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Phase-field-based lattice Boltzmann model for liquid-gas-solid flow
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Based on phase-field theory, we develop a lattice Boltzmann (LB) model for liquid-gas-solid flow from
multiphase and particle dynamics algorithms. A modified bounce-back method is developed for the velocity-
based LB approach. A curved boundary treatment with second-order accuracy based on velocity interpolation
is developed. We propose a predictor-corrector scheme algorithm for specifying the three-phase contact angle
on curved boundaries within the framework of structured Cartesian grids. In order to make the algorithm more
stable, we combine the implicit particle velocity update scheme and the Galilean invariant momentum exchange
method. The proposed method is validated through several single- and multicomponent fluid test cases. It was
found the surface tension force associated with the interface acting on the solid structures can be captured. We
simulate the sinking of a circular cylinder due to gravity, the numerical results agree well with the experimental
data. Finally, we apply the method to the self-assembly process of multiple floating cylinders on water surface.
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I. INTRODUCTION

Liquid-gas-solid (LGS) systems widely exist in many areas
such as electronics fabrication by ink-jet printing [1], emul-
sion/foam stabilization in foods [2], and cosmetics [3]. How-
ever, in these physical situations that involve multiple fluid
components and solid particles, it is difficult to investigate
experimentally. Alternatively, the numerical simulations can
be a powerful tool to obtain useful information, and help to
improve the designing procedures.

For LGS flow problems, the challenges mainly arise from
the interactions among different phases and the interface
tracking. In addition, the influence of arbitrary-shaped geome-
tries and moving boundaries must be taken into consideration
for practical simulations. A numerical method for LGS must
combine a two-phase flow with a solver for the suspended
solid phase. Many LGS simulation approaches [4–6] do not
fully resolve the actual particle geometry within the flow.
These algorithms simulate the presence of particles by incor-
porating point forces, associated with particle drag and other
forces. This approach fails to capture the detailed interaction
between solid objects and fluids when the object size is not
negligible. Hence, in many situations, a two-way coupling
between the particles and fluids is needed.

As a promising numerical technique in computational fluid
dynamics, the lattice Boltzmann method (LBM) has proven
to be an efficient method for simulating particle-laden single-
phase flows [7–9] and multiphase flows. There are several
popular multiphase LBM models, including the color-gradient
model [10], the free-energy model [11], and the Shan-Chen
(SC) model [12]. A few groups combined multiphase lattice
Boltzmann solvers with the known algorithms for suspended
particles to simulate LGS and fluid-fluid-solid (FFS) flow. We
use FFS instead of LGS to distinguish between systems with
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less difference in fluid properties. According to the multiphase
models, the existing schemes mainly fall into two categories,
including the phase-field-based model [13–15] and the SC
model [16–18]. Stratford et al. [13–15] used a combination
of the LBM phase-field-based model and particle dynamics to
simulate a FFS flow, and their simulations shown formation
of a class of gels, continuous interfacially jammed emulsion
gel (bijels), which was experimentally confirmed later [19].
Another group [20] developed a similar LBM algorithm using
a phase-field-based model to handle the multiple fluid compo-
nents with high-density ratio, and then they investigated the
influence of particles on the dynamics and eventual rupture of
stretching liquid bridges in a drop-forming case [20]. How-
ever, more work is focused on the SC method. Onishi et al.
[21] combined a SC multicomponent model and a particle
dynamics algorithm to simulate capillary interactions between
colloidal particles at fluid-fluid interfaces. Since then, many
scholars proposed similar models based on the SC method for
LGS/FFS flow. Joshi et al. [16] investigated wetting dynamics
and particle deposition for an evaporating colloidal drop in
three dimensions. Jansen et al. [22] studied the transition from
bijels to Pickering emulsions and found the transition was
dependent on the contact angle, the particle concentration,
and the ratio of the solvents. Günther et al. [18] investigated
the anisotropic particles at liquid interfaces and found the
ellipsoidal particles could lead to a transition between bijels
and Pickering emulsions. Davies et al. [23] studied the de-
tachment energies of spheroidal particles from liquid-liquid
interfaces. Chen et al. [24] proposed a modified wetting model
to reduce the nonphysical effects to simulate FFS flow. Lang
et al. [25] studied the self-assemblies of colloidal particles on
the substrate due to the capillary forces.

