,
it can be computed by using the local chemical equilibrium
constant.

B. Multicomponent non-free parameter D1Q4 lattice
Boltzmann model

Inspired by the work of Yang et al. [13], which develops
a non-free parameter D1Q4 model for simulation of single-
component compressible viscous flows, a multicomponent
non-free parameter D1Q4 model is developed in this work.
The distribution of discrete equilibrium states and particle
velocities for this model is illustrated in Fig. 2, which contains
four equilibrium density distribution functions g1, g2, g3, g4

and two lattice velocities d1, d2.
This model is derived from the Bhatnagar-Gross-Krook

(BGK) type Boltzmann equation with a Maxwellian distri-
bution function. Since this D1Q4 model is only used for

FIG. 2. The discrete particle velocity of multicomponent non-
free parameter D1Q4 model.
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calculating the inviscid flux along the normal direction of the
cell interface, one-dimensional multicomponent Euler equa-
tions need to be recovered by the multicomponent non-free
parameter D1Q4 model. In particular, the following relations
must be fulfilled [23]:

ρ =
4∑

j=1

g j

ρu =
4∑

j=1

g jξ j

ρuu + p =
4∑

j=1

g jξ jξ j (12)

ρE =
4∑

j=1

g j

(
1

2
ξ jξ j + ep

)

(ρE + p)u =
4∑

j=1

g j

(
1

2
ξ jξ j + ep

)
ξ j,

where g j and ξ j are the equilibrium density distribution func-
tion and lattice velocity, respectively, of the particle j, and
u is the velocity of the mean flow. The densities of different
species are expressed by their mass fractions:

ρi = ciρ = ci

4∑
j=1

g j . (13)

By substituting the first and the third relations into the
fourth relation of Eq. (12) and using Eq. (4), the particle
potential energy ep can be expressed by

ep =
∑NS

i=1 ρihi

ρ
− 3p

2ρ
. (14)

Let us introduce the peculiar velocity of particles as

c =
√

p

ρ
. (15)

Substituting Eqs. (14) and (15) into Eq. (12) and setting ξ1 =
d1, ξ2 = −d1, ξ3 = d2, and ξ4 = −d2, we can get four reduced
relations:

ρ = g1 + g2 + g3 + g4

ρu = g1d1 − g2d1 + g3d2 − g4d2
(16)

ρu2 + p = g1d2
1 + g2d2

1 + g3d2
2 + g4d2

2

ρu3 + 3c2u = g1d3
1 − g2d3

1 + g3d3
2 − g4d3

2 .

It can be seen that the term of particle potential energy ep and
enthalpy h in the fourth relation of Eq. (16) is eliminated. By
solving Eq. (16), gi can be expressed as

g1 = ρ
(
c2d1 + 3c2u − d1d2

2 + d1u2 − d2
2 u + u3

)
2d1

(
d2

1 − d2
2

)

g2 = ρ
(
c2d1 − 3c2u − d1d2

2 + d1u2 + d2
2 u − u3

)
2d1

(
d2

1 − d2
2

)

g3 = −ρ
(
c2d2 + 3c2u − d2

1 d2 + d2u2 − d2
1 u + u3

)
2d2

(
d2

1 − d2
2

)

g4 = −ρ
(
c2d2 − 3c2u − d2

1 d2 + d2u2 + d2
1 u − u3

)
2d2

(
d2

1 − d2
2

) . (17)

In this work, only inviscid flux is reconstructed by using
this D1Q4. Furthermore, in order to obtain a non-free param-
eter D1Q4 model, which is more stable and robust for solving
compressible problems, the particle velocities d1 and d2 are
evaluated by the higher-order moments for recovering the N-S
equations and the Burnett correction to heat flux as follows:

ρu4 + 6ρc2u2 + 3ρc4 = g1d4
1 + g2d4

1 + g3d4
2 + g4d4

2

ρu5 + 10ρc2u3 + 15ρc4u = g1d5
1 − g2d5

1 + g3d5
2 − g4d5

2 .

(18)

By solving Eq. (18), we can get

d1 =
√

u2 + 3c2 −
√

4u2c2 + 6c4

(19)
d2 =

√
u2 + 3c2 +

√
4u2c2 + 6c4.

C. Connections of multicomponent Navier-Stokes equations and
multicomponent non-free parameter D1Q4 model

In order to apply the multicomponent non-free parameter
D1Q4 model to evaluate the inviscid flux Fc, the relations
between distribution functions and conservative variables as
well as inviscid flux must be obtained. Since the multicom-
ponent non-free parameter D1Q4 model is applied along the
normal direction of the cell interface as shown in Fig. 3, the
conservative variables W and inviscid flux Fc are needed to be
transformed from one-dimensional conservative variables W̄
and inviscid flux F̄c to a two-dimensional global coordinate
system.

