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Lattice Boltzmann method for thin-liquid-film hydrodynamics
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We propose an approach to the numerical simulation of thin-film flows based on the lattice Boltzmann method.
We outline the basic features of the method, show in which limits the expected thin-film equations are recovered,
and perform validation tests. The numerical scheme is applied to the viscous Rayleigh-Taylor instability of a
thin film and to the spreading of a sessile drop toward its equilibrium contact angle configuration. We show that
the Cox-Voinov law is satisfied and that the effect of a tunable slip length on the substrate is correctly captured.
We address, then, the problem of a droplet sliding on an inclined plane, finding that the Capillary number scales
linearly with the Bond number, in agreement with experimental results. At last, we demonstrate the ability of the
method to handle heterogenous and complex systems by showcasing the controlled dewetting of a thin film on a
chemically structured substrate.
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I. INTRODUCTION

Thin layers of liquids on solid surfaces are frequently
encountered in a host of natural and technological settings
[1,2]. Therefore, understanding and controlling their stability
and dynamics is a central problem for fundamental physics,
as well as for applied research in process engineering and
nanotechnology [3,4]. Coating processes, for instance, rely
crucially on the mutual affinity of liquid and surface (i.e.,
on wettability properties). When the liquid film is sufficiently
thin, in fact, it can become unstable, leading to the dewetting
of the coated area [5]. From the modeling point of view, the
challenge consists in the fact that the physics of thin films
is intrinsically multiscale, for it involves phenomena ranging
from the molecular scale at the three-phase contact line to the
micro- and nanometric size of the film thickness to the size of
the film as a whole, extending over the coated substrate area.

A fully resolved bottom-up atomistic approach would be,
obviously, unfeasible if hydrodynamic regimes are to be ex-
plored. It clearly appears that some degree of model order re-
duction is required. Most hydrodynamic models of thin liquid
films, in the framework of the lubrication theory, simplify the
complexity of the full three-dimensional (3D) Navier-Stokes
equations [6,7] to one scalar transport equation (the lubrica-
tion equation) for the film thickness field h(x, t ) [3,8–10]:

∂t h = ∇ · [Q(h)∇pfilm]. (1)

Here Q(h) is the mobility function, whose explicit form
depends on the boundary condition for the velocity at the
surface [for a no-slip boundary, Q(h) = h3/(3μ), with μ

being the dynamic viscosity], and pfilm is the film pressure at
the free liquid surface. Stable and reliable direct numerical
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simulations of Eq. (1) require sophisticated numerical meth-
ods, whose execution is often computationally expensive [11].
Moreover, an ever-growing number of microfluidic problems
requires us to cope with complex fluids rather than simple
liquids, i.e., fluids with nontrivial internal microstructure
and/or complex non-Newtonian rheological behavior (e.g.,
colloidal suspensions, polymer solutions, etc.). The quest
for an efficient multiscale numerical method for simulating
thin-film hydrodynamics, versatile for the inclusion of
multiphysics features, is, thus, an ongoing endeavor.

In this paper, we present an approach to the numerical
study of thin liquid films based on the lattice Boltzmann
method (LBM) [12]. Due to the built-in properties of the
LBM, our method enjoys an outstanding computational per-
formance, especially on parallel architectures and graphics
processing units (GPUs).

The paper is organized as follows. We first present the
numerical model and discuss the equations of motion for the
hydrodynamic fields that the model covers. We then show that
these equations effectively correspond, under certain limits,
to the lubrication equation of Reynolds. In Sec. III we present
validation results, including the Rayleigh-Taylor instability
of thin-fluid-films, the spreading of a sessile droplet on a
substrate, and the sliding of a droplet on an inclined plane.
After showcasing the ability of our method to handle large
and heterogeneous substrates, we present some computational
aspects including the performance of our implementation for
GPUs. An Appendix is added to provide numerical tests of
the validity of the correspondence with lubrication theory
(Appendix).

