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A wide range of observations in studies of surfaces exposed to ion beams can be explained and analyzed
successfully by continuum models of the Kuramoto-Sivashinsky type. Despite certain progress in the theoretical
understanding of the model parameters on the basis of atomistic models, much of the applications are
based on phenomenological determination of several unknown quantities. In this work a numerical tool is
discussed and investigated, which allows us to determine model coefficients and complex model structures
from experimental findings. The method resembles known approaches in machine learning and data-driven
reconstruction techniques. To keep the discussion on a fundamental level, numerical simulations are conducted
by employing a scaled test model. The reconstruction technique is demonstrated for this model system and
shows a high accuracy in recovering input parameters for situations without beam noise. As an application to
an unknown system to be explored, the algorithm is then applied to a system with lognormal distributed ion
bombardment. The impact of the beam fluctuations in the proposed model are discussed. Perspectives of the
numerical algorithm for an analysis of experimental data are addressed.
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I. INTRODUCTION

This paper deals with the interplay of fluctuating plasma
or ion beams and material surfaces where erosion takes place
due to the according bombardment with high energetic ions.
As in previous studies, a continuum model is employed to get
insight into the particular changes in morphology and plasma-
wall interaction for macroscopic dimensions of the target
material [1–21]. The implementation of beam fluctuations is
usually taken into account by inclusion of a random term
describing additive noise. However, most of the coefficients
in the continuum models depend on the material properties
and on the ion-beam characteristics as well. Therefore, in
this work a modified Kuramoto-Sivashinsky (KS) equation
is derived which reflects the beam fluctuations via fluctuat-
ing coefficients describing the morphology-dependent erosion
processes. A second and perhaps even more important point of
this paper is the detailed description of a method to identify
surface models of the KS type. The ultimate goal of this
numerical tool is the analysis of future experimental data
to complement ab initio theories for atomistic processes by
half-empirical methods. In this work the basic algorithm is
introduced and its suitability is demonstrated for the analysis
of surface dynamics with and without ion-beam fluctuations.
Currently missing experimental data are replaced by simula-
tion results in this initial study. For this preparatory work a de-
tailed statistical analysis of the reconstruction and data-driven
model discovery is presented. In Sec. II an introduction to the
Kuramoto-Sivashinsky dynamics is given and, after that, in
Sec. III, the inclusion of beam fluctuations by multiplicative
noise is elucidated. The method to reconstruct or discover
a surface model from the given data is detailed in Sec. IV
and in Sec. V numerical results are presented for systems
with and without beam fluctuations. The beam fluctuations are

chosen to be lognormally distributed with prescribed temporal
correlation. Simulations taking into account different choices
for the noise are compared with cases of constant model
coefficients. The characterization of the results is done by
means of pattern inspection, Fourier analysis, and probability
distribution functions for the surface height. It is found that the
results can show a strong change in the surface morphology
as a function of the fluctuation parameters, i.e., fluctuation
amplitude and correlation time. With respect to the model
discovery method discussed here, the important result is the
possibility of a quite accurate reconstruction of model param-
eters for cases with and without beam fluctuations. Statistical
analysis of the reconstructed model parameters gives some
hints on possible optimization of the numerical approach
based on a careful adjustment of sampling time with respect
to characteristic timescales of the physical system considered.

II. CONTINUUM MODEL FOR SURFACE EVOLUTION

In this section a quite general continuum model is dis-
cussed, which contains several models discussed in the lit-
erature as limiting cases. The surface structure of a material
exposed to the plasma beam is described by the surface
height function h = h(x, y), where x and y are the Cartesian
coordinates in the reference plane defined by the unmodified
flat surface. The evolution of the surface height is assumed to
be given by an equation of the form

∂h

∂t
= v − a(h − h) − bh +

∑
i=x,y

γi∂ih +
∑
i=x,y

νi∂iih

+
∑

i, j=x,y

Ki j∂ii∂ j jh +
∑
i=x,y

λi(∂ih)2 + η. (1)
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Here h denotes the x-y-averaged profile. The coefficient v

is a constant erosion rate. The rate coefficient a represents
a flattening effect, pushing the surface height to the average
height profile h and the rate coefficient b introduces a tendency
of the system to keep the averaged height at zero. The coeffi-
cients νi denote the surface tension and the terms proportional
to λi describe a slope-dependent erosion. The coefficients
Ki j are components of a symmetric diffusion matrix and the
related terms introduce surface diffusion. The coefficients γi

represent an advective motion of surface structures and, in
many model variants, an anisotropic advection with γy = 0
and a finite γx is introduced to describe grazing incidence of
the ion beam. For normal incidence the ion beam induced ad-
vection disappears, giving γi = 0 [4–6]. An additional random
contribution is denoted by η and represents an additive noise
introduced to mimic the fluctuations of the ion beam. One
finds for a periodic domain that the average height h obeys
the evolution equation

∂h

∂t
= v − bh +

∑
i=x,y

λi(∂ih)2 + η. (2)

For the structured piece h̃ = h − h one obtains the evolution
equation

∂ h̃

∂t
= ṽ − ãh +

∑
i=x,y

γi∂ih̃ +
∑
i=x,y

νi∂iih̃ +
∑

i, j=x,y

Ki j∂ii∂ j j h̃

+
∑
i=x,y

λi(∂ih̃)2 −
∑
i=x,y

λi(∂ih̃)2 + η̃. (3)

It can be concluded from Eq. (3) that the homogeneous
component h does not affect the dynamics of h̃ because h does
not appear on the right-hand side. On the contrary the spatially
averaged profile h is affected by the inhomogeneous piece h̃
via the slope-dependent terms proportional to the coefficients
λi, as can be seen from the evolution equation Eq. (2). There-
fore, the damping coefficient a changes the dynamics of the
morphology represented by h̃, whereas the damping term bh
affects the average height h only. This is of importance for the
numerical studies presented in the subsequent sections. There
a damping term with finite b is chosen, but a damping via
the term ãh is excluded because it is known that this would
have a strong impact on the dynamics [20]. In general it can
be said that the model defined by Eq. (1) is suitable for a
variety of applications. Equation (1) includes a large number
of effects considered to be relevant for morphological changes
due to erosion, surface diffusion, additive noise of the ion-
beam flux, and other effects. Actually it represents a damped
Kuramoto-Sivashinsky equation, and continuum models like
Eq. (1) and variants of it have been discussed extensively in
the literature (see Refs. [1–14] and references therein). There
were many attempts to relate the model parameters appearing
in KS continuum models with microscopic processes or to
extract their particular values from experiments. According
to Makeev et al. [4] the coefficients γi, νi, and λi in the KS
model (1) can be expressed as functions of the incident angle
of the ions and atomistic parameters such as penetration depth,
distribution width, etc. Another example of a set of coeffi-
cients based on microscopic theory has been published by

Cuerno and Barabási [5]. Derived from Sigmund’s sputtering
theory, they also obtained formulas for v, νi, and λi. Lauritsen
et al. considered a microscopic model for ion sputtering and
derived expressions for v, νi, λi, Ki j , and the noise term γ in
Ref. [9]. Muñoz-García et al. [10] derived model coefficients
from a two-field model and Sigmund’s sputtering theory.
A semi-empirical approach has been discussed by Muñoz-
García et al. [11]. They derived model coefficients νi, λi, Ki j

(and in addition the coefficient σi j introduced in their model)
from analytical estimates and experimental data. In summary,
Eq. (1) comprises several models used in the literature to link
experimental data and fundamental microscopic processes on
the plasma-beam-exposed surface. The need for an accurate
determination of model coefficients was also the motivation
for the development of model discovery techniques such
as the one presented here. However, despite the success of
models like Eq. (1), in many cases it has become necessary
to include further effects in the continuum description of
surface dynamics. This is still an ongoing discussion, and
a very comprehensive overview of such extensions, current
issues, and more refined theoretical approaches can be found
in Ref. [12]. A few possible extensions of Eq. (1) are discussed
in Appendix B where the candidate model for the model
discovery method is elucidated.