In the existing schemes, the multicomponent algorithm is
handled differently, either with the SC model or a different
phase-field-based model, mostly. The SC method is easier to
implement, as the interface forms naturally due to interactions
between different fluid components. The phase-field method
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is based on a phase-field equation such as four-order Cahn-
Hilliard equation, which can be solved to track the interface
using LBM. The algorithm of these SC models cannot resolve
that the liquid-gas interface with a high-density difference and
the density ratio is on the order of O(10), which is much
smaller than the density ratio of most liquid-gas two-phase
flows. The LGS model proposed by Connington et al. [20]
reaches high-density ratios for special cases, but the algorithm
based on the Cahn-Hilliard equation is very complicated and
a supplemental force must be added to recover the appropriate
physics when a particle is immersed in the fluid-fluid interface
in their model. In this paper, we develop a LBM model
for LGS flow based on the conservative Allen-Cahn phase-
field theory, which only contains a second-order gradient
term, and therefore, the present model can achieve a higher
numerical accuracy in interface tracking than the previous
model based on the fourth-order Cahn-Hilliard equation. We
mainly use the multiphase algorithm developed by Fakhari
et al. [26], in which a modified velocity distribution function
is used. A modified bounce-back scheme is developed based
on the velocity distribution function. We also propose an
algorithm for prescribing the three-phase contact angle on
curved boundaries without using a staircase approximation for
the solid boundary.

This paper is organized as follows. In Sec. II, after a
description of the phase-field approach for multiphase lat-
tice Boltzmann simulations and an extension of the lattice
Boltzmann method to simulate suspensions, a way to combine
the two methods is proposed. In Sec. III, we first demonstrate
that the method is accurate when solid objects are contained
inside bulk fluid regions of the flow, then the contact line
motion on a single circular cylinder is studied. Moreover,
the suitability of the new method is tested by performing
studies of sinking dynamics of a circular cylinder from the
water surface due to gravity and the self-assembly process of
multiple floating cylinders on the water surface.

II. NUMERICAL MODELING

A. Multiphase lattice Boltzmann model

The interface-tracking equation in this study is built upon
the conservative Allen-Cahn equation, in this model, the
phase-field φ assumes two extreme values, φL = 0 and φH =
1, in the bulk of the light and heavy fluids, respectively. The
phase-field equation governs the evolution of the interface
between the two fluids [27]

∂φ

∂t
+ ∇ · (uφ) = ∇ · Mφ

[(
∇φ − 4φ(1 − φ)n̂

ξ

)]
, (1)

where Mφ and ξ are the mobility efficient and the interfacial
width, respectively, and n̂ is the unit vector out of normal to
the interface:

n̂ = ∇φ

|∇φ| . (2)

For an interface located at x0 and at thermodynamic equi-
librium, the phase-field distribution at x assumes a hyperbolic

tangent profile:

φ(x) = 1

2

[
1 ± tanh

(
2|x−x0|

ξ

)]
. (3)

The corresponding multiple-relaxation-time (MRT) LB
equation for phase-field parameter φ can be expressed as

hi(x + eiδt , t + δt ) − hi(x, t )

= (M−1ShM)i j
[
h j (x, t ) − heq

j (x, t )
]

+
[

M−1

(
I − Sh

2

)
M

]
i j

G jδt , (4)

in which the forcing term is given by

Gj = w j
4

ξ
φ(1 − φ)e j · n̂. (5)

The D2Q9 velocity model (two dimensions with nine
lattice velocities) is employed here, where the velocity set is
given as

ei =

⎧⎪⎨
⎪⎩

(0, 0), i = 0,(
cos

[
(i − 1)π

2

]
, sin

[
(i − 1)π

2

])
c, i = 1 ∼ 4,(

cos
[
(2i − 1)π

2

]
, sin

[
(2i − 1)π

2

])
c, i = 5 ∼ 8,

(6)
where c = δx/δt = 1 and δx and δt are the lattice length scale
and time scale, the corresponding weight coefficients are
given as

ei =

⎧⎪⎨
⎪⎩

4
9 i = 0,

1
9 , i = 1 ∼ 4,

1
36 i = 5 ∼ 8.

(7)

The equilibrium phase-field distribution function is

heq
i = wiφ

(
1+ei · u

c2
s

+ (ei · u)2

2c4
s

− |u|2
2c2

s

)
, (8)

where cs is the lattice sound speed and usually set to be c/
√

3
for isothermal flows.