According to Eq. (12), the conservative variables W̄ and
inviscid flux F̄c attributed to the normal velocity on the surface
S can be calculated by the multicomponent non-free parameter
D1Q4 model as follows:

W̄ =

⎡
⎢⎢⎢⎢⎣

ρ1
...

ρNS

ρun

ρ
(
e + u2

n

/
2
)

⎤
⎥⎥⎥⎥⎦ =

4∑
j=1

ϕa f j (r, t ), (20)

FIG. 3. Local coordinate system at the cell interface.
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F̄c =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ1un

...
ρNSun

ρu2
n + p[

ρ
(
e + u2

n

/
2
) + p

]
un

⎤
⎥⎥⎥⎥⎥⎥⎦

=
4∑

j=1

ξ jϕa f j (r, t ), (21)

where e is the internal energy. The location r denotes the
midpoint of the cell interface and t represents the current time
level. ϕa stands for

ϕa =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1

...
cNS

ξ j

ξ 2
j /2 + ep

⎤
⎥⎥⎥⎥⎥⎥⎦

. (22)

The velocity components in the Cartesian coordinate sys-
tem can be expressed by normal velocity and tangential
velocity as

u = nxun − nyuτ
(23)

v = nxuτ + nyun.

Using Eqs. (2), (20), (21), and (23), the conservative variables
W and inviscid flux Fc can be expressed by W̄ and F̄c as
follows:

W=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1

...
ρNS

ρ(nxun − nyuτ )
ρ(nxuτ + nyun)

ρ
(
e + u2

n

/
2
) + ρu2

τ

/
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̄(1)
...

W̄(NS)

W̄(NS + 1)nx − ρuτ ny

W̄(NS + 1)ny + ρuτ nx

W̄(NS + 2) + ρu2
τ

/
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(24)

Fc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1un

...

ρNSun(
ρu2

n + p
)
nx − ρunuτ ny(

ρu2
n + p

)
ny + ρunuτ nx[

ρ
(
e + u2

n

/
2
) + p

]
un + ρunu2

τ

/
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F̄c(1)
...

F̄c(NS)

F̄c(NS + 1)nx − ρunuτ ny

F̄c(NS + 1)ny + ρunuτ nx

F̄c(NS + 2) + ρunu2
τ

/
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

As for the tangential velocity and the flux attributed to the tan-
gential velocity at the cell interface, an approximate methodis
adopted, which will be given in the next section.

FIG. 4. The switch function calculation process.

III. LATTICE BOLTZMANN FLUX SOLVER FOR
MULTICOMPONENT VISCOUS COMPRESSIBLE

REACTING FLOWS

The key of the multicomponent LBFS is to evaluate the in-
viscid flux Fc and introduce appropriate numerical dissipation
in the flow field. In multicomponent reacting flows, it is also
important to calculate the internal energy and densities of dif-
ferent species in the gas mixture. In the present multicompo-
nent LBFS, both the equilibrium part and nonequilibrium part
of the distribution function are considered. The equilibrium
part is used to obtain an accurate result in the smooth region,
while the nonequilibrium part is added near the shock wave
and combustion front to provide enough numerical dissipation
for stability. As shown in the work of Yang et al. [13], the total
inviscid flux at the cell interface can be written as

Fc,i+1/2 = FI
c,i+1/2 + τ0

(
FII

c,i+1/2 − FI
c,i+1/2

)
, (26)

where τ0 is the dimensionless collision time, FI
c,i+1/2 is the

inviscid flux attributed to the equilibrium part of the distribu-
tion function at the cell interface, while the FII

c,i+1/2 − FI
c,i+1/2

represents the contribution of the nonequilibrium part.