III. INCLUSION OF BEAM FLUCTUATIONS

In this section the KS model (1) will be simplified to obtain
a model with convenient scaling properties while still being
relevant for realistic experimental conditions; namely, normal
incidence of the ion beam. In this work—and in contrast to
previous studies—ion-beam fluctuations are not considered
by incorporation of an additive noise, i.e., a particular choice
for the stochastic term η in Eq. (1). Instead of that it is as-
sumed that η = 0 and that the coefficients νi and λi represent-
ing the erosion process are strictly proportional to the beam
flux. This introduces multiplicative noise to the model system.
Moreover, it is assumed that Ki j is constant, i.e., surface
diffusion is independent of the impinging ions. To simplify
matters it is also assumed that the ions hit the surface under
normal incidence and that the surface has no anisotropies.
Due to the symmetry of the assumptions made the number
of coefficients in the model is strongly reduced: γx = γy = 0,
νx = νy = ν, λx = λy = λ, Kxx = Kxy = Kyx = Kyy = K . For
normal incidence the coefficients γx and γy are expected to
vanish due to their dependence on the angle of incidence of the
ion beam [4–6]. It should be noted that these simplifications
do not restrict the flexibility of the model reconstruction
introduced in the next section. The simplifications are only
introduced for the purpose of making the discussions clearer
while still maintaining a realistic physical picture. Next, the
fluctuating coefficients ν and λ and the plasma beam flux
J are split according to ν = 〈ν〉 + ν̃, λ = 〈λ〉 + λ̃, and J =
〈J〉 + J̃ , respectively. The bracket 〈· · · 〉 denotes a temporal
average. Finally, a damping term proportional to h is included
to control the average height, which is pushed to zero in the
simulations. As mentioned above and shown by Eqs. (2) and
(3), this kind of damping has an impact only on the evolution
of the averaged height h but it does not change the dynamics
of the surface morphology, i.e., the structured piece h̃, which
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is actually in the focus of this work. Note that this is very
different to a damping via the term proportional to a in Eq. (1).
This term would have a strong impact on the dynamics as
discussed, e.g., in Ref. [20]. Here such an effect is excluded
from the model. Thus, the basic test model considered here
reads

∂h

∂t
= −ν∇2h + λ

2
(∇h)2 − K∇2∇2h − bh

= −
[
ν0∇2h − λ0

2
(∇h)2

] 〈J〉
J0

− bh

−
[
ν0∇2h − λ0

2
(∇h)2

]
J̃

J0
− K0∇2∇2h. (4)

The reference flux J0 has been introduced and ν0 and λ0 are
the corresponding constant model coefficients. The diffusion
coefficient K0 = K is a constant, too, and, as mentioned
above, it does not depend on the beam flux. Using K0 instead
of K only serves to make the notation uniform. It is to
be stressed again that the reduced model of Eq. (4) misses
several effects which are considered to be of importance in
many experiments. Besides additional effects mentioned in
Appendix B the additive noise η is often considered as crucial
to explain experimental observations (see, e.g., Ref. [21]).
However, the model considered here is an attempt to focus
on the effect of multiplicative noise with temporal correlation
and to test the model discovery method elucidated in the next
section. In future applications the model discovery method
allows us to analyze data in the framework of the full can-
didate model listed in Appendix B. Therefore, it would also
be able to identify effects which have been neglected in the
preparatory tests of this work. After this remark, the derivation
of the reduced KS model will be finalized by rewriting Eq. (4)
using the convenient scaling h → ν0/λ0h, x → √

K0/ν0x,
t → K0/ν

2
0 t to obtain the dimensionless equation

∂h

∂t
= −

[
∇2h − 1

2
(∇h)2

] 〈J〉
J0

− bK0

ν2
0

h

−
[
∇2h − 1

2
(∇h)2

]
J̃

J0
− ∇2∇2h. (5)

Due to this scaling, a large variety of model systems can
be studied by considering Eq. (5) with varying statistics of
the scaled beam flux J/J0. To give an impression of the
dimensions hidden behind the scaling, typical values for the
characterization of the Si − Ar+ system from Ref. [11] are
quoted: For a flux of J0 = 6.00 × 1018 ions m−2 s−1 the model
coefficients have been found to be ν0 = 1.67 × 10−1 nm2/s,
λ0 = 1.00 × 10−1 nm/s and K0 = 2.60 nm4/s. This gives for
the scaling length and timescales of the system: ν0/λ0 =
1.67 nm,

√
K0/ν0 = 3.95 nm, and τ0 = K0/ν

2
0 = 93.60 s. At

this point the reference timescale τ0 is introduced for later
considerations. Note that the linear analysis of instabilities for
small perturbations in the height h, with λ = 0 and negligible
beam noise η gives for Eq. (4) a most unstable mode with
wave number k∗ and corresponding growth rate γ∗ and length
scale l∗. These are given by

k∗ =
√

ν

4K
, γ∗ = ν2

4K
, l∗ = 4π

√
K

ν
. (6)

Therefore, fluctuations in the beam will have an impact on
the linear scales of the system due to the variation of surface
tension ν. In this work and according to previous findings
for plasma beam fluctuations [22], the scaled flux z = J/J0

is assumed to obey a lognormal distribution f (z) specified by

f (z) = 1

z
√

2πσ 2
exp

[
− (ln z − μ)2

2σ 2

]
. (7)

Its first and second moments are

〈z〉 =
〈

J

J0

〉
= eμ+σ 2/2, (8)

〈(z − 〈z〉)2〉 =
〈

J̃2

J2
0

〉
= e2μ+2σ 2 − e2μ+σ 2

. (9)

The parameters μ and σ are determined by prescribing the
mean value of the scaled flux 〈J/J0〉 and its scaled variance
〈J̃2/J2

0 〉, respectively:

μ = ln

〈
J

J0

〉
− 1

2
ln

(
1 +

〈
J̃2/J2

0

〉
〈J/J0〉2

)
, (10)

σ 2 = ln

(
1 +

〈
J̃2/J2

0

〉
〈J/J0〉2

)
. (11)

The parameters μ and σ are used to generate a Gaussian
random variable Y with mean μ and variance σ 2 numerically.
Finally, the assignment Z = eY gives the desired random
variable Z having a lognormal distribution. Details on the
numerical generation of lognormal noise ψ with temporal
correlation are given in Appendix A. This generated noise is
used to describe the fluctuations of the ion flux, J/J0 = ψ .