In the MRT collision model, M is the transformation
matrix, which is defined as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 −1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 1 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9)
Sh is the diagonal matrix, which can be written as

Sh = diag
(
sh

0, sh
1, sh

2, sh
3, sh

4, sh
5, sh

6, sh
7, sh

8

)
, (10)

and sh
3 = sh

5 = 1
τφ

, where τφ is determined by the mobility
coefficient Mφ,

Mφ = c2
s

(
τφ − 1

2

)
δt . (11)
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The other sh
i are chosen as sh

0 = 1.0, sh
1 = sh

2 = 1.1, sh
4 =

sh
6 = sh

3 = sh
5, sh

7 = sh
8 = 1.2.

The phase-field value is then calculated by taking the
zeroth moment of the phase-field distribution function

φ =
∑

i

hi. (12)

The continuity and momentum equations for incompress-
ible multiphase flows are given by

∇ · u = 0, (13)

ρ

(
∂u
∂t

+ ∇ · (uu)

)

= −∇p + ∇ · [μ(∇u + (∇u)T )] + Fs + Fb, (14)

where ρ and μ are the density and dynamic viscosity of the
fluid, respectively, p is the hydrodynamic pressure, Fb is the
body force,Fs is the surface tension, which can be calculated
by Fs = μφ∇φ, and μφ is the chemical potential

μφ = 4βφ(φ − 1)(φ − 0.5) − κ∇2φ. (15)

The coefficients β and κ are related to the surface tension
σ and interface thickness ξ by

β = 12σ

ξ
, κ = 3σξ

2
. (16)

Following the work of Zu and He [28], Eq. (14) can
be rewritten as the following velocity-based hydrodynamics
equation:

∂u
∂t

+∇ · (uu)=−∇
(

p

ρ

)
+∇ · [ν(∇u+(∇u)T )] + Ftotal

ρ
,

(17)
where ν = μ/ρ is the kinematic viscosity and Ftotal is defined
as

Ftotal = Fs + Fb + Fν + Fp, (18)

Fν = ν(∇u + (∇u)T ) · ∇ρ, (19)

Fp = − p

ρ
∇ρ. (20)

The MRT model with an external force term will be
adopted instead of the lattice Boltzmann BGK models
(LBGK) to avoid the unphysical, numerical artifact and im-
prove the stability, which is written as [29]

fi(x + eiδt , t + δt ) − fi(x, t )

= (M−1S f M)i j
[

f j (x, t ) − f eq
j (x, t )

]
+

[
M−1

(
I − S f

2

)
M

]
i j

F jδt (21)

with M a 9 × 9 transform matrix and S f a relaxation
matrix, f eq

i (x, t ) is the modified equilibrium distribution func-
tion for incompressible fluids given by

fi
eq = wi

(
p

ρc2
s

+ei · u
c2

s

+ (ei · u)2

2c4
s

− |u|2
2c2

s

)
. (22)

S f is the diagonal matrix, which can be written as

S f = diag
(
s f

0 , s f
1 , s f

2 , s f
3 , s f

4 , s f
5 , s f

6 , s f
7 , s f

8

)
, (23)

where

s f
7 = s f

8 = 1

τs + 0.5
, (24)

and τs is the hydrodynamic relaxation time, which is related
to the viscosity and density of fluid by

τs = μ

ρc2
s δt

. (25)

The other s f
i are set as follows: s f

0 = s f
3 = s f

5 = 0 for
the conserved moments, s f

1 = 1.64, s f
2 = 1.54, s f

4 = s f
6 = 1.9,

and τL and τH are the relaxation rates for the light and heavy
fluids, respectively.

To calculate the relaxation time from the phase field, the
dynamics viscosity μ and the density ρ can be calculated by a
simple linear interpolation [26]

μ = μL + φ(μH − μL ), (26)

ρ = ρL + φ(ρH − ρL ), (27)

where μL and μH are the viscosities ρL and ρH are the bulk
densities of the light phase and heavy phase.

The force term F j is obtained using the Guo-Zheng-Shi
model [30]:

F j = w j

(
ei − u

c2
s

+ ei · u
c2

s

ei

)
· Ftotal

ρ
. (28)

Through the Chapman-Enskog expansion, the pressure p
and velocity u can be derived, respectively, as the zeroth and
first order moments of fi,

p = ρc2
s

∑
i

fi, (29)

u =
∑

i

ei f + 1

2

Ftotal

ρ
δt . (30)

One of the advantages of the LBM is that the deviatoric
stress tensor can be locally obtained in terms of the hydrody-
namic distribution function:

υ[∇u + (∇u)T ]

= − υ

c2
s δt

⎡
⎣∑

i

eiei

∑
j

(M−1S f M)i j

(
f j − f eq

j

)⎤⎦. (31)

Additionally, we compute the gradient of the phase-field
using second-order isotropic centered differences

∇φ = c

c2
s δt

∑
i

eiwiφ(x + eiδt, t ), (32)

and its Laplacian is calculated by

∇2φ = 2c2

c2
s δt

∑
i

wi[φ(x + eiδt, t ) − φ(x, t )]. (33)
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B. Particle dynamics

In order to apply the LB approach to simulate the LGS
flows, two issues should be carefully considered. One is how
to treat the boundary conditions on a particle surface, and the
other is how to calculate the hydrodynamic forces exerted on
the solid particle.