A. Evaluation of FI
c,i+1/2

As FI
c,i+1/2 is the contribution of the equilibrium distribu-

tion function at the cell interface, we need to compute the
conservative variables W̄ at the same location in advance.
Since the non-free parameter D1Q4 model is used to describe
the total density of the gas mixture, as shown in Eq. (13), the
densities of different species at the cell interface are computed
by the distribution functions and the mass fraction of the left
and right cells as

ρi =
4∑

j=1

g jci =
∑
j=1,3

gL
j c

L
i +

∑
j=2,4

gR
j c

R
i . (27)

FIG. 5. The different aspect ratios of the grid with (a) large
aspect ratio and (b) unit aspect ratio.
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Substituting Eqs. (22) and (27) into Eq. (20), the conserva-
tive variables W̄ can be written as

W̄i+1/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j=1,3 g jc1

...∑
j=1,3 g jcNS∑
j=1,3 g jξ j∑

j=1,3 g j
1
2 (ξ jξ j + ep)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j=2,4 g jc1

...∑
j=2,4 g jcNS∑
j=2,4 g jξ j∑

j=2,4 g j
1
2 (ξ jξ j + ep)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R

. (28)

The distribution functions and particle velocities with sub-
script of 1 and 3 are taken from the left side of the cell
interface, while variables with subscript of 2 and 4 are taken
from the right side. The total density ρ and normal velocity
un on the cell interface can be obtained easily by using the
conservative variables in Eq. (28). However, there exists a
problem of how to calculate the pressure at the cell interface.
In Eq. (4), the enthalpies of different species are the function
of temperature, so the pressure cannot be expressed in an
explicit form. To calculate the pressure, the temperature at the
cell interface should be determined in advance. Here we use
the Newton iteration to estimate the value of temperature [31].
The function of temperature can be obtained by substituting
Eq. (8) into Eq. (4) as

f (T ) =
NS∑
i=1

ρihi + 1

2
ρ(u2 + v2) −

NS∑
i=1

ρiRiT − ρE = 0.

(29)
The Newton iteration of the temperature function can be
written as

T (n+1) = T (n) − f (T (n) )

f ′(T (n) )
, (30)

where

f ′(T (n) ) =
NS∑
i=1

ρicp,i −
NS∑
i=1

ρiRi. (31)

As a result, the approximate value of temperature in the next
step can be calculated by

T (n+1)

= T (n) −
∑NS

i=1 ρihi + 1
2ρ(u2 + v2) − ∑NS

i=1 ρiRiT (n) − ρE∑NS
i=1 ρicp,i − ∑NS

i=1 ρiRi

.

(32)

Equation (32) can be further simplified as

T (n+1) =
∑NS

i=1 ρi(cp,iT (n) − hi ) − 1
2ρ(u2 + v2) + ρE∑NS

i=1 ρicv,i

,

(33)

FIG. 6. Computational domain for shock-induced combustion
flow.

where cv,i is the specific heat at constant volume. The initial
value of temperature T (0) is given by the Roe average of left
and right cells, and cp,i, cv,i, hi in step n are approximated by
using T (n−1). To most cells, 2 or 3 times of Newton iteration
is sufficient for reaching the convergence criterion of 1.0 ×
10−8. Once the temperature is obtained, the pressure can be
computed straightforwardly by using Eq. (8).

As described in Sec. II C, the non-free parameter D1Q4
model is applied only in the normal direction of the cell inter-
face. Therefore, the tangential velocity at the cell interface is
estimated by

ρuτ =
4∑

j=1

g juτ =
∑
j=1,3

gL
j u

L
τ +

∑
j=2,4

gR
j u

R
τ

(34)

ρu2
τ =

4∑
j=1

g j (uτ )2 =
∑
j=1,3

gL
j

(
uL

τ

)2 +
∑
j=2,4

gR
j

(
uR

τ

)2
.

It is convenient to calculate FI
c,i+1/2 by directly using the value

of W̄ as follows:

FI
c,i+1/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̄ (1)un

...

W̄ (NS)un

[W̄ (NS + 1)un + p]nx − W̄ (NS + 1)uτ ny

[W̄ (NS + 1)un + p]ny + W̄ (NS + 1)uτ nx[
W̄ (NS + 2) + p + 1

2ρu2
τ

]
un

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i+1/2

.

(35)

B. Evaluation of FII
c,i+1/2

FII
c,i+1/2 is the contribution of equilibrium distribution func-

tion around the cell interface. The same as described be-
fore Eqs. (27) and (34), the numerical flux attributed to the
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TABLE I. Chemistry model from Moretti [37].

No. Reaction

1 O2 + H = OH + O
2 H2 + O = OH + H
3 H2 + OH = H2O + H
4 OH + OH = H2O + O
5 OH + H + M = H2O + M
6 H + H + M = H2 + M
7 O + H + M = OH + M
8 O + O + M = O2 + M

tangential velocity in FII
c,i+1/2 is calculated in the same way as

in FI
c,i+1/2, i.e.,

ρunuτ =
4∑

j=1

g jξ juτ =
∑
j=1,3

gL
jξ

L
j uL

τ +
∑
j=2,4

gR
j ξ

R
j uR

τ , (36)

ρunu2
τ =

4∑
j=1

g jξ ju
2
τ =

∑
j=1,3

gL
jξ

L
j

(
uL

τ

)2 +
∑
j=2,4

gR
j ξ

R
j

(
uR

τ

)2
.