IV. MODEL RECONSTRUCTION AND MODEL
DISCOVERY

The following section is devoted to a topic that could be
described as the “inverse simulation approach.” This term
distinguishes the method from a “forward simulation” in
which equations such as Eq. (1), (4), or (5) are solved in order
to compare the results with the experimental findings. The
forward method then tries to optimize the simulations as sys-
tematically as possible by selecting suitable model parameters
and thus to improve the agreement with the measurements. An
inverse approach would be to look at a large number of exper-
imental findings and use them to adapt a mathematical model
that would best describe the data. This resembles the standard
regression problem of curve fitting, but here it is meant that
a model defined by a partial differential equation similar to
Eq. (1) is subject to a fit procedure. Such approaches have
been discussed in the context of machine learning and data-
driven statistical methods (see Refs. [23–28] and references
therein). Also in studies of interfaces, a least-squares method
very similar to the one presented here has already been
discussed in Refs. [16,17]. However, although the method
of this work has many similarities with ideas discussed in
connection with Gaussian process regression in Ref. [24] and
essential points of the approach have already been presented
in Refs. [25,27] and especially in Refs. [16,17], it will be
outlined here in detail for reasons of clarity. In addition, the
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method applied here differs in a few but significant numerical
details from previous studies, and this may allow a higher
accuracy than similar approaches would suggest. Since the
focus is on the analysis of surface structures in ion-beam
experiments by the use of continuum models, the method is
introduced by starting with an evolution equation similar to
Eq. (1). The discretization is done with respect to a spatial
grid consisting of points xk , k = 1, . . . , N , in the x-y plane:

∂h(xk )

∂t
=

P∑
i=1

αi fi(xk ). (12)

Here P is the number of terms constituting the right-hand side
of the assumed mathematical model description and the αi are
constant model parameters. The functions fi are assumed to
be polynomials of the height function h and its derivatives,
i.e., ∂ih, ∂i jh, (∂ih)2, etc. An example of such a candidate
model is given Eq. (B1) in Appendix B, which defines the
discovery model [actually the right-hand side of Eq. (12)]
used in this work. It is important to note that the stochastic
term η in Eq. (1) is excluded from the set of functions fi.
Here, only deterministic terms are taken into account. Now,
the discretized model of Eq. (12) is rewritten by defining

Tk = ∂h(xk )

∂t
, Hki = fi(xk ). (13)

This gives for Eq. (12) a matrix equation

H · α = T , (14)

where H ∈ RN×P, α ∈ RP, T ∈ RN , and P < N . The number
of grid points N is assumed to be larger than the number
of model parameters P. Therefore, an overdetermined set of
linear equations for the parameters αi is considered. One can
proceed using a singular value decomposition (SVD) [29,30]
to decompose the matrix H as

H = U · S · V T, (15)

where U ∈ RN×N and V ∈ RP×P are orthonormal matrices.
The matrix S ∈ RN×P has r nonzero components on the
diagonal only. These define the singular values σ1, σ2, ..., σr ,
r � P. The other diagonal elements are σi = 0 for i > r. The
squared singular values σ 2

i are the eigenvalues of the products
HT · H and H · HT, as can be seen from the relations

H · HT = U · S · ST · UT, HT · H = V · ST · S · V T, (16)

where S · ST ∈ RN×N and ST · S ∈ RP×P are diagonal square
matrices with diagonal elements σ 2

1 , σ 2
2 , ..., σ 2

r , r � P. For the
purpose of solving Eq. (14), the pseudoinverse H+ is defined
by

H+ = V · S+ · UT, (17)

where S+ has nonzero components on the diagonal only and
these are given by the inverse of the singular values σi of S,
except where the singular values are zero, there also S+ has
a zero entry. The solution α that minimizes the functional D
defined by

D = |H · α − T |2 (18)

is called the optimal solution α+, and it can be shown that this
is given by [29]

α+ = H+ · T . (19)

The practical implementation of this approach is in the eval-
uation of the matrix components (13) and the subsequent
calculation of the least-squares parameters α+

i by Eq. (19).
A single reconstruction requires the evaluation of Tk and
Hki by the use of “snapshots” of the discrete height profiles
ht (xk ) and ht+τ� (xk ) at two subsequent time points t and
t + τ�. This allows us to approximate the matrix components
of time derivatives T t

k = (ht+τ�

k − ht
k )/τ�. The corresponding

components of Ht
ki are found by finite differences on the

x-y grid using the profile ht (xk ). Note that the parameter
τ� denotes the time interval between the snapshots, which
might be very different from the time step �t used in the
numerical solution of the model equation Eq. (5) to generate
the snapshots in the following sections. In future applications
this parameter will be dictated by the experimental conditions.
In this work, however, it is possible to select it arbitrarily
and compare it with the typical system times. Inserting the
results for the optimal parameters α+

i into Eq. (12) (in its
continuous version) then represents the regression model.
This is exemplified in the next sections. At this point, it
is necessary to comment on the relationship between this
method and the method presented in Ref. [16]. In fact, despite
differences in application and numerical details, both methods
can be regarded as the result of the same basic idea; namely,
discretizing a model equation like that defined in Eq. (12) and
minimizing an error functional, which in the notation used
here is given by Eq. (18). Minimizing D with respect to the
parameters αi gives the matrix equation

HT · H · α = HT · T . (20)

This is the basic equation solved in Ref. [16], but no further
details on the numerical scheme are given there. It is reason-
able to assume, and this interpretation has also been discussed
in Ref. [17], that the least-squares solution in Ref. [16] was
calculated by inversion of the matrix HT · H via

α∗ = (HT · H )−1 · HT · T . (21)

Here, this solution is denoted by α∗ to distinguish it from α+.
As long as the matrix HT · H is nonsingular, i.e., all singular
values σi are nonzero, this is exactly the same result as given
by Eq. (19). Although this looks like only a minor limitation at
first, in practice it is found that the matrix H , and consequently
the matrix HT · H , is often ill-conditioned, i.e., a few singular
values σi are orders of magnitude smaller than the rest and the
matrix HT · H is “almost singular.” This leads quite often to
significant numerical errors in the computation of the optimal
parameters αi when using Eq. (21) (see, e.g., Ref. [30]). In the
cases considered here these errors were of the order of at least
10% or even led to extreme numerical outliers. This problem
is avoided in the approach elucidated in this section by the use
of the pseudo-inverse H+ to find the least-squares minimizing
solution α+. Note that an alternative method to find optimal
model parameters has been proposed in Ref. [17], which
has certain advantages over least-squares methods like the
one presented here and in Ref. [16]. However, this approach
has been derived for the case of Kardar-Parisi-Zhang (KPZ)
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models. For the particular application in model discovery
intended in this work, a least-squares method seems to be the
natural and simplest choice.