In this study, the velocity-based LB approach proposed
by Zu and He [28] is applied. A boundary link is defined
as joining a fluid node at xb, denoted as the boundary node,
to one solid node inside the particle at xb + ebδt . When
a momentum exchange scheme is applied, the distribution
function changes its “momentum” from ρ fbeb to ρ f u

b̄
eb̄, where

the unknown distribution function f u
b̄

of the boundary node
can be calculated by the curved boundary scheme described
below and the boundary link eb̄ = −eb. Therefore, the change
in momentum of the distribution is �M = ρ f u

b̄
eb̄ − ρ fbeb =

ρ( f u
b̄

+ fb)eī. Then an equal and opposite change in momen-
tum must be applied to the macroscopic solid particle. Hence,
an impulse of force and corresponding torque is applied to the
solid particle:

F(eb; xb) = ρxb

(
f u
b̄ + fb

)
eb, (34)

T(eb; xb) = (xw − X) × ρxb ( fī + fī )eb, (35)

where xw is the wall position on the fluid-solid link, and X is
the center of mass of the solid particle. For the case of moving
walls, the total force and torque on a particle is computed by
taking the summation of all impulses that were computed:

Fp = δx2

δt

∑
xb

ρxb

[
(eb − uw(t )) fb − (eb̄ − uw(t )) f u

b̄

]
, (36)

Tp = δx2

δt

∑
xb

ρxb (xw − X)

× [
(eb − uw(t )) fb − (eb̄ − uw(t )) f u

b̄

]
, (37)

where uw(t ) = U(t ) + �(t ) × (xw − X), U(t ) is the particle
velocity, and �(t ) is the angular velocity. Note that a modified
momentum exchange (ME) scheme is adopted here for the
fulfillment of the Galilean invariance [31].

An implicit update method [32] combined with the modi-
fied ME [31] is used to update the particle velocity and angular
velocity. Applying the bounce-back algorithm for moving
walls, the f u

b̄
and hu

b̄
can be written as [33]

f u
b̄ = fb̄ − 2wbuw(t + δt ) · eb

c2
s

, (38)

hu
b̄ = −hb̄ + 2φwi. (39)

Hence, neglecting the terms O(u2
w ), the total force and

torque on a colloid can be split into a velocity-dependent and
a velocity-independent part and the governing equations of
motion for particles are given as(

m0U(t + δt )

I0�(t + δt )

)
=

(
m0U(t )

I0�(t )

)
+ δt

[(
F0

T0

)

−
(

ψFU ψF�

ψTU ψT �

)(
U(t + δt )

T(t + δt )

)]
, (40)

where the matrices ψ are interpreted as drag coefficients, the
velocity independent parts of the force F0 and the torque T0

are

F0

(
t + 1

2
δt

)
= δx2

δt

∑
xb

ρxb[( fb + fb̄)eb − ( fb − fb̄)uw(t )],

(41)

T0

(
t + 1

2
δt

)
= δx2

δt

∑
xb

ρxb[( fb + fb̄)(xw − X)

× ei + ( fb − fb̄)(xw − X) × uw(t )], (42)

where the sum is over all the boundary nodes b describes the
particle surface. It is noted that fb̄ is equal to fb when applying
the halfway bounce-back scheme.

Considering the situation when two particles are close to
contact some of the boundary nodes are missing and the
surfaces are no longer closed, the matrices ψ can be written
as

ψFU = 2δx3

c2
s δt

∑
xb

ρxbwb(eb + uw(t ))(eb − ēb),

ψF� = 2δx3

c2
s δt

∑
xb

ρxbwb(eb + uw(t ))(rb × eb − rb × eb),

ψT � = 2δx3

c2
s δt

∑
xb

ρxbwb[rb × (eb + uw(t ))][eb − ēb], (43)

ψT � = 2δx3

c2
s δt

∑
xb

ρxbwb[rb × (eb+uw(t ))][rb × eb − rb × eb],

where ēb =
∑

xb
wbeb∑

xb
wb

, rb × eb =
∑

xb
wbrb×eb∑
xb

wb
.