II. NUMERICAL MODEL

When a layer of fluid is characterized by a vertical length
scale H much smaller than the longitudinal one L, the
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FIG. 1. Schematic sketch of a model system: a thin liquid film
deposited on a flat substrate. The air-liquid interface is represented
by the height h(x, y, t ). The characteristic thickness of the film is
given by H .

equations of motion can be simplified under the approxima-
tion that the ratio of the length scales, ε ≡ H/L, is small (ε �
1, see Fig. 1). In this limit, and for small reduced Reynolds
number, ε2Re (where Re = UL

ν
, with U being a characteristic

velocity of the fluid system and ν being the fluid’s kine-
matic viscosity), the lubrication approximation tells that the
dynamics is governed by Eq. (1). Instead of directly solving
Eq. (1) numerically, we follow an alternative strategy. We
build our numerical model on a class of LBMs originally
proposed as solvers for the shallow-water equations [13–16].
The lattice Boltzmann equation for the discrete probability
density functions of a fluid system subject to a total force (that
can include both internal and external forces) Ftot, fl (x, t ),
reads:

fl (x + c(l )�t, t + �t )

= (1 − ω) fl (x, t ) + ω f (eq)
l (x, t ) + wl

�t

c2
s

c(l ) · Ftot, (2)

where l labels the lattice velocities cl and runs from 0 to
Q − 1, with Q being the number of velocities characterizing
the scheme. Algorithmically, this equation can be seen as
composed of two steps. There is a local collision step where
the fl (x, t ) “relax” toward the local equilibrium distributions
f (eq)
l (x, t ) with rate ω = �t/τ (where τ , the relaxation time,

is proportional to the kinematic viscosity ν): The distribution
functions are substituted by their weighted average (with
weights ω and 1 − ω) with the equilibria, with an added
“source” term [the last term on the right-hand side of Eq. (2)],
when a force is present. There is a nonlocal streaming step
where the updated distribution functions are scattered to the
nearest-neighboring sites. The parameters cs (the lattice speed
of sound) and wl (the “weights”) depend on the geometry of
the lattice and are determined under suitable constraints on
the form of the tensorial moments in the lattice velocities up
to fourth order [17]. We work with two-dimensional square
lattices of side length N�x, with lattice constant �x and
Q = 9. For simplicity, we keep �t = �x = 1 throughout this
paper and follow the standard notation, where cs = 1/

√
3 and

the c(l ) = [c(l )
x , c(l )

y ], l = 0, 1, . . . , 8, are [18,19]

c(l ) =

⎧⎪⎨
⎪⎩

(0, 0) l = 0[
cos (l−1)π

4 , sin (l−1)π
4

]
l = 1, 3, 5, 7

√
2
[

cos (l−1)π
4 , sin (l−1)π

4

]
l = 2, 4, 6, 8

, (3)

with the corresponding weights

wl =

⎧⎪⎨
⎪⎩

4
9 l = 0
1
9 l = 1, 3, 5, 7
1

36 l = 2, 4, 6, 8

. (4)

The equilibrium distribution functions f (eq)
l have to be deter-

mined to recover the desired equations of motion for hydro-
dynamic fields in the long-wavelength limit (we will return
to this shortly). They have, therefore, to fulfill the following
relations involving the liquid height

h =
8∑

l=0

f (eq)
l , (5)

momentum

hui =
8∑

l=0

c(l )
i f (eq)

l , (6)

and momentum flux tensor field

1

2
gh2δi j + huiu j =

8∑
l=0

c(l )
i c(l )

j f (eq)
l , (7)

where the left-hand side coincides with the momentum flux
of the shallow-water equation, with the term gh2/2 being the
hydrostatic pressure in a thin fluid layer at rest [14]. With the
usual ansatz of a quadratic polynomial in the velocity field u,
the equilibrium distribution functions read

f (eq)
l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h − 5gh2

6c2
s

− 2hu2

3c2
s

l = 0

gh2

6c2
s
+ hc(l )·u

3c2
s

+ h[c(l )·u]2

2c4
s

− hu2

6c2
s

l = 1, 3, 5, 7

gh2

24c2
s
+ hc(l )·u

12c2
s

+ h[c(l )·u]2

8c4
s

− hu2

24c2
s

l = 2, 4, 6, 8

,

(8)

where u2 = |u|2 is the magnitude of the velocity. The multi-
scale Chapman-Enskog expansion [20,21] of such an LBM
yields (for small ratios Ma/Fr of the Mach, Ma = u/cs,
and Froude, Fr = u/