(37)

Finally, FII
c,i+1/2 can be calculated by using Eqs. (25), (36),

and (37) as follows:

FII
c,i+1/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j=1,3 g jξ jc1

...∑
j=1,3 g jξ jcNS∑

j=1,3 g jξ jξ jnx − ∑
j=1,3 g jξ juτ ny∑

j=1,3 g jξ jξ jny + ∑
j=1,3 g jξ juτ nx∑

j=1,3 g jξ j
(

1
2ξ jξ j + ep

) + 1
2

∑
j=1,3 g jξ ju2

τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j=2,4 g jξ jc1

...∑
j=2,4 g jξ jcNS∑

j=2,4 g jξ jξ jnx − ∑
j=2,4 g jξ juτ ny∑

j=2,4 g jξ jξ jny + ∑
j=2,4 g jξ juτ nx∑

j=2,4 g jξ j
(

1
2ξ jξ j + ep

) + 1
2

∑
j=2,4 g jξ ju2

τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R

.

(38)

TABLE II. Free stream conditions for shock-induced combustion
flow.

Mass fraction

Ma P (Pa) T (K) c (N2) c (O2) c (H2)

6.9765 42262 250 0.74519 0.22650 0.02831

TABLE III. References of simulation parameters for shock-
induced combustion flow.

Boundary Chemical kinetics Thermodynamic
Parameters conditions model database

Reference [39] [37] [38]

C. Control of numerical dissipation

In Eq. (26), if τ0 = 0, the numerical dissipation from the
nonequilibrium part of the distribution function at the cell
interface vanishes and an accurate result can be obtained.
However, the numerical dissipation is needed to capture
strong shock waves. If τ0 = 1, the numerical dissipation is
enabled at the whole computational domain, which is too large
to get an accurate result in the smooth region. In the existing
LBFS, a switch function is introduced to solve this problem.

The original form of the switch function at the cell interface
is defined by [23]

α = tanh

(
C

|pL − pR|
pL + pR

)
, (39)

where tanh(x) is the hyperbolic tangent function, and pL and
pR are the pressure at the left and right sides of the cell
interface. C is a positive amplification factor. For simulation
of supersonic and hypersonic flows, to get a smooth switch
function distribution, it is better to consider the effect of the
cells around the interface shown in Fig. 4 as

α∗ = max {αL, αR}, (40)

where αL and αR are the maximum value of the switch
function in the left and right cells as

αL = max
i=1,Nf ,L

{αi}
(41)

αR = max
i=1,Nf ,R

{αi},

where Nf ,L and Nf ,R are the number of faces of the left and
right cells, respectively.

FIG. 7. Temperature contours with shock wave detachment
distance.
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FIG. 8. Comparison of pressure contours by using different
schemes.

The switch function in Eq. (39) encounters some problems
on the nonuniform grid. If we suppose that there exists a
uniform pressure gradient in the computational domain, there
should exist a uniform numerical dissipation. However, as
shown in Fig. 5(a), a larger aspect ratio of the grid will lead
to a larger value of switch function at the shorter cell interface
and then a larger numerical dissipation, which is unreason-
able. In numerical simulation, the computational domain is
not always uniform. For example, the grid in the boundary
layer usually has a very large ratio of length and width
for body-fitted grids, and sometimes the numerical scheme
requires a large aspect ratio to add additional numerical vis-
cosity [32]. Thus, it is hard to use the original switch function
to solve the fluid flow problem with complex geometry, in
which the aspect ratio of the grid is extremely high.

To overcome this defect, the effect of aspect ratio of the
grid should be considered. For the two-dimensional case, a

FIG. 9. Pressure and temperature profiles along the stagnation line.

FIG. 10. Mass fractions of main species profiles along the stag-
nation line.

grid parameter r is used to evaluate the aspect ratio:

r =
⎧⎨
⎩

min
(
1.0, �̄

L2
L,R

)
, for quadrilateral grid

min
(
1.0, 2�̄

L2
L,R

)
, for triangle grid

, (42)

where �̄ is the average volume of the left and right cells,
and L2

L,R is the square of distance between the left and right
cell centers. The minimum function is used to guarantee that
only the switch function on the short edge of the cell interface
is modified. This method means that the value of the switch
function at the cell interface is normalized based on the long
edge of both cells.