V. SIMULATION OF SURFACE MORPHOLOGY
AND RECONSTRUCTION ANALYSIS

In this section the surface dynamics in the framework of
model (5) is discussed. First, cases without beam fluctuations
are considered for reference. In later sections the impact of
beam fluctuations is discussed as well. In both cases the
simulation results for the two-dimensional profiles of the
surface height h are used as an input for the model regression
method presented in Sec. IV. Time-dependent profiles of
the surface height h for cases with zero beam fluctuations,
J̃ = 0, serve as a benchmark test to prove the quality of the
regression. Since these data originate from a well-defined
dynamical system, the algorithm should reconstruct the input
parameters of Eq. (5) without errors. In further applications of
the model regression analysis the profiles for finite ion-beam
fluctuations are considered. These will serve as noisy input
and the assumption of a deterministic model in the regression
provides approximate and time-dependent coefficients which
mimic the stochastic evolution of the surface morphology.
Therefore, it is also an example of extracting effective model
coefficients, even if the staked frame of the assumed model
is approximate. For the numerical analysis, a surface of size
L × L is considered, where L = 100

√
K0/ν0. The reference

plane is discretized by using 128 × 128 grid points. The time
integration of Eq. (5) was done by the explicit second-order
Ralston’s method [Eq. (3.5) in Ref. [31]] with time step
�t = 10−3τ0. For the integration of the evolution equation (5)
with finite beam fluctuations included no particular stochas-
tic analysis was used. Although the fluctuating coefficients
were evaluated by using the relations from Appendix A, i.e.,
J/J0 = ψ , obtained from known stochastic integrals of the
Itô calculus, the coefficients thus determined were regarded
as smooth functions of time and the resulting integrals to
advance the height function h in time were evaluated in the
Riemann sense. This is similar to approaches in numerical
studies of passive scalars where a stochastic velocity field is
generated according to stochastic calculus and the resulting
advection equations are integrated over time with an explicit
Euler method [32–34]. The damping coefficient is chosen
as b = 102τ−1

0 to keep the averaged height h effectively at
zero. This serves just for numerical convenience by avoiding
a continuously increasing mean value h due to the terms
proportional to λi in Eq. (2). A cross-check with simulations
where b = 0 showed that the dynamics of the structured piece
h̃ is indeed unaffected.

A. Cases without beam fluctuations

In the first part of this numerical study of surface dy-
namics and model reconstruction three cases with constant
beam amplitude are considered. These are characterized by
〈J/J0〉 = 0.5, 1.0, 1.5 and J̃ = 0. The choice is guided by the
amplitude of beam fluctuations studied in the next section.
The values 〈J/J0〉 = 0.5 and 〈J/J0〉 = 1.5 can considered as

approximate limiting values for the coefficients fluctuating
around the reference case with 〈J/J0〉 = 1.0.

1. Analysis of surface morphology

The simulations are initialized with a noisy height pro-
file of very small amplitude. These perturbations lead to a
growth of unstable structures and at a certain level nonlinear
processes provide a saturation in the local fluctuations of the
surface height. To get some insight into the dynamics of the
model systems the layer thickness W is used to characterize
the temporal evolution of the surface morphology. It is defined
by by the variance of the height fluctuations,

W =
√

h2 − h
2
. (22)

As can be seen in Fig. 1, in all three cases, statistically station-
ary states result after a growth phase with exponential increase
of W , which is guided by linear physics. This exponential
growth for small times t corresponds to the linear growth rate
γ∗ = 〈J/J0〉2/(4τ0), which is a function of the beam flux due
to γ∗ ∼ ν2. Straight line fit functions in the semilogarithmic
plot of Fig. 1 clearly demonstrate the expected time depen-
dence. In the nonlinear phase the layer thickness W fluctuates
around a mean value 〈W 〉 ≈ 4ν0/λ0, whereby all three cases
show similar behavior. If one considers the probability distri-
bution PDF(h) in Fig. 2 for the fluctuations of the height h in
the statistically stationary state, similar distributions appear in
all three cases. The PDFs can be approximated very accurately
by Gaussian distributions, as shown by the regression curves.
Looking at the morphology of the respective surfaces in Fig. 3,
however, clear differences can be seen in the structure of the
surface patterns. The variation of 〈J/J0〉 obviously leads to
an enlargement of pattern size for 〈J/J0〉 < 1 and a reduction
for 〈J/J0〉 > 1 when compared with the reference case with
〈J/J0〉 = 1. This is in accordance with the scaling of the
most unstable mode found in the linear analysis: l∗ ∼ ν−1/2 ∼
〈J/J0〉−1/2. Since the mean deviation of the height is almost
the same in all cases, the quantity W cannot be used to distin-
guish the different morphological features. However, a clear
distinction can be achieved by looking at the mean squared
gradient |∇h|2. The squared Fourier components |ci j |2 of the
gradient are displayed in Fig. 4. They are defined by

|∇h|2 =
∑
m,n

(
m2k2

x + n2k2
y

)|hm,n|2 ≡
∑
m,n

|cm,n|2, (23)

where hm,n denotes the Fourier components of the height
function h and kx = ky = 2π/L. This representation clearly
reflects the change in the structures. The enlarged pattern size
for 〈J/J0〉 < 1 corresponds to a circular pattern in Fourier
space peaked at smaller wave numbers than the reference
case with 〈J/J0〉 = 1. For 〈J/J0〉 > 1 the situation is reversed.
To underline the usefulness of this quantity for the analysis
here and in subsequent sections, Fig. 5 shows the evolution
of |∇h|2 over time analogous to W in Fig. 1. The different
saturation levels are well separated at |∇h|2 = 2.5, 4.9, and
7.2 ν3

0 K−1
0 λ−2

0 . This corresponds to the change of pattern size
by a factor of two when comparing the figures in Fig. 3. Note
that, for a single dominant mode, Eq. (23) gives immediately
a relation for the average pattern size l̄2 ∼ W 2/|∇h|2. Now,
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FIG. 1. Panel (a) shows the temporal evolution of the layer
thickness W for the cases with constant beam flux characterized by
〈J/J0〉 = 0.5, 1.0, 1.5 and 〈J̃2〉 = 0. The reference time is defined by
τ0 = K0/ν

2
0 . The saturation level 〈W 〉 ≈ 4ν0/λ0 is almost the same

for all cases. The exponential growth for small times t corresponds
to the beam flux dependence of the linear growth rate γ∗ of Eq. (6).
To illustrate this panel (b) shows a semilogarithmic plot of the same
time traces as in the top figure with fit functions (giving the straight
lines) included. According to linear theory the fit functions were cho-
sen as f (t ) = b exp(γ∗t ), where γ∗ = 〈J/J0〉2/(4τ0 ). Fit parameters
found are b = 9.6 × 10−4, b = 1.5 × 10−3, and b = 2.0 × 10−3 for
〈J/J0〉 = 0.5, 1.0, 1.5, respectively. Therefore, the straight lines in
the semilogarithmic plot become steeper as 〈J/J0〉 increases.

the results of Figs. 1 and 3 might be compared with the
experimental data of Ref. [11], where normal beam incidence
has also been considered. In Ref. [11], model parameters
have been extracted from experimental data illustrated by
Figs. 1 and 2 there. Pattern sizes l ∼ 35 nm and timescales
tl ∼ 6.25 min were found, where the timescale tl represents a
growth rate, similar to t∗ = γ −1

∗ in this work. Using the num-
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10-1

-20 -15 -10 -5 0 5 10 15 20

P
D

F
(h

)

h / (ν0/ λ0)
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<J/J0>=1.5

<J/J0>=0.5 fit
<J/J0>=1.0 fit
<J/J0>=1.5 fit

FIG. 2. Distribution functions PDF(h) for the cases with constant
beam flux characterized by 〈J/J0〉 = 0.5, 1.0, 1.5 and 〈J̃2〉 = 0
(dashed lines). Gaussian fits are also shown in the figure for all three
cases based on the first and second moments computed for the time
traces of h (solid lines). The statistical analysis was performed for
the saturated and statistically stationary state.

bers of Sec. III of this work for ν0, λ0, and K0 and the results
for the temporal evolution of W for 〈J/J0〉 = 1, as illustrated
by Fig. 1, one obtains τ∗ ∼ 6.25 min. This is identical to tl but,
of course, this is not too surprising, because the numbers for
ν0, λ0, and K0 have been taken from Muñoz-García’s work.
However, the model discussed by Muñoz-García differs from
the one used here and the results prove the accuracy of the
simulation results at least for the initial phase, where linear
effects dominate. But, also for the nonlinearly saturated phase,
one finds by simple dot pattern inspection of Fig. 3 of this
work an average pattern size of l̄ ∼ 34 nm. This is fairly close
to the value of l given in Ref. [11]. Finally, note that the
hexagonal nanodot patterns of Fig. 1 in Ref. [11] and of Fig. 1
of this work look quite similar.