√
gH , numbers, corresponding also to√

gH/cs � 1) the following equations for the height and
velocity fields [13,14,16]:⎧⎨

⎩
∂t h + ∇ · (hu) = 0
∂t (hu) + ∇ · (huu) = −gh∇h
+ν∇2(hu) + 2ν∇(∇ · (hu)) + Ftot

, (9)

where ν, the kinematic viscosity, is related to the relaxation
rate ω appearing in (2) via ν = c2

s [(2 − ω)/2ω]�t . For stabil-
ity of the scheme, the condition Fr < 1 is also required, which
is fulfilled in all our applications, given the low values of u (as
discussed in more detail later). Different terms contribute to
the total (generalized) force1Ftot:

Ftot = Ffilm + Ffric + F. (10)

1The generalized forces have indeed the dimensions of
(length)2(time)−2.
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In the first term the film pressure appearing in (1) is in-
cluded as Ffilm = − 1

ρ0
h∇pfilm, where the film pressure pfilm is

written as

pfilm = −γ [∇2h − �(h)] (11)

and ρ0 is the (constant) liquid density (equal to 1 in LBM
units). The first term in Eq. (11) represents the capillary
Laplace pressure (with γ being the surface tension) while the
second term is the disjoining pressure, Various forms have
been proposed for �(h) in the literature [3,22], where here
we use the expression

�(h) = κ f (h) = [1 − cos(θ )]
(n − 1)(m − 1)

(n − m)h∗︸ ︷︷ ︸
κ

×
[(

h∗
h

)n

−
(

h∗
h

)m]
︸ ︷︷ ︸

f (h)

. (12)

In Eq. (12), θ is the contact angle and h∗ corresponds to the
precursor film thickness. The integers n and m are set to be 3
and 9, respectively. These are commonly chosen values in the
literature [3,23] that correspond to a standard 6-12 Lennard-
Jones intermolecular potential [24], though other pairs (n, m)
can be used [e.g., (2, 3), (3, 6), (4, 10)] [25–27]. By adjusting
κ we are thus able to address the wetting properties of the
substrate. The film pressure is specific to model thin-film
dynamics; in general, however, one can make use of other
force terms, e.g., to couple fluid layers which has been shown
in Ref. [28]. The second term on the right-hand side in
Eq. (10) introduces a friction with the substrate of the form

Ffric = −ναδ (h)u (13)

with the coefficient αδ (h) given by

αδ (h) = 6h

(2h2 + 6δh + 3δ2)
. (14)

Here δ acts as a regularizing parameter, which can be
identified with an effective slip length. Finally, the last term in
Eq. (10), F, accounts for any other possible source of forcing
(e.g., the gravity component parallel to the substrate in the
case of a liquid-film deposited on an inclined plate). Equipped
with such extra terms, Eqs. (9) become⎧⎪⎨
⎪⎩

∂t h + ∇ · (hu) = 0

∂t (hu) + ∇ · (huu) = −gh∇h

+ν∇2(hu)+2ν∇[∇ ·(hu)]− 1
ρ0

h∇pfilm−ναδ (h)u+F.

(15)
Let us notice at this point that for most microfluidic
applications we are actually interested in, the advection
term on the left-hand side of the second equation of (15) is
indeed negligible as compared to the right-hand side (the
Reynolds number [29,30] being much smaller than one).
Analogously, the longitudinal viscous terms ν∇2(hu) and
2ν∇[∇ · (hu)] are of order ε2 smaller in the ratio of length
scales than the friction term να(h)u (since the former scale
as νH U

L2 , whereas the latter as ν U
H ). Therefore they can also

be neglected. The validity of these considerations has been
numerically tested in some selected cases (representative of

typical applications) and the results are shown and discussed
in the Appendix. Equations (15) reduce then to{

∂t h + ∇ · (hu) = 0
∂t (hu) = −gh∇h − 1

ρ0
h∇pfilm − ναδ (h)u + F.