Considering the chemical reaction in the flow field, i.e., the
combustion front is not always at the same location as the
shock wave, the numerical dissipation should be introduced
to both the shock wave and the combustion front. Thus, the
switch function in Eq. (39) is written in a modified form as

α = tanh

[
rC max

( |pL − pR|
pL + pR

,
|TL − TR|
TL + TR

)]
. (43)

As shown in Eqs. (39) and (43), another factor for calculation
of the switch function is the overall size of the grid, which
is represented by the positive amplification factor C. A grid
with small size or large aspect ratio needs a large value of C.
Finally, the total inviscid flux at the cell interface in Eq. (26)
can be written as

Fc,i+1/2 = (1 − α∗)FI
c,i+1/2 + α∗FII

c,i+1/2. (44)

TABLE IV. Comparison of computational efficiency for different
schemes.

Time AUSM+ LBFS Comparison

Average time cost per step (s) 0.09605 0.10248 6.69%
Convergence time consumption (s) 2326.73 1946.24 −16.35%
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FIG. 11. Comparison of switch function contours: (a) without grid modification and (b) with grid modification.

FIG. 12. Comparison of temperature contours near the symmetric axis by using different schemes: (a) Roe scheme without chemical
reaction, (b) Roe scheme with chemical reaction, (c) AUSM+ scheme without chemical reaction, (d) AUSM+ scheme with chemical reaction,
(e) LBFS without chemical reaction, and (f) LBFS with chemical reaction.
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TABLE V. Chemistry model from Gupta [45].

No. Reaction

1 O2 + M = 2O + M
2 N2 + M = 2N + M
3 NO + M = N + O + M
4 N2 + O = NO + N
5 NO + O = O2 + N
6 N2 + N = 2N + N
7 N + O = NO+ + e−

D. Computational sequence

The basic solution procedure of the present solver can be
outlined below:

(1) Reconstruct the conservative variables at two sides of
the cell interface.

(2) Predict the conservative variables at the cell interface
by Roe average.

(3) Use Eqs. (17) and (19) to calculate the equilibrium
distribution function g1, g2, g3, g4 and lattice velocity d1, d2 at
the left and right sides of the cell interface.

(4) Compute the inviscid flux FI
c,i+1/2 and FII

c,i+1/2 by
Eqs. (35) and (38).

(5) Compute the switch function and the total inviscid flux
across the cell interface Fc,i+1/2 by Eqs. (43) and (44).

(6) Calculate the viscous flux Fv,i+1/2 in Eq. (2) using the
central difference method.

(7) Solve Eq. (1) using the explicit five-step Runge-Kutta
method [33], which gives the conservative variables at cell
centers at a new time level.

(8) Repeat steps (1)–(7) until the converged solution is
achieved.

IV. NUMERICAL EXAMPLES

In order to validate the present multicomponent LBFS,
three cases of compressible reacting flows are simulated in
this section. In the simulation, the explicit five-step Runge-
Kutta method is used for time advancing, and the piecewise
linear reconstruction [34] with Venkatakrishnan’s limiter [35]
is adopted to reconstruct the conservative variables at two
sides of the cell interface. All the computations were done on
a personal computer with Intel Core i7-8750H CPU @ 2.20
GHz.

A. Shock-induced combustion flow

The first case is premixed stoichiometric hydrogen-air
around a sphere with a diameter of 15 mm, which is

TABLE VI. Free stream conditions for hypersonic air chemical
nonequilibrium flow.

Mass fraction

Ma p (Pa) T (K) c(N2) c(O2)

15.3 664 293 0.77 0.23

TABLE VII. Reference of simulation parameters for hypersonic
air chemical nonequilibrium flow.

Boundary Chemical kinetics Thermodynamic
Parameters conditions model database

Reference [46] [45] [45]

taken from Lehr’s experiment [36]. The high robustness and
accuracy are required in the simulation since the chemical
reactions occur very fast within a short distance. The compu-
tational domain shown in Fig. 6 is discretized by a structured
grid with 95 × 55 cells, and the value of positive amplification
factor C is taken as 15. Euler equations are solved in this
case, and Moretti’s chemistry model [37], which includes
seven species (N2, O2, H2, O, H, OH, and H2O) and eight
reactions, as listed in Table I, is used. As the temperature range
in this case is below 5000 K, we use the same calculation
method and physical properties database of CHEMKIN [38]
to evaluate the transport properties of each species and gas
mixture.