2. Analysis of reconstructed model coefficients ν, λ, K

The simulation results for the temporal development of
the surfaces for the three examples without ion-beam fluctua-
tions are now used for the model reconstruction described in
Sec. IV. For the reconstruction an extended evolution equation
for the height h has been used. The detailed ansatz is given by
Eq. (B1) in Appendix B which defines the “discovery model,”
where far more terms are considered than were included in
the simulations based on Eq. (5) to provide the snapshots.
As mentioned in Appendix B, a few of these additional terms
have been discussed in the literature as possible and important
extensions of KS models. But, for the present study based
on the simulations with the model defined by Eq. (5), these
terms also serve to test the accuracy of the method in such
cases when complicated but irrelevant effects are included in
the model identification. Indeed, it has been proven that the
reconstruction algorithm is able to determine the relevant co-
efficients with high accuracy and to identify irrelevant terms.

033312-6



MODEL DISCOVERY FOR STUDIES OF SURFACE … PHYSICAL REVIEW E 100, 033312 (2019)

<J/J0>=0.5

-L/2 0 L/2
x

-L/2

0

L/2
y

-15

-10

-5

 0

 5

 10

 15

(a)

<J/J0>=1.0

-L/2 0 L/2
x

- L/2

0

L/2

y

-15

-10

-5

 0

 5

 10

 15

(b)

<J/J0>=1.5

-L/2 0 L/2
x

-L/2

0

L/2

y

-15

-10

-5

 0

 5

 10

 15

(c)

FIG. 3. Snapshots of the morphological structure for the cases
with constant beam flux characterized by (a) 〈J/J0〉 = 0.5, (b) 1.0,
(c) 1.5 and 〈J̃2〉 = 0. The domain size is chosen as L =
100K1/2

0 /ν
1/2
0 . The change in the size of the patterns follows the

scaling l∗ ∼ ν−1/2 ∼ 〈J/J0〉−1/2.

This is demonstrated by an example of numerical results listed
in Table I in Appendix B. For the reconstruction analysis in
this section 200 snapshots from the simulations were used.
According to the elucidation of the reconstruction technique
in Sec. IV two consecutive snapshots with a time interval of τ�

were used for a single evaluation of the model coefficients. By
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FIG. 4. Shown are the squared components |ci j |2 of the time-
averaged squared gradient |∇h|2 in m-n wave-number plane for the
cases with constant beam flux characterized by (a) 〈J/J0〉 = 0.5,
(b) 1.0, (c) 1.5 and 〈J̃2〉 = 0. The Fourier decomposition is given by
Eq. (23). The change in structural size displayed in Fig. 3 is reflected
by circular patterns of different radii.

repeating the evaluation for the entire series of 200 snapshots
available a series of model parameters is obtained. The results
for the 199 reconstructions of the coefficient λ, obtained for
the reference case with 〈J/J0〉 = 1, are shown in Fig. 6. It
can be seen that the choice of the temporal increment τ�
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FIG. 5. Temporal evolution of the squared gradient |∇h|2 for
the cases with constant beam flux characterized by〈J/J0〉 = 0.5, 1.0,
1.5 and 〈J̃2〉 = 0. The different saturation levels are well separated
at |∇h|2 = 2.5, 4.9 and 7.2 ν3
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0 for 〈J/J0〉 = 0.5, 1.0, 1.5,
respectively.

plays an important role for the statistics of the 199 individual
results. Obviously a very strong reduction of the scatter can
be achieved by a suitable choice of τ�. A similar result is
obtained for the input parameters ν and K . The coefficients
not included in the model simulations lead to regression
coefficients of the discovery model Eq. (B1) being smaller
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FIG. 6. Shown are the 199 different results for the reconstruction
of the coefficient λ obtained by evaluation of subsequent pairs of 200
snapshots of the simulations all of them with 〈J/J0〉 = 1 but with
different increments τ�/�t = 1, 10, 100 between the two respective
snapshots used for the reconstruction method. The calculated values
are represented by their relative deviation from the known input
parameter λ0 in percent.

than ν, λ, and K by several orders of magnitude. Therefore,
the extra terms included in the discovery model are found to be
negligible—as they should be in this numerical test. However,
note in this context that the damping term plays a special role,
as is discussed in Appendix B. The distribution of the relevant
coefficients found in the regression procedure have clear
Gaussian signatures, as illustrated by the plots in Fig. 7. There
the distribution functions of the coefficients ν, λ, and K for
differently selected increments are displayed. In addition,
Gaussian fits G(s) are drawn, which were determined from
the mean values μν , μλ, and μK and the variances σ 2

ν , σ 2
λ ,

and σ 2
K of each series of results using Gaussian functions for

s = ν, λ, K :

G(s) = 1√
2πσ 2

s

exp

[
− (s − μs)2

2σ 2
s

]
, (24)

and for the computation of averages the relations

μs = 1

R

R∑
k=1

sk, σ 2
s = 1

R

R∑
k=1

(sk − μs)2, (25)

with R denoting the number of reconstructions. It can be
stated that the reconstructed coefficients are clearly Gaussian
distributed, and the variance and the mean value are influ-
enced by the choice of the increment τ�. An explanation
for this obvious Gaussian signature in Fig. 7 is pending. To
shed more light on this connection between reconstruction
accuracy and time increment τ�, Fig. 8 shows the deviations
of the numerical mean values μν , μλ, and μK for the three
example cases as a function of the ratio τ�/τ∗. The timescale
τ∗ is the inverse of the growth rate γ∗ It takes into account
the changes of the characteristic timescale of the system with
varying beam flux:

τ∗ = 4K0

ν2
0

〈
J

J0

〉−2

= 4τ0

〈
J

J0

〉−2

. (26)

In the plots of Fig. 8 it can be seen that the deviations of ν and
λ from the correct value are less than 0.1% for appropriately
chosen increments τ�. The qualitative picture is similar for
μK , but there the error for the case with 〈J/J0〉 = 0.5 is 1%
at best. A certain optimal choice of the increment seems
to be possible, at which the coefficients can be determined
particularly well, but the particular value for the ratio τ�/τ∗
seems to be different for the different choices of 〈J/J0〉. In
Fig. 9 the standard deviations σν , σλ, and σK are displayed,
which are scaled by the respective true values of the model
coefficients. Again a plot versus the scaled increment τ�/τ∗
is chosen and, surprisingly, the functional form of σν , σλ,
and σK are all close to each other. The scatter in the re-
constructed coefficients has a pronounced minimum close
to 5 × 10−3τ�/τ∗. For both cases, reduction and increase of
τ�, the noise in the determination of the model coefficients
increases. Careful inspection shows that the standard devi-
ations can be approximated reasonably well by a functional
form