(16)

For processes evolving on timescales t̃ such that t̃ � h
α(h)ν ,

one can consider the “quasisteady” limit of the second of
these equations [setting ∂t (hu) ≈ 0], which yields

u ≈ 1

ναδ (h)

(
−gh∇h − 1

ρ0
h∇pfilm + F

)
, (17)

effectively enslaving the dynamics of u to that of h. In the
no-slip limit, δ → 0, and in absence of gravity and other
forces, Eq. (17) simplifies into

u ≈ − h2

3μ
∇pfilm

with the dynamic viscosity μ = ρ0ν. Inserting this result into
the first equation of (16) leads to

∂t h ≈ ∇ ·
(

h3

3μ
∇pfilm

)
,

which is precisely the lubrication equation. In essence, our
method is, therefore, an alternative solver of the lubrication
equation (at least in the inertialess regime, Re � 1, and for
very thin films, ε � 1), that brings in, from the computational
point of view, the added values of excellent scalability of the
corresponding LBM algorithm on parallel architectures, as we
shall see in the following sections. Similar ideas have also
been developed for reaction-diffusion equations [31–34] and
the modeling of surface tension effects by gradients of auxil-
iary fields [35,36] based on the color gradient method [37].

Before concluding this section, let us notice that special
care has to be taken in the implementation of the numerical
scheme, when evaluating the forcing term since it contains
higher-order derivatives [the gradient pfilm, which in turn
includes the Laplace pressure γ∇2h, see Eq. (11)] and, hence,
spurious lattice effects may arise. We noticed, for example,
that a centered scheme to calculate gradients [15] does not
guarantee the sufficient degree of isotropy on the lattice as,
e.g., for the relaxation of a droplet (discussed in Sec. III),
where it led to unphysical droplet shapes. Therefore, we use
the following expressions to compute the gradients:

∇φ(x) = 3
8∑

l=0

wlc(l )φ(x + c(l ) ) + O(∇3), (18)

and the Laplacian

∇2φ(x) = 1

6

[
4

∑
l=odd

wlφ(x + c(l ) )

+ 1
∑

l=even

wlφ[x + c(l )] − 20φ(x)

]
+ O(∇4),

(19)

respectively [38,39], for a generic scalar field φ (be it the
height field h, the pressure pfilm, or a position-dependent sur-
face tension field). Besides the higher degree of the isotropy,

033313-3



S. ZITZ et al. PHYSICAL REVIEW E 100, 033313 (2019)

FIG. 2. Time evolution of the free surface for the Rayleigh-Taylor instability at τcap ≈ 50, 75, 100, 188, corresponding to the lattice
Boltzmann time steps [9000, 14000, 19000, 35000] �t in (a)–(d). For a more clear visualization we only show a small patch of size 256 × 256
centered in the middle of the 2048 × 2048 domain. The fluctuations of earlier states still follow the linear stability analysis (see Fig. 3 for the
the power spectrum of the height fluctuations versus wave number).

the scheme (18) and (19) has the advantage of employing
directly the set of lattice Boltzmann speeds.

III. RESULTS

Below we present results from numerical simulations using
the method introduced in the previous section. For all sim-
ulations, we apply periodic boundary conditions in the X -Y
plane.

A. The Rayleigh-Taylor instability

The Rayleigh-Taylor instability occurs when a denser fluid
is accelerated against a less dense one [40–43]. This can be
the case, for instance, for a liquid film coating a ceiling under
the action of gravity. In such a configuration gravity tends,
of course, to deform (and eventually disrupt) the film, while
surface tension has a stabilizing effect. As a result of these
competing mechanisms, any surface perturbation is stable or
unstable depending on whether its characteristic wave number
k is smaller or larger than a certain critical value kc. Linear
stability analysis calculations in the framework of lubrication
theory provide the following growth rate σ (k):