The free stream conditions are listed in Table II, and the
mole ratio of different species in the premixed free stream
is N2 : O2 : H2 = 3.76 : 1 : 2. The adiabatic and noncatalytic
condition is used for the wall, and the nonreflecting condition
is utilized for the far field. The axisymmetric boundary is used
along the line y = 0 m. All of the references of simulation
parameters are listed in Table III.

Figure 7 shows the computed temperature contours and
the shock wave detachment distance extracted from an ex-
periment shadowgraph [36]. As shown in the figure, the
bow shock location obtained by the multicomponent LBFS
is in good agreement with the experimental data. Figure 8
compares the pressure contours computed by the multi-
component LBFS (upper) and AUSM+ scheme (lower).
Clearly, no significant difference is found between these two
results.

The comparison of pressure and temperature profiles along
the stagnation line calculated by different schemes is shown

FIG. 13. Computational domain for hypersonic air chemical
nonequilibrium flow.
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FIG. 14. Pressure contours with shock wave detachment distance.

in Fig. 9. The ZND (Zeldovich, Neumann, and Doering)
detonation theory [40] indicates that the leading shock wave
compresses and heats the combustible gas mixture to its spon-
taneous combustion state. There exists a reacting zone after
the compressing wave, where the chemical reactions occur
and the pressure and temperature increase to their maximum
values. For the leading detonation wave, there exists a Von
Neumann spike. This spike occurs because the isobaric com-
bustion cannot be maintained due to severe combustion and
energy release after the shock wave. In Fig. 9, the Von Neu-
mann spike is well captured in the pressure profile. Moreover,
the results of the multicomponent LBFS and AUSM+ scheme
are close to each other, and they agree well with the computa-
tional results from Ref. [39]. Figure 10 shows the mass frac-
tions of different species along the stagnation line. It can be
seen that the reaction occurs very fast in a narrow area after the
shock wave. Once again, the results of multicomponent LBFS
match well with those of the AUSM+ scheme and the refer-
ence data [39]. It is noted that because a refined mesh is used
in the calculation, the drastic change near the bow shock can
be seen more clearly than the reference data. As seen here, the

FIG. 15. Mass fractions of different species along the centerline.

FIG. 16. Temperature contours of hypersonic air chemical
nonequilibrium flow.

accuracy and robustness of the multicomponent LBFS are
well demonstrated.

The computational efficiency of the AUSM+ scheme and
the present solver is listed in Table IV. Since it is hard to
reach a good convergence level for reacting cases, we chose
the density residual 1.0 × 10−3 as the convergence criterion.
As we can see, even though the present solver has a higher
average time cost per step by 6.69%, the convergence time
cost is reduced by 16.35%. The good convergence property of
the present solver is well demonstrated.

Next we show the effectiveness of Eq. (42) proposed in
this work. Figure 11 shows a comparison of switch function
contours with and without grid modification. Focusing on the
value of switch function at the downstream of the bow shock,
in Fig. 11(a) it can be seen that the value is extremely high
while in Fig. 11(b) it is almost zero. Therefore, the effect of
grid aspect ratio on the switch function can be removed effec-
tively, which makes the developed multicomponent LBFS be
more applicable to complex grids.

FIG. 17. Switch function contours of hypersonic air chemical
nonequilibrium flow.
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FIG. 18. Mass fraction contours of different species: (a) species N2, (b) O2, (c) N, (d) O, (e) NO, and (f) NO+.

To validate whether the multicomponent LBFS has the
“carbuncle” phenomenon in reacting flow under the condition
of unfavorable grid aspect ratio [41], in this calculation, the
aspect ratio of the grid is changed from 5 to 1 near the sym-
metric axis. Two typical upwind schemes, namely, the Roe
scheme [42] with Harten’s entropy correction [43] and the
AUSM+ scheme, are selected for comparison. The tempera-
ture contours near the symmetric axis both in the presence and
absence of chemical reaction conditions are shown in Fig. 12.
When there is no chemical reaction, as shown in Figs. 12(a),
12(c), and 12(e), only the AUSM+ scheme shows a slight
“carbuncle” phenomenon where the bow shock is distorted
near the axisymmetric boundary. When chemical reactions are
considered in the flow field, as shown in Figs. 12(b), 12(d),

and 12(f), the “carbuncle” phenomenon occurs in both the Roe
scheme and the AUSM+ scheme, while the multicomponent
LBFS well captures the shock wave. Therefore, in this test
case, the multicomponent LBFS is carbuncle-free whether the
strong chemical reactions exist or not, even for the grid with
unit aspect ratio. It is a great superiority compared with typical
upwind schemes, which need a grid with a larger aspect
ratio or additional numerical dissipation at the axisymmetric
boundary [41].