C. Curved boundary treatment

The curved boundary condition should be implemented for
a body with complex geometry that is frequently encountered
in the simulation of particulate flows. The main concern is to
determine the unknown distribution function of the boundary
node, and for that, we decompose the distribution of fictitious
node into two parts, i.e., the nonequilibrium part and the
equilibrium part. The nonequilibrium part is obtained from
the bounce-back rule. In order to obtain the equilibrium part,
we interpolate the velocity firstly, and then calculate the
equilibrium function using Eqs. (8) and (22).

The idea is to construct the population of the fictitious node
at location xF that will travel to x f after bouncing back on the
wall xw. We use different neighboring distributions to inter-
polate velocity, and, as illustrated in Fig. 1, the interpolation
expressions are

u(xF , t )=
{

2qu(x f , t )+(1 − 2q)u(x f f , t ), 0 � q < 1/2
1−q

q u(x f , t )+ 2q−1
q u(xw, t ), 1/2 � q < 1

,

(44)
where the parameter q = |x f − xw|/|x f − xb|.

In order to calculate the heq
b (x f , t + �t ) and

f eq
b (x f , t + �t ), the phase field φ(xF , t ) and pressure p(xF , t )

are needed. The pressure p(xF , t ) could be approximated by
the pressure of boundary node p(x f , t ), because dimensional
analysis shows that ∂α p ∼ O(Ma2) [34]. The phase field
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FIG. 1. Schematic diagrams of the velocity interpolation rules:
(a) 0 � q < 1/2, (b) 1/2 � q < 1.

φ(xF , t ) is calculated by

φ(xF , t ) = 2qφ
(
x f , t

) + (1 − 2q)φ
(
x f f , t

)
, (45)

but when 1/2 � q < 1, Eq. (45) turns out to be an extrapo-
lation method, and to obtain a reasonable phase-field value, a
correction scheme is adopted:

φ(xF , t ) =
{

φL, φ(xF , t ) < φL

φH , φ(xF , t ) > φH
. (46)

Based on the velocity obtained, and the pressure and phase-
field value, we can calculate the equilibrium distribution of
the fictitious node that will travel to x f . The nonequilibrium
distribution is obtained from the bounce-back rule

hneq
b̄

(x f , t + �t ) = −hneq
b (x f , t ), (47)

f neq
b̄

(x f , t + �t ) = f neq
b (x f , t ). (48)

To impose a specified contact angel at a solid boundary, the
following condition has been proposed [35]:

nw · ∇φ|xw
= �φw(1 − φw ), � = −

√
2β

k
cos θ, (49)

where φw is the phase-field value at the wall, nw is the
unit vector normal to the solid wall. In order to apply the
wetting condition on a curved boundary, we need the unit
vector normal to the solid wall (nw) along with the gradient
of the phase field ∇φ|xw

and its value φw. To this end we
build a predictor-corrector scheme by modifying the method
proposed by Fakhari [36].

A schematic implementation of this method for a typical
boundary node is illustrated in Fig. 2(a). In order to obtain the
unknown phase-field value at the boundary node φi, j , we use a
centered difference for the left-hand-side of Eq. (49) to obtain

nw · ∇φ|xw
= ∂φ

∂nw

∣∣∣∣
xw

= φp − φi, j

2s
= �φw(1 − φw ), (50)

where s = |xw − xi, j | is the distance between the solid wall
and the interpolated point, which is known given the location
of the wall boundary.

We eliminate φw in Eq. (50) by using φw = (φp + φi, j )/2.
Then a quadratic equation is obtained, the solution of which

FIG. 2. Schematic depicting the interpolation to obtain the un-
known phase-field value φi, j of two schemes. (a) the common
method, (b) the alternative scheme when the commom method fails.

gives

φi, j = 1

ς
(1 + ς −

√
(1 + ς )2 − 4ςφp) − φp,

ς = s� �= 0 (θ �= 90◦). (51)

For neutral wetting conditions (θ = 90◦), the solution
would be φi, j = φp. As for now, our approach shares the same
ideas with the method of Fakhari [36]. Then the last question
is how to calculate the only unknown quantity φp. Fakhari
[36] used a bidirectional interpolation to find φp, but different
interpolation schemes are needed when the point p locates
in different places in the grids. So this approach is difficult
to implement and hard to be extended to three-dimensional
problems. In this study, we propose a scheme to estimate φp

as follows:
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(1) Determine the solid nodes next to a fluid node, which
links across the wall. Take the solid node (i, j) in Fig. 2(a) as
an example, first calculate the vector s to find the position of
point p:

s = nw(R − |r(i, j) − rc|), nw = r(i, j) − rc

|r(i, j) − rc| , (52)

where rc is the center coordinate of the particle, R is the
particle radius, then find the fluid node with the minimum
distance between the point p, min(|r(i, j) − radjacent + 2s|), and
the nearest fluid node in this example is the node (i + 1, j).