σ (k) = ρgh3
0

3μ

(
k2 − l2

capk4
)
, (20)

where lcap = (γ /g)1/2 is the capillary length. Unstable (stable)
modes correspond to σ (k) > 0 [σ (k) < 0] and the critical
wave number is, therefore, such that σ (kc) = 0, i.e., kc =
1/lcap. On a lattice of size 2048 × 2048 nodes, we initialize
the film height according to

h(x, 0) = h0[1 + ε(x)], (21)

with ε a random variable homogeneously distributed in [1 ×
10−4,−1 × 10−4] and h0 = 1. Forcing should always be be-
low a certain threshold. Thus, for the gravitational accelera-
tion we choose values within the interval |g| = [4, 8] × 10−5.
Furthermore, we fix the surface tension to be γ = 0.01. This
results in critical wave numbers ranging from kc = 0.06 to
kc = 0.09. Figure 2 shows snapshots of the free surface from
various time steps, where the growth of the perturbations is
shown as time increases. The last panel is already beyond the
linear regime.

We consider the time evolution of the power spectrum of
the height field fluctuations (around the mean), defined as

E (k, t ) =
∮

�k

|δ̂h(k, t )|2d�k, (22)

where

δ̂h(k, t ) =
∫

e−2π ik·x[h(x, t ) − h0] dk, (23)

with k = (kx, ky). �k denotes the circle in k space (i.e.,
�k = {(kx, ky)|k2

x + k2
y = k2}). Since we work in a discretized

system we have to smear out the circle �k with some small
δk. Therefore, strictly speaking the integral is not computed
around the circle �k but around some small annulus �k+δk .
The spectra are shown in Fig. 3. The various colors and
symbols of Fig. 3 relate to different values of gravitational
acceleration. For every set we consider the spectra at three
equally scaled times t̃ = t/τcap, where

τcap = μlc
γ

, (24)

t̃ = 50, 75, 100. The values of kc correspond to the points
where the colored lines with symbols cut the black dashed
line. The horizontal colored dashed lines mark the theoretical
values for kc. We observe good agreement of theoretical and
numerical values. In the inset of Fig. 3 we plot the growth
rate for the data of g = 8 × 10−5 together with the theoretical
expression given by Eq. (20) (solid line).

Consistently with the random initialization, at t̃ = 0 the
spectrum is a constant (black dashed line). For t̃ > 0, E (k, t )

FIG. 3. Power spectrum of the height fluctuations versus wave
number. The different colors and symbols belong to different values
of gravitational acceleration; g = 4 × 10−5 is given by blue circles
( ), g = 6 × 10−5 by orange triangles ( ), and g = 8 × 10−5 is given
by green squares ( ). Same colored lines are taken at different time
steps. In the inset we show the growth rate σ (k) for the largest value
of g (symbols) and the theoretical growth rate according to Eq. (20)
(solid line).
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FIG. 4. Relaxation of an out-of-equilibrium droplet. The initial state (a) is shown with a contact angle of θ = π/6. Toward the end of the
simulation (b) the droplet relaxes to the equilibrium contact angle.

develops a profile that grows in time for k < kc, while it is
damped out for k > kc, in agreement with the expectation
from the theory.

B. A spreading droplet

Let us consider the problem of a droplet, deposited on
a smooth substrate with an apparent contact angle θ > θeq,
which spreads to relax to a shape dictated by the equilibrium
contact angle θeq. The equilibrium contact angle quantifies the
wettability of a given substrate by a certain liquid and can be
calculated using Young’s equation [44],

γ cos θeq = γSL − γSG, (25)

with γSL and γSG being the surface tensions between solid-
liquid and solid-gas, respectively.

In our simulations we set the equilibrium contact angle
through the disjoining pressure [Eq. (12)]. In order to comply
as much as possible with the thin-film assumptions, we limit
ourselves to relatively small contact angles.

To probe the spreading, on a 512 × 512 lattice we initialize
a droplet whose surface is given by the expression

h(x, y, 0) =
√

R2 − (x − x0)2 − (y − y0)2 − R cos θ, (26)

with R sin θ ≈ 100�x (θ > θeq) being the radius of the droplet
with a spherical cap shape and (x0, y0) its center. The droplet
is placed in the center of the lattice, i.e., x0 = y0 = 256�x.