B. Hypersonic air chemical nonequilibrium flow

To assess the performance of the multicomponent LBFS
in highly nonequilibrium and very large temperature range
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FIG. 19. Configuration of simplified dual combustion chamber
(unit: mm).

conditions, hypersonic air chemical nonequilibrium flow over
a sphere with a radius of 6.35 mm [44] is simulated in this
section. The two-dimensional axisymmetric multicomponent
N-S equations are solved on a structured grid with 100 × 100
cells, which is shown in Fig. 13, and the positive amplification
factor C = 15 is used in this case. The air chemistry model
is listed in Table V, which contains seven species (O2, N2,
O, N, NO, NO+, and e−) and seven reactions [45]. The
corresponding reaction coefficients and the thermodynamic
properties of different species can be found in Ref. [45].

The free stream conditions are listed in Table VI. The wall
boundary has a fixed temperature of 2000 K, and the noncat-
alytic wall condition is adopted. The nonreflecting condition
is utilized for the far field, and the axisymmetric boundary
condition is used along the line y = 0 m. The references of
simulation parameters are listed in Table VII.

Figure 14 shows the comparison of the shock wave de-
tachment distance obtained by the present solver and the
experimental measurement [44], and Fig. 15 compares the
calculated mass fraction of different species along the stag-
nation line with the calculation data from Ref. [46]. The
results of multicomponent LBFS are in good agreement with
the experimental and computational data. This shows that the
multicomponent LBFS is suitable for the nonequilibrium flow
with a large temperature range, and the chemical nonequilib-
rium effect can be well computed.

The temperature and switch function contours are shown in
Figs. 16 and 17, respectively. Since the temperature behind the
shock is above 9000 K, the air reacts violently downstream of
the shock wave, and the region of switch function near 1.0 is
thicker than the shock wave. Due to the fixed wall temperature
and the combined reactions, the switch function has a small
value near the wall. All these help the multicomponent LBFS
to capture the strong bow shock and nonequilibrium reaction
structure. It is worth noting that although the value of switch
function in the boundary layer is not close to zero, in Figs. 14
and 15, the positions of shock waves and species distributions
are in good agreement with the references. This shows that the
switch function expressed by using temperature and pressure
in Eq. (43) is appropriate for reacting flow in which the
reacting zone may not be the same as the position of bow
shock.

FIG. 20. Computational domain for supersonic combustion flow
of ethylene.

TABLE VIII. Chemistry model [49].

No. Reaction

1 C2H4 + O2 = 2CO + 2H2

2 2CO + O2 = 2CO2

3 2H2 + O2 = 2H2O

The mass fraction contours of different species are shown
in Fig. 18. The nitrogen is very hard to react, so a little of it
decomposes downstream of the shock and quickly combines
near the wall. Since the decomposition temperature of oxygen
is relatively low, the oxygen is severely consumed after shock
waves. Corresponding to the decomposition of nitrogen and
oxygen, the mass fractions of nitrogen atoms and oxygen
atoms are increased as the mass fractions of nitrogen and
oxygen decrease. As the concentration of nitrogen atoms and
oxygen atoms increases downstream of the shock wave, the
formation of nitric oxide is fast at the initial stage and it
becomes slow for the fall of temperature and the reduction of
nitrogen atoms. Due to the chemical nonequilibrium effect,
the high concentration area of nitric oxide ion is located
slightly downstream at the high concentration region of nitric
oxide.

C. Supersonic combustion flow of ethylene

The third case is chosen to examine the solver’s ability
for simulation of incomplete combustion flow with complex
flow structure. In this case, a simplified dual combustion
chamber [47] with supersonic combustion flow of ethylene is
considered. The configuration of this chamber is illustrated in
Fig. 19. The two-dimensional multicomponent N-S equations
are solved on a structured grid with 130 × 220 cells, which
is shown in Fig. 20, and the positive amplification factor C
is set as 10 in this case. The entire flow field is considered
to be fully turbulent, and a modified Spalart-Allmaras (S-A)
one-equation turbulence model [48] is used.