(2) Estimate ∇φi+1, j using finite differences using the
adjacent seven fluid nodes [excluding two solid nodes (i, j)
and (i, j − 1)]:

∇φi+1, j =
∑

α eα (φ(x + eαδt, t ) − φ(x, t ))∑
α eα · eα

. (53)

(3) Extrapolate along the links and calculate φp,

φp = φi+1, j + (ri, j − ri+1, j + 2s) · ∇φi+1, j . (54)

However, this method fails when the (1 + ς )2 − 4ςφp in
Eq. (51) is below zero, which may happen with extremely low
probability from our experiences. In order to fix this issue, we
propose an alternative approach as a substitution as illustrated
in Fig. 2(b). We use another difference for the left-hand-side
of Eq. (49) to obtain

nw · ∇φ|xw
= ∂φ

∂nw

∣∣∣∣
xw

= φw − φi, j

s
= �φw(1 − φw ), (55)

the solution of which gives

φi, j = φw − s�φw(1 − φw ). (56)

In order to obtain the phase-field value φw, a similar
scheme is applied as described above.

III. RESULTS AND DISCUSSION

The equations were implemented in their nondimen-
sional form using the Reynolds number Re = ρHUD/μH , the
Weber number We = ρHU 2L/σ , and the Bond number Bo =
ρH gL2/σ , and ρ∗ = ρH/ρL, μ∗ = μH/μL are the density and
viscosity ratios of the gas to the liquid, respectively. To obtain
numerically stable and reasonably accurate results, the mobil-
ity coefficient and interface thickness are fixed as Mφ = 0.01
and ξ = 5, respectively.

A. Single particle inside bulk

To validate the present method in particulate flows, a
circular particle settling in a vertical channel is simulated. At
low Reynolds numbers, the terminal sedimentation velocity of
the particle can ben approximated as [37]

Ud = D2

16Kμ
(ρ f − ρp)g (57)

where μ is the dynamic viscosity of the fluid, g is the grav-
itational acceleration, ρp and ρ f are the particle density and
fluid density, respectively, and K is a wall correction factor
that reflects the effect of the channel walls on the drag force

K = 1

ln W∗ − 0.9157 + 1.7244(W∗)2 − 1.7302(W∗)−4 + 2.4056(W∗)−6 − 4.5913(W∗)−8 , (58)

where W∗= W/D. With this analytical solution, we can eval-
uate the accuracy of the model.

For comparison, the computational parameters in the
present simulation are taken to be the same as those
used in Ref. [37]. As shown in Fig. 3, the compu-
tational domain is W × H = 1.2 cm × 6 cm, the diam-
eter of the particle is D = 0.24 cm, the density and
viscosity of the fluid are set to be ρ f = 1.0 g/cm3

and μ = 0.1 g/(cms), respectively. A lattice with size of
120 × 600 is used to cover the computation domain, and the
relaxation time τs related to the shear viscosity is set to be
0.3. Initially, the particle is located at the center line (0.6 cm,
3.0 cm) and held at rest (same as the fluid), and the gravity
accelerating velocity is g = 980.0 cm/s2. In our simulations,
zero velocities are applied uniformly at the inflow boundary
that is always 12.5 D from the moving particle, and the normal
derivative of velocity is set to be zero at the outflow boundary,
which is 12.5 D from the particle.

A number of tests with different particle density ρp and
Reynolds numbers Re are carried out. Here the particle
Reynolds number is defined by Re = ρ f Ud D/μ, where Ud

is the speed of the terminal settling velocity of the particle.
In Fig. 1 the velocities from the present model are shown
together with the analytical and the simulation results in
Ref. [37]. Figure 4 also shows that the results deviate from the
analytical solutions given by Eq. (57) as they become larger.
This may be because the analytical solution is valid only for
small Reynolds numbers.