σs

s
= c1

τ∗
τ�

+ c2

(
τ�

τ∗

)3/4(
τ�

�t

)1/4

, (27)
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FIG. 7. Shown are the distribution functions (a) PDF(ν/ν0),
(b) PDF(λ/λ0), and (c) PDF(K/K0) for the reconstruction using
different increments τ�/�t = 1, 10, 100 and based on 200 snapshots
of the simulation with 〈J/J0〉 = 1. Gaussian fits G(ν/ν0 ), G(λ/λ0),
and G(K/K0) are also shown in the figure based on moments of
ν, λ, and K computed for the series of reconstruction results. The
narrowest distribution occurs in all cases (a), (b) and (c) for the
parameter τ�/�t = 10, the widest for τ�/�t = 1.
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FIG. 8. Plots of the relative error of the averaged values (a) μν ,
(b) μλ, and (c) μK obtained by averaging the reconstructed coeffi-
cients over all 199 reconstructions. For all cases 〈J/J0〉 = 0.5, 1.0,
1.5 the relative error can be less than 1% as long as the incremental
time τ� is smaller than 5 × 10−3τ∗.
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FIG. 9. Plots of the relative standard deviation (a) σν , (b) σλ, and
(c) σK obtained by averaging the reconstructed coefficients over all
199 reconstructions. For all cases 〈J/J0〉 = 0.5, 1.0, 1.5 the curves
are almost identical and a pronounced minimum occurs at around
τ� ∼ 5 × 10−3τ∗.

where c1 and c2 are constant. However, the formula (27) has
only been verified for the present cases and cannot yet be
derived from basic principles. Nevertheless, the qualitative
trends become plausible if one considers that a small value
for the ratio τ�/τ∗ is synonymous with only a slight change of
h between consecutive snapshots. The corresponding discrete
approximation of the time derivative ∂h/∂t tends to zero with
decreasing τ�/τ∗. Then the reconstruction model given by
Eqs. (12) and (13) and leading to the solution (19) is not well
defined anymore. On the other hand, an increase of τ�/τ∗ can
be considered as an averaging procedure, where responses of
the model system are not resolved, but rather a time-averaged
reaction is considered. Both types of inaccuracies are caused
by some kind of information loss. This impairs the usefulness
of the method for both limits τ�/τ∗ → 0 and τ�/τ∗ → ∞.
Thus, an optimal situation is found somewhere in an interme-
diate range of τ�/τ∗ and, according to the simple approxima-
tion of Eq. (27), this is found close to τ� = √

c1/c2τ
7/8
∗ �t1/8.

Therefore, in order to evaluate unknown data as accurately as
possible, e.g., from an experiment, information about typical
timescales of the system to be studied is required, i.e., infor-
mation about the linear instabilities which also determine the
timescale τ∗ in these studies.

Before the influence of ion-beam fluctuations is studied in
the next section, the results of this section shall be briefly
summarized.

(1) When initialized with small amplitude noise in the
height, the simulations evolve along well-known linear insta-
bilities with exponential growth. Then, even without beam
fluctuations, the model system shows fluctuating surface
structures and nonlinear saturation (Figs. 1 and 5).

(2) The surface patterns strongly depend on a reduction or
an increase of the ion flow (Figs. 3 and 4). The changes can be
explained by rescaling the characteristic temporal and spatial
scales, γ∗ and l∗, respectively.

(3) Although the structures in the three cases are different,
the distribution functions of the local fluctuations of the sur-
face height h are almost identical and show a clear Gaussian
characteristic (Fig. 2).

(4) The scattering of the reconstructed model coefficients
determined from a large number of snapshots has a clear
Gaussian characteristic. This Gaussian noise in the recon-
struction introduces inherent uncertainties in the model dis-
covery (Figs. 6 and 7).

(5) The reconstruction of the model coefficients can be
optimized to an accuracy of 0.1% or less if the temporal
increment is chosen appropriately. Then the mean value of
the coefficients from a large number of evaluated snapshots
deviates from the true value by a maximum of 0.1% and the
standard deviation is of the same order (Figs. 8 and 9).

(6) The choice of the temporal increment τ� represents a
critical part of the method, for which no general explanation
and optimization method can be given at the moment. Despite
these uncertainties, the analysis offers a good approach to
optimizing the method—at least for the moment and for the
cases considered. This calibration might be guided by the
formula given in Eq. (27) which gives an empirical estimate
of the standard deviation of reconstructed parameters as a
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function of the characteristic timescale τ∗ and the sampling
time τ�.

B. Cases with beam fluctuations

In the following sections, fluctuations of the ion beam are
taken into account, whereby for the temporal variation of the
ion-beam amplitude a lognormal distribution is considered.
The lognormal distribution was chosen because of its rele-
vance in turbulent fluctuations of plasma beams [22]. The
beam fluctuations are prescribed by a mean value 〈J/J0〉 = 1
and a variance 〈J̃2/J2

0 〉 = 0.09. A scan is performed for the
correlation time τ of the lognormally distributed beam noise
along the series τ/τ0 = 10−4, 10−3, 10−2, 10−1, 100, 101.

1. Analysis of surface morphology

As in the previous section the layer thickness W and the
mean-squared gradient |∇h|2 are used to follow the evolu-
tion of the surface morphology. The results for the series
of correlation times τ/τ0 are displayed in Fig. 10. Again,
statistically stationary states with 〈W 〉 ≈ 4 are found after an
exponential growth dominated by the most unstable surface
mode. The plot of |∇h|2 shows an increasing scatter when
the scaled correlation time τ/τ0 is increased. Also it can be
seen that for the larger values of τ/τ0 considered the mean-
squared gradient is found to be roughly in the range between
3 and 7 ν3

0 K−1
0 λ−2

0 , which are close to the saturation levels
〈|∇h|2〉 ≈ 2.5ν3

0 K−1
0 λ−2

0 and 〈|∇h|2〉 ≈ 7.2ν3
0 K−1

0 λ−2
0 of the

constant-beam results of Fig. 5. Of course, this agreement
is not accidental, but is due to the fact that the parameters
of the constant beam simulations have been chosen so that
the model parameters limit approximately the range covered
by the fluctuations. Consequently, it can be concluded that
the size of the structures oscillates between the two bound-
ary cases with 〈J/J0〉 = 0.5 and 〈J/J0〉 = 1.5 considered in
Sec. V A.

2. Analysis of reconstructed model coefficients ν, λ, K

Due to the oscillations in the surface properties and the
results from the above investigations for constant ion beams,
it can be expected that the reconstructed model coefficients
also have a distribution reflecting the fluctuations of the ion
beam. To analyze details, the PDFs of ν/ν0 and λ/λ0 are
displayed in Fig. 11. It is found that the numerical PDFs can
be approximated very well with lognormal fits H (s):

H (s) = 1

s
√

2π ln
(
σ 2

s

/
μ2

s

) exp

[
−

(
ln s − ln μ2

s

/
σs

)2

2 ln
(
σ 2

s

/
μ2

s

) ]
,

(28)

where s = ν, λ and μs and σ 2
s are defined by Eq. (25). The

values of ν/ν0 and λ/λ0 show a pronounced scatter which is
about 10% for the smaller values of τ/τ0 but is increased up
to 50% for τ/τ0 > 10−1. The comparison with the beam flux
distribution also shown in Fig. 11 proves that the increase of
the correlation time τ/τ0 pushes the distribution of the scaled
model parameters closer to the distribution of the scaled beam
flux. Again, a qualitative explanation can be found for this
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FIG. 10. Temporal evolution of (a) the layer thickness W and
(b) the squared gradient |∇h|2 for the cases with a fluctuating beam
flux characterized by 〈J/J0〉 = 1.0, 〈J̃2/J2