In Fig. 4 we show such an initial shape, with contact angle
θ = π/6, and the equilibrium shape with contact angle θeq =
π/12.

To extract the contact angle from our data we impose that
the shape at all times is close to the shape of a spherical cap,
such that we are able to calculate the contact angle at any time
using the initial angle and radius to obtain the volume

V = π

3
R3(2 + cos θ )(1 − cos θ )2. (27)

Since our method is mass conserving, the volume of the
droplet is by construction conserved. Measuring both the
height of the droplet hd (t ) and the diameter of the spherical
cap 2r(t ) we are able to recalculate the time-dependent sphere
radius as

R(t ) = r(t )2 + hd (t )2

2hd (t )
(28)

and can solve Eq. (27) again for the contact angle θ (t ).
We cross-checked our results with an alternative approach to

calculate the angle given by

θ (t ) = sin

[
r(t )

R(t )

]−1

. (29)

Let us stress that the shape is indeed very close to a
spherical cap. As mentioned in Sec. II, in fact, a sufficiently
accurate finite-difference scheme is required, as the one in
Eqs. (18)–(19) [39]. In particular, we note that the isotropy
of the pressure gradient is of utmost importance: A sim-
ple scheme with two-point centered derivatives [15] yields
squared equilibrium droplet shapes.

The spreading dynamics can be investigated even more
quantitatively in terms of the so-called Cox-Voinov law and
Tanner’s law [45]. The first one relates the apparent contact
angle to the velocity U of the spreading front (the con-
tact line), at various times, by θ3 − θ3

eq ∝ Ca. The capillary
number Ca is defined as Ca = μU/γ [46]. In Fig. 5 we
plot θ3(t ) − θ3

eq vs. Ca(t ) from a numerical simulation of a
spreading drop: A good linear scaling, in agreement with the
Cox-Voinov law, is observed, as highlighted by the dashed
line. Tanner’s law states that the radius of the droplet grows
with time as

R(t ) ≈
[

10γ

9Bμ

(
4V

π

)3

t

]1/10

, (30)

FIG. 5. Difference of cubed instantaneous and equilibrium con-
tact angles, θ3

num − θ3
eq, vs. capillary number Ca for a spreading

droplet; the dashed line shows a linear dependence (consistent with
the Cox-Voinov law). The different symbols represent different vis-
cosities, while the dashed line is a linear function of the capillary
number.
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FIG. 6. Time evolution of the droplet base radius of a spreading
droplet; the dashed red line shows a t̃1/10 power law (consistent
with Tanner’s law). As in Fig. 5 different symbols refer to different
viscosities. The radius clearly grows with the predicted power law
until it saturates. On rescaling the time with τcap the curves of all
three viscosities collapse into a single one.

with the constant B being such that B1/10 ≈ 1.2. In Fig. 6
we plot the measured radius of the droplet divided by its
initial radius R0 as a function of the dimensionless time t̃ =
t/τcap (here τcap = μR

γ
). For the three viscosities considered

in Figs. 5 and 6 our capillary times are τcap = [1333, 1667,

2333]�t . We see a saturation at R/R0 = 1.17 because the
droplet is very close to its equilibrium shape. During the
growth phase the radius follows indeed a power law in t̃ with
exponent 1/10, which is shown by the red dashed line, in
agreement with Tanner’s prediction and experimental results
[47–50]. We further notice that within our simulations the
droplet needs about 12τcap to reach its equilibrium shape.

C. A Sliding droplet

As a further validation case we consider the sliding of a
droplet on an inclined plane. For a droplet to slide over an
inclined plane, a minimum tilting angle α > 0 of the substrate
is required [51], which in our case is due to the friction term
Eq. (14). Until this critical angle is reached, energy is stored in
the deformation of the surface as the upper-left inset in Fig. 7
shows. Above such a critical angle, a linear relation between
the terminal sliding velocity U∞ and the gravitational force
∝mg sin α is observed [52–54]; in dimensionless numbers
such behavior is expressed by

Ca ∝ Bo − Boc, (31)

where the capillary number is based on U∞ and Bo is the so-
called Bond number, given by

Bo = (3V/4π )2/3ρg
sin α

γ
. (32)

Boc is the critical Bond number, defined in terms of the
critical tilting angle αc. In Fig. 7 we plot Ca vs. Bo from
our numerical simulations, showing that the phenomenology
described by Eq. (31) is indeed reproduced, i.e., the onset of
sliding takes place at a finite forcing, beyond which the linear
scaling Ca ∼ Bo is fulfilled.