B. Contact line motion on a stationary circular cylinder

The contact line motion on a single circular cylinder is used
here to validate the capability of our model for simulating
complicated wetting phenomena. A stationary cylinder with
a dimensionless radius of 40 is fixed at the center of a fluid
domain and the size of the domain is 240 × 240. Wall condi-
tions are applied at all the boundaries. Initially, the lower half
part of the domain is occupied by fluid, while gas occupies
the rest of the space. We consider two different contact angles,
θ = 60◦ and θ = 120◦ with surface tension σ = 4 × 10−4. In
this simulation, three cases with different density ratios and
viscosity ratios are considered. In these cases, the relaxation
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FIG. 3. The schematic diagram for a circular particle settling
under gravity in an infinite channel.

time of gas τL is set to be 0.3 and τH is calculated based on
the ρ∗ and μ∗:

Case 1: (ρ∗ = 10, μ∗ = 1),

Case 2: (ρ∗ = 100, μ∗ = 10),

Case 3: (ρ∗ = 1000, μ∗ = 100).

Simulation results indicate that the density and viscosity
ratios have no effect on the equilibrium profile. Figure 5
shows the contact angles of the stationary cylinder under these
two wetting conditions, which agree well with the predicted
results.

FIG. 4. Comparison of the vertical velocities of the particle
during sedimentation for different particle densities. The number in
the blanket of each case is the particle Reynolds number.

FIG. 5. The contact angles on a stationary cylinder under two
different wetting conditions: (a) θ = 60◦, (b) θ = 120◦.

When a solid subject is floating in the fluid-fluid interface,
the capillary force that acts on the subject arises due to
the wettability. Another significant issue is how to obtain
the capillary force. Connington [38] proposed a complicated
algorithm; it needs to find the contact line on the surface of
particle by the phase-field value, then compute the average
surface tension force for each element by taking the integral
of it. The large computation amount and less flexibility are its
main drawbacks. However, in our model the capillary force
arises spontaneously from the combination of the multiphase
lattice Boltzmann model and momentum exchange method,
which is also found in the simulation of the multiphase flow
past a static circular cylinder [36]. We impose a specified
contact angel at a solid boundary using the predictor-corrector
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FIG. 6. Variations of the vertical capillary force of a stationary
circular cylinder.

scheme based on free energy theory, where the three-phase
contact line forms at the solid boundary, then we apply the
bounce-back method, and the capillary force on the particle
can be obtained by fluid-structure coupling interaction di-
rectly, which is in accordant with the physical mechanisms.

As shown in Fig. 6, the fluids exert a negative (down-
ward) force on the cylinder with θ = 60◦, while the net force
experienced by the other cylinder with θ = 120◦ is positive
(upwards). Furthermore, the density and viscosity ratios have
little influence on the capillary force and it is dominated by
the surface tension σ and contact angle θ .

C. Sinking of a horizontal cylinder from an air-water interface

In order to check the test the performance of this method
for liquid-gas-solid problem in the presence of a moving con-
tact line, sinking of a circular cylinder from the water surface
is now investigated, which has been studied experimentally by
Vella et al. [39] and has also been investigated by Ding [40]
through numerical simulation.

As show in Fig. 7, a circular cylinder lies horizontally at
the interface between the water and air. The height h is the
distance between the cylinder’s center and the undeformed
free surface. The angle β is used to describe the position of
contact line. In this simulation, the cylinder is placed in the
liquid-gas interface and is half-immersed. A rectangle with the
size of 1040 × 640 is chosen as the computational domain,

FIG. 7. Geometry of a cylinder lying horizontally at the interface
between water and air.

FIG. 8. Snapshots of sinking motion for a cylinder at different
times. In each subfigure the experimental data [39] (left) are placed
side by side with the numerical results (right).

which is sufficiently wide so that capillary waves reflected
by solid wall will not affect the sinking dynamics of the
cylinder, and the diameter of the cylinder is set as D = 80.
The four boundaries are assumed to be the solid walls with
a contact angle of 90◦. The distance between the initialized
horizontal interface and the bottom wall boundary is 5.6D.
We choose (σ/ρH g3)1/4 and (σ/ρH g)1/2 as the characteristic
time and length, respectively, according to the literature [39].
The density ratio ρ∗ and viscosity ratio μ∗ are set as 773
and 48 in accordance with water-air, the relaxation time τL

and τH are set to be 0.05 and 0.0031. In this simulation, we
choose the same dimensionless numbers as the experiments
[39]: Re = 250, We = 0.138, Bo = 3.478. The wettability of
the cylinder is represented by θ = 111◦, which is the averaged
value of the contact angles measured in the experiments [39].