0 〉 = 0.09, and τ/τ0 =
10−4, 10−3, 10−2, 10−1, 100, 101. For all values of τ/τ0 in the sta-
tistically stationary phase the temporal average of the layer thickness
is 〈W 〉 ≈ 4 ν0/λ0. The respective mean values of the squared gradient
〈|∇h|2〉 lie in a range between 4.3 and 4.9 ν3

0 K−1
0 λ−2

0 . The scattering
of |∇h|2 decreases when the scaled correlation time τ/τ0 is reduced.

trend: The reference time τ0 characterizes the model system
as far as it describes the linear growth rate on the one hand
and stands for a response time on the other hand. For small
values τ/τ0  1 the system cannot follow the fluctuations
of the beam on the timescale τ . The model coefficients stay
effectively close to the average value and the beam fluctua-
tions are canceled out to a certain extent. Some noise level
is left and the standard deviation is clearly affected by this.
On the contrary, a large value of τ/τ0 represents slow beam
fluctuations with respect to the response time of the system.
Then the dynamics can easily follow through the entire range
of parameter variations. In this case the lognormal beam
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FIG. 11. Reconstruction results for the cases with fluctuat-
ing beam flux characterized by 〈J/J0〉 = 1.0, 〈J̃2/J2

0 〉 = 0.09, and
τ/τ0 = 10−4, 10−3, 10−2, 10−1, 100, 101. Shown are the distribu-
tion functions (a) PDF(ν/ν0) and (b) PDF(λ/λ0) for an increment
τ�/�t = 100 and different correlation lengths τ/�t = 10−1, 100,
101, 102, 103, 104. The dotted lines represent the raw numerical
data and the solid line the lognormal fits H (ν/ν0) and H (λ/λ0). The
evaluation is done for 2000 snapshots. The lognormal distribution of
the beam flux is also indicated by the thick red curve.

distribution is recovered by the distribution of reconstruction
results. To quantify this effect even more, Figs. 12 and 13
show the numerical results for the moments of the PDFs of
Fig. 11. The deviation of the averaged mean values and stan-
dard deviations of ν and λ are given with respect to the mean
values ν0 and λ0. Now the mean values ν0 and λ0 represent the

10-2

10-1

10-4 10-3 10-2 10-1 100 101

10
0 

  |
μ ν

/ν
0-

1|
  [

%
]

τ/τ0

τΔ/Δt=300
τΔ/Δt=100

(a)

10-2

10-1

100

101

102

100

101

102

10-4 10-3 10-2 10-1 100 101

10
0 

  |
μ λ

/λ
0-

1|
  [

%
]

τ/τ0

τΔ/Δt=300
τΔ/Δt=100

(b)

FIG. 12. Plots of the relative error of the averaged values (a) μν

and (b) μλ obtained by averaging the reconstructed coefficients over
1999 reconstructions. Fluctuating beams have been considered with
〈J/J0〉 = 1.0, 〈J̃2/J2

0 〉 = 0.09, and τ/τ0 = 10−4, 10−3, 10−2, 10−1,
100, 101.

model parameters corresponding to the mean value 〈J/J0〉 = 1
of the beam lognormal distribution. As can be seen in Fig. 12
the reconstructed values of ν/ν0 and λ/λ0 are close to 1 with
a few percent deviation if τ/τ0  1. For larger values of τ/τ0

the results are far from this mean and also show a strong
dependence on the choice of increment τ�, indicated by ad-
ditional results obtained with τ�/�t = 300. Actually, this is
in accordance with the arguments given above: For τ/τ0  1
the beam fluctuations are canceled out to a certain extent
and one is left with a noisy but fairly accurate reconstruction
of the mean values ν0 and λ0. For values τ/τ0 > 10−2 the
results become completely random and unpredictable. Then
the average values of ν and λ are far from the mean value
ν0 and λ0. Also the choice of the sampling time τ� changes
the results drastically. This is explained by the bad resolution
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FIG. 13. Plots of the relative standard deviation (a) σν and
(b) σλ obtained by averaging the reconstructed coefficients over
1999 reconstructions. Fluctuating beams have been considered with
〈J/J0〉 = 1.0, 〈J̃2/J2

0 〉 = 0.09 and τ/τ0 = 10−4, 10−3, 10−2, 10−1,
100, 101. The reference value denoted by “ref” in the plots marks
the standard deviation of the imposed beam fluctuations 〈J̃2/J2

0 〉1/2 =
0.3, which represents the limit of long correlation times τ/τ0 � 1,
i.e., for cases when the surface dynamics is fast enough to adapt the
slow beam fluctuation dynamics.

of the beam correlation time, due to the fact that the total
period covered by the snapshots of the reconstructions does
not give sufficient statistics of the slow beam fluctuations.
These conclusions are supported by the standard deviations
displayed in Fig. 13. For small τ/τ0 the standard deviation
is in a range of a few percent, but it increases for increasing
τ/τ0 to the value σν/ν0 = σλ/λ0 = 0.3. This value is imposed
by the beam statistics with 〈J̃2/J2

0 〉1/2 = 0.3. If one considers
the results of Figs. 12 and 13 together, it is to be expected
that an improvement of statistics by increasing the number

of snapshots would permit a more accurate calculation of
the mean values ν0 and λ0. In spite of all this, in a typical
experimental arrangement, the requirement τ/τ0  10−2 is
usually met, and as a result a reconstruction can be expected
with an accuracy of a few percent.

VI. SUMMARY

As preparatory work for future analysis of experimen-
tal data a model discovery technique for the identification
of Kuramoto-Sivashinsky model parameters in ion-beam-
induced surface morphological dynamics has been discussed.
The reconstruction method has been applied to a paradigmatic
model described by a scaled evolution equation for the surface
height including ion-beam fluctuations. The reconstruction
works very well for examples with constant beam flux. Pre-
scribed model coefficients could be extracted with an error
less than 1%. The coefficients found have statistical variations
that have been studied in detail. It is shown that an inherent
Gaussian noise occurs in the reconstruction of the model
parameters, which varies strongly with the physical timescales
of the model system and the numerical parameters of the
method, especially the sampling rate. Parameter scans show
the possibility and the need for an optimal choice of sampling
intervals and time steps for the data evaluation. In addition to
these calculations with a constant ion beam, further studies
were carried out to examine the influence of ion beam fluc-
tuations on the surface morphology. There the reconstruction
method has been applied to the case of nonconstant model
coefficients. To cope with typical features of plasma beam
statistics a lognormal multiplicative noise was included in
the surface model. In this case of fluctuating coefficients, it
could be seen that the quality of the reconstruction depends
essentially on the interplay of the correlation time of the beam
fluctuations and the sampling time. The distribution of the
coefficients in the reconstructions follows the statistics of the
beam and an improvement in the quality of the results is
achieved by a sampling time that is greater than or at least
equal to the correlation time of the beam.

In summary, the presented method provides a very accurate
tool for identifying model parameters for continuum models
of surface dynamics. This can prove to be a useful method
for deriving empirical models if there is a sufficient amount
of experimental data available. Another application would
be to derive effective macroscopic models for numerical
simulations of microscopic processes, such as a continuum
approximation for atomistic Monte Carlo simulations. How-
ever, the inevitable statistical variations of the reconstruction
results require a careful analysis of the numerical parameters
to account for the characteristic times of the system under
consideration (growth rates of instabilities, correlation times
of fluctuations, etc.). For a further assessment of the method, it
is particularly necessary to examine Eq. (27) in more detail by
statistically analyzing a large number of further simulations.
This equation gives an empirical estimate of the quality (the
variance) of reconstructed parameters as a function of the
characteristic timescale τ∗ of the physical system and the
sampling time τ�.
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APPENDIX A: LOGNORMAL DISTRIBUTED VARIABLE
WITH TEMPORAL CORRELATION

The random quantity φ is assumed to obey the stochastic
Langevin equation

τ
∂φ

∂t
= −φ + εζ . (A1)

Here ζ is Gaussian white noise with 〈ζ 〉 and correlation

〈ζ (t1)ζ (t2)〉 = δ(t1 − t2). (A2)

The constant ε is the amplitude of the noise and τ is the
correlation time. This defines an Ornstein-Uhlenbeck process
whose solution is

φ(t + �t ) = φ(t )e−�t/τ + ω, (A3)

where

ω = ε

τ

∫ t+�t

t
exp

(
− t + �t − t ′

τ

)
ζdt ′. (A4)

It follows that ω is a Gaussian distributed random number with
mean 〈ω〉 = 0 and variance

〈ω2〉 = σ 2(1 − e−2�t/τ ), (A5)

where

σ 2 = ε2

2τ
. (A6)

Thus, in the statistically stationary phase, the random variable
φ is characterized by

〈φ(t + �t )〉 = 〈φ(t )〉 = 0, (A7)

〈φ2(t + �t )〉 = 〈φ2(t )〉 = σ 2. (A8)

Details on this can be found in Refs. [35,36]. For the covari-
ance Cφ one finds

Cφ (�t ) = 〈φ(t + �t )φ(t )〉 = σ 2e−�t/τ , (A9)

and its correlation coefficient Rφ reads

Rφ (�t ) = 〈φ(t + �t )φ(t )〉
[〈φ(t + �t )2〉〈φ(t )2〉]1/2

= e−�t/τ . (A10)

This in turn gives the correlation time τ according to∫ ∞

0
Rφ

(
t ′)dt ′ = τ. (A11)

Using these results, it follows for the random quantity ψ =
eμ+φ that

ψ (t + �t ) = eω+μ−μe−�t/τ
ψ (t )e−�t/τ

. (A12)

One obtains for the first two moments

〈ψ (t + �t )〉 = 〈ψ (t )〉 = eμ+σ 2/2, (A13)

〈ψ2(t + �t )〉 = 〈ψ2(t )〉 = e2μ+2σ 2
. (A14)

Thus, the covariance and correlation coefficient result as

Cψ (�t ) = exp[2μ + σ 2(1 + e−�t/τ )], (A15)

Rψ (�t ) = exp[σ 2(e−�t/τ − 1)]. (A16)

Note that the correlation coefficient of ψ does not vanish for
�t → ∞ and a lower limit exists: Rψ � e−σ 2

.

APPENDIX B: DISCOVERY MODEL

The particular ansatz for the discretized Eq. (12) used
to conduct the reconstruction and discovery analysis of
Secs. V A 2 and V B 2 is chosen as follows:

∂h

∂t
= α1 + α2h + α3h2 + α4∂xh + α5∂yh

+α6(∂xh)2 + α7(∂yh)2 + α8(∂xh)(∂yh)

+α9∂xxh + α10∂yyh + α11∂xyh

+α12∂xxxxh + α13∂yyyyh + α14∂xxyyh

+α15(∂xxh + ∂yyh)[(∂xh)2 + (∂yh)2]

+α16(∂xh)3 + α17(∂yh)3 + α18∂xxxh

+α19∂xxyh + α20∂xyyh + α21∂yyyh

+α22(∂xh)(∂xxh) + α23(∂xh)(∂yyh)

+α24(∂yh)(∂xxh) + α25(∂yh)(∂yyh)

+α26∂xx(∂xh)2 + α27∂xx(∂yh)2

+α28∂yy(∂xh)2 + α29∂yy(∂yh)2 + α30h. (B1)

Even though in the present study many of the terms of this
candidate model for data analysis are just used to demonstrate
the ability of the model discovery method to identify correctly
also zero coefficients for noncontributing processes, many of
the terms listed in Eq. (B1) have a particular meaning and
have been discussed in detail in the literature. The coeffi-
cient α1 represents a constant erosion and terms proportional
to α2 and α30 represent damping effects. In particular the
damping term α2h has been proven to be very important in
the formation of hexagonal patterns [20]. The terms with α4

and α5 represent constant velocities of the surface structures.
These are usually considered as a consequence of grazing
incidence of the ion beam [4–6]. The coefficients α6 and α7

describe the basic process of slope-dependent erosion. The
terms with α9, α10, and α11 describe the effect of surface
tension in the erosion and α12, α13, and α14 represent surface
diffusion. An extension of the KS model with a term like the
one proportional to α15 has been discussed in the context of
step morphology and Cahn-Hilliard models [18,19]. Also, an
extension by the terms with coefficients α26, α27, α28, and α29

has been found important to take into account the coupling
between erosion and surface transport to lowest order [12].
It is often called the conserved Kardar-Parisi-Zhang term
(CKPZ term) and its isotropic form (α26 = α27 = α28 = α29)
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TABLE I. Reconstruction results for the model parameters α1, . . . , α30 obtained for a simulation run with 〈J/J0〉 = 1 as described in
Sec. V A 2. For the averaging, 400 snapshots have been used.

α1 α2 α3 α4 α5 α6

−2.5 7.9 × 10−4 −1.3 × 10−5 5.2 × 10−4 2.5 × 10−4 0.4999

α7 α8 α9 α10 α11 α12

0.4999 2.2 × 10−5 −0.993 −0.993 −5.8 × 10−5 −0.992

α13 α14 α15 α16 α17 α18

−0.992 −1.990 2.9 × 10−4 −9.0 × 10−6 −4.5 × 10−5 8.9 × 10−5

α19 α20 α21 α22 α23 α24

2.8 × 10−4 1.4 × 10−5 −2.5 × 10−5 3.3 × 10−5 −2.1 × 10−6 1.7 × 10−5

α25 α26 α27 α28 α29 α30

2.9 × 10−5 1.1 × 10−3 7.4 × 10−4 6.6 × 10−4 1.1 × 10−3 −1.34

has been discussed, e.g., in Refs. [10,37–39]. A derivation
and discussion of an anisotropic form is reported in Ref. [40].
Further information on the significance of these model terms
and theoretical derivations from microscopic theories can be
found in Refs. [1–21] and the references listed there. The
other terms of Eq. (B1) not mentioned in this section do
not have an obvious meaning and have been included just to
keep the model discovery flexible for future applications using
experimental data. Now the comparison of Eq. (B1) with the
particular simulation model (5) and the parameters used in
Sec. V A results in the following assignment:

α6 = α7 = 1

2

〈
J

J0

〉
, α9 = α10 = −

〈
J

J0

〉
, (B2)

α12 = α13 = −1, α14 = −2, (B3)

α30 = −100. (B4)

The other coefficients should be zero for the cases considered
in Sec. V. This is indeed obtained to a high level of accu-

racy as illustrated by the numbers in the Table I containing
the averaged coefficients αi for a reconstruction done for
400 snapshots based