The chemistry model listed in Table VIII, which contains
seven species (C2H4, O2, N2, H2, CO, H2O, and CO2) and
three reactions [49], is used for simulation. The same as
Sec. IV A, this case also uses the methods and database
from CHEMKIN [38] to calculate the transport properties of
each species and gas mixture. The free stream conditions are
listed in Table IX. The adiabatic and noncatalytic condition is
used for the wall, and the nonreflecting condition is utilized
for the far field. It is noted that the vertical solid board is
treated as a wall boundary in numerical simulation. For con-
venience, the references of simulation parameters are listed in
Table X.

TABLE IX. Free stream conditions for supersonic combustion
flow of ethylene.

Mass fraction

Flow p (MPa) T (K) Ma c(C2H4) c(O2) c(CO2) c(H2O) c(N2)

Air 0.0977 491.9 2.09 0.0 0.2330 0.0 0.0520 0.7150
Gas 0.1731 1771.9 1.25 0.1059 0.0103 0.1205 0.1566 0.6067
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TABLE X. References of simulation parameters for supersonic
combustion flow of ethylene.

Boundary Chemical Thermodynamic
Parameters conditions kinetics model database

Reference [47] [49] [38]

Figure 21 shows the comparison of the pressure distribu-
tion on the chamber wall. It can be seen that the pressure
profile of the multicomponent LBFS has only a little differ-
ence as compared with the AUSM+ scheme, and both of
them match well with the numerical results from Ref. [47].
It is worth pointing out that the grid, chemical reaction model,
space discrete scheme, and turbulence model in Ref. [47] are
all less accurate as compared with this work.

As shown in Fig. 22(a), the high-temperature area is
concentrated in the shear layer, where the air and gas are
mixing to be the main reaction area. Notice that the tem-
perature is especially high in the area where the shock wave
passes through, and it plays a role of heating and mixing. In
Fig. 22(b), the switch function contours clearly display the
shock wave and reacting areas, which makes the computation
stable.

The mass fractions of species CO and CO2 are shown in
Fig. 23. The maximum mass fraction of species CO2 is about
0.1206, which is only a little higher than the mass fraction
in the free stream. Only a little fuel completely reacts, and
some of the species CO2 is decomposed to species CO at
high temperature. Due to the slow chemical reaction of the
hydrocarbon fuel and the high flow velocity, the combustion
in the chamber is weak and incomplete.

V. CONCLUSIONS

This paper develops a multicomponent LBFS for simula-
tion the multicomponent compressible viscous reacting flows.
The core of multicomponent LBFS is computing the inviscid
flux by using the local solution of the one-dimensional lattice
Boltzmann equation, while the viscous flux is evaluated using
the traditional central difference method. Three key features
of the present solver are listed as follows: (1) The total
density at the cell interface is computed by the summation
of the density distribution function, while the densities of

FIG. 21. Comparison of the pressure distribution on the chamber
wall: (a) upper surface and (b) lower surface.

FIG. 22. Temperature and switch function contours of the cham-
ber: (a) temperature contours and (b) switch function contours.

different species are calculated by the mass fractions and
density distribution functions from the left and right sides.
This treatment maintains the advantage of the LBM in the den-
sity computation and gives the densities of different species
by using the idea of streaming. (2) The enthalpy is used
to represent the internal energy, and the temperature at the
cell interface is estimated by Newton iteration. This feature
considers the different physical properties of different species
and provides a method for calculating the temperature. (3)
The effects of reaction and grid aspect ratio are introduced
to the switch function of the multicomponent LBFS. This
improvement can reduce the high requirement of grid quality,
and the numerical dissipation can be added properly near the
unsmooth region such as the shock wave and combustion
front. Moreover, since the developed multicomponent non-
free parameter D1Q4 model is applied only in the normal
direction of the cell interface, a three-dimensional multicom-
ponent LBFS can be easily obtained by using the coordinate
transformation.

Several benchmark problems are used to validate the multi-
component LBFS. Numerical results show that the developed
solver can provide satisfactory predictions for fluid flow prob-
lems under the condition of a large temperature range, com-
plex chemical reaction model, fast- and slow-reacting flow
field, complex geometry, and flow field structure. Moreover,
the computed distributions of flow variables and species mass
fractions are in good agreement with those of the AUSM+
scheme and experimental/computational results shown in the

FIG. 23. Mass fraction contours of species CO and CO2: (a)
species CO and (b) species CO2.
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references. In the test case, the multicomponent LBFS demon-
strates good convergence properties, and it is also shown
to be carbuncle-free, even for the unfavorable aspect ra-
tio grid. It is believed that the developed multicomponent
LBFS has a great potential for solving complicated reacting
flows.
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