Figure 8 shows the snapshots of the sinking dynamics of
the cylinder, including the experimental results [39] and our
numerical results. In this simulation, the cylinder’s weight
plays the dominant role and it is larger than the hydrodynamic
force and capillary force, thus the cylinder sinks into the water.
In this process, the interface forms significant deformation and
the contact line gradually moves to the peak of the cylinder
and detaches from it ultimately. The position of the contact
line relative to the cylinder can be represented by β, and the
position of the cylinder relative to the initial water surface is
denoted by H = h/D. Figures 9 and 10 quantitatively show
β and H as a function of nondimensional time t , compared
with the experimental data [39]. It has been found that the
contact line slips past the cylinder at a relative low velocity at
the beginning, then it comes to the later stage, in which the
angular position of the contact line β increases approximately
linearly in time and it agrees with the experimental data.

D. Self-assemblies of floating cylinders an air-water interface

A simulation study on the self-assemblies of several cylin-
ders partially immersed in a fluid layer on the substrate is
carried out. Capillary interactions provide a versatile route
for structure formation. The particles at the liquid-gas inter-
face can distort the interfaces to create an associated energy
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FIG. 9. The position of the contact line as a function of nondi-
mensional time t .

field. When neighboring distortions overlap, particles interact
to minimize interfacial area, creating forces that pull them
into ordered structures [41,42]. Ding [40] has performed a
simulation of three cylinders at the liquid-gas interface. In
this work, a similar simulation is carried out to investigate the
self-assembly process driven by the capillary tension.

Three identical cylinders A, B,C float at the air-water
interface. The diameter of the cylinder is set as D = 20, the
wettability is θ = 60◦. A rectangle with the size of 160 × 160
is chosen as the computational domain, and the cylinders are
initially half immersed in the fluid. The density ratio ρ∗ and
viscosity ratio μ∗ is set as 773 and 48 in accordance with
water-air, the relaxation time are τL = 0.1 and τH = 0.0062.

The four boundaries are assumed to be the solid walls, with a
contact angle of 90◦. The distances between the right wall and

FIG. 10. The cylinder’s center position as a function of nondi-
mensional time t.

FIG. 11. Self-assembly movement of cylinders A, B, and C at
different times t = 0.18, t = 1.00, t = 2.70, and t = 3.25.

the centers of A, B and C are 7,4.5, and 1.5 D, respectively. In
this simulation, we choose D as the characteristic length, and
the inertial-capillary time T =

√
ρH D3/σ as the characteristic

time, and we consider a test case with dimensionless numbers
as Re = 40, We = 0.16, Bo = 4.0.

Figure 11 shows snapshots of the self-assembly of three
cylinders. To describe the details of the process, we character-
ize the horizontal and vertical positions of the three cylinders
in Figs. 12 and 13. It can be seen that the evolution of the dis-
tance of centers between three cylinders falls into three stages.
In the first stage (t < 1.2), cylinder C is nearly stationary, but
both the cylinder A and cylinder B move towards the right, but

FIG. 12. The horizontal position of the cylinders vs time.
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FIG. 13. The vertical position of the cylinders vs time.

the velocity of cylinder A is obviously larger than cylinder B,
in other words, the cylinder A approaches cylinder B quickly
in this stage. In the second stage (1.2t < 2.6), the cylinders A
and cylinders B came into contact and move toward the right
as a unit until they run into the cylinder C. In the third stage
(2.6 � t ), the three cylinders form a unit and moves toward
the right wall. The horizontal movement of the three cylinders
is also accompanied by their vertical oscillation on the water
surface, which is consistent with the results in the literature
[40].

IV. CONCLUSION

In the present work, we develop a method to simulate
LGS flow. Our algorithm combined a phase-field-based model
to handle the multiphase flow with a high density ratio as
well as the particle transport. In order to make the algorithm
more stable, we combine the implicit particle velocity update
scheme and the modified ME method. The curved boundary
treatment with second-order accuracy based on velocity in-
terpolation is proposed. We also developed a numerical tech-
nique to implement wetting boundary conditions on curved
surfaces without approximating the curved boundary as a
staircase.

To validate the incorporation of this new algorithm, we first
demonstrate that the method is accurate when solid objects are
contained inside bulk fluid regions of the flow, then we simu-
lated the contact line motion on a single circular cylinder fixed
in the interface. It was found that the surface tension force
associated with the interface acting on the solid structures can
be captured by the ME method in this model. Moreover, the
suitability of this method is tested by performing studies of
sinking dynamics of a circular cylinder from the water surface
due to gravity and the self-assembly process of multiple
floating cylinders on the water surface.
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