FIG. 7. Ca vs. Bo for a sliding droplet: Notice that a finite
minimum forcing (corresponding to Boc) is needed to actuate the
droplet. For Bo > Boc a linear relation, Ca ∼ Bo, is observed. In the
insets we show the shape of the droplet for both the pinned (upper
left) as well as the sliding (lower right) case.

D. Dewetting of liquid films

In order to showcase the capabilities of our method in
handling more complex physics scenarios, we finally consider
the dewetting of a chemically patterned substrate [55,56].
This is easily made possible within the code by introducing a
space-varying equilibrium contact angle, θeq(x, y), in Eq. (12);
in this way we can tune the local wettability of the substrate.
Figure 8 shows a liquid film which is initialized with thickness
h(x, y, 0) randomly fluctuating in space around its mean value
h0 by a small percentage (≈0.01%) of it [Fig. 8(a)]. A partially
wettable substrate is patterned in such a way that the contact
angle is lower on a region defining a logo. The total domain
contains 512 × 512 lattice nodes. With this domain size a
letter contains around 130 lattice nodes in the y direction and
about 60 lattice nodes in the x direction. Using the initial
height h0 of the film as characteristic length scale we get
a capillary time of τcap ≈ 20�t . As the film dewets, liquid
moves toward the letters of the logo, the surrounding film
becomes thinner, and eventually the logo becomes visible.

IV. COMPUTATIONAL ASPECTS

We use OpenACC directives to allow our code to run on
accelerator devices, such as GPUs, while being able, at the
same time, to exploit the well-known good scaling properties
of the LBM on parallel machines [57]. OpenACC is par-
ticularly versatile in terms of programmability since it only
requires a few lines of code to allow us to harness the power
of state-of-the-art accelerators. In this sense OpenACC is very
similar to OpenMP and more readable as well as much easier
to program than CUDA.

The performance of a LBM code is commonly measured
in million lattice updates per second (MLUPS), defined as

MLUPS = A × n

tsim × 106
, (33)

with A = Lx × Ly being the area of the lattice, where Lx, Ly

are the number of lattice nodes in the x and y directions.
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FIG. 8. Time evolution of the free surface on a chemically patterned substrate on a 512 × 512 �x2 domain. Varying the contact angle
between the letters and the rest of the substrate yields the shown dewetting pattern. The letters are more wettable then the rest. To emphasis the
process we use a color gradient raging from dark blue to light blue. Starting from a randomly perturbed film height, the fluid starts to dewet
the pattern and after 2400�t the letters and a surrounding rim structure are clearly visible (a). After 16 800�t a depletion around the letters is
already very prominent (b). Toward the end of the simulation at 97 200�t , the instability of the thin film also leads to film rupture. Holes form
among the letters E, R, and N (c).

The number of iterations is given by n. The time needed to
compute the n interations is called tsim (in seconds). In Table I
we provide benchmark data comparing the performance of a
Nvidia GTX 1080TI, a Nvidia Quadro K2200, and a single
core of an Intel i7-4790 @ 3.6-GHz CPU. Due to the limited
amount of memory available on the Quadro K2200, it is not
possible to run a simulation of size 40962 on this card. Such
a simulation requires about 4.8 GB local memory, while the
Quadro K2200 only supplies 4 GB. In particular the speedup
gained by using a GTX 1080TI is outstanding and corresponds
to about 24–92 times the performance of a single core of the
Intel CPU. Assuming perfect scaling on the CPU and using
all four physical cores, the simulation on the GPU would be
faster by a factor between 6 and 23. The speedup depends on
the size of the lattice and in order to keep the pipelines on
the GPU filled, a minimum loop size is needed. In addition,
data transfer between host and device is a known bottleneck
impacting the performance of GPU-based simulations. This is
obviously also the case for our code—even though such data
transfer is only needed when files are written to disk.

V. CONCLUSIONS

We have presented a lattice Boltzmann model for the
numerical simulation of thin liquid-film hydrodynamics, fea-
turing explicitly relevant properties of interface physics, such
as surface tension and disjoining pressure.

We validated our method against a relevant test case,
namely the Rayleigh-Taylor instability, where the critical
wave number as well as the growth and damping of wave
modes are correctly reproduced. Our simulations of droplets
on substrates showed that droplets initiated out of equilibrium
attain their equilibrium contact angle and that our method cor-
rectly reproduces the Cox-Voinov law as well as Tanner’s law.

TABLE I. Performance analysis based on a MLUPS measure-
ment. The different columns relate to different lattice sizes, while the
rows correspond to the two GPUs and one CPU used. All simulations
are run for 100 000�t with FP64 double precision.

Lattice/accelerator 1282 2562 5122 10242 20482 40962

GTX 1080TI 157.6 279.2 382.6 414.9 404.7 395.6
Quadro K2200 33.5 42.9 46.6 48.2 49.0 X
i7-4790 6.4 5.8 4.5 4.6 4.5 4.3

Furthermore, our approach allows us to simulate the dynamics
of sliding droplets and even complex dewetting scenarios.

Our OpenACC-enabled simulation code allows for a mas-
sive improvement of the performance: With modern GPU
cards at hand simulations using large lattice sizes and re-
quiring many time steps can be run on a single workstation
without the need for access to high-performance computing
resources.

In the future, we plan to extend our work toward sys-
tems which could hardly be tackled by traditional methods:
From the dynamics of individual droplets on complex shaped
substrates we plan to move to large numbers of droplets
in order to understand the statistical properties of collective
droplet motion on chemically structured substrates. Finally, a
possible application of our method could be the simulation of
full laboratory-on-chip devices with highly resolved channels,
junctions, and so on.
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APPENDIX

As anticipated above, we provide here a numerical vali-
dation of the assumptions on effectively negligible terms that
lead from Eq. (9) to Eq. (16). To this aim, we report in Fig. 9,
for each of the term under scrutiny, the time evolution of a L2

norm, defined for a generic scalar field φ(x, t ) as

||φ(t )||2 =
⎧⎨
⎩ 1

N2

N∑
i=1

N∑
j=1

[φ(xi, y j, t )]2

⎫⎬
⎭

1
2

, (A1)

where the double sum is extended to the whole two-
dimensional domain. Three case studies are analyzed (cor-
responding to the three panels in Fig. 9), namely (a) a
sessile droplet spreading on a substrate with an equilibrium
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FIG. 9. Time evolution of the L2 norm [as defined by Eq. (A1)] of the x component of the terms appearing on the right-hand side of the
second of Eqs. (15). The plot is in log-lin scale. The panels refer to three different numerical experiments: (a) spreading droplet, (b) sliding
droplet, and (c) thin-film dewetting. The symbols correspond to film pressure gradient, −h∂x pfilm ( ); friction, −να(h)ux ( ); and longitudinal
dissipation terms ν∇2(hux ) + 2ν∂x[∇ · (hu)], ( ).

contact angle smaller than the initial one, (b) a droplet sliding
under the action of a body force, and (c) the dewetting of
a substrate. We compare, for each simulation, the ||φ(t )||2
for the x component2 of the gradient of the film pressure,
−h∂x pfilm, of the friction term, −να(h)ux, and of the lon-

2Similar results are found also for the y component.

gitudinal viscous terms, ν∇2(hux ) + 2ν∂x[∇ · (hu)] [the ad-
vection term, ∇ · (huux ) is for all cases orders of magni-
tude smaller than the other terms, therefore we decided to
omit it from the comparisons in figure Fig. 9]. We observe
that the gradient of the film pressure and the friction are
dominant, with the L2 norm of the longitudinal dissipation
term being always, roughly, less than 10% of the friction
contribution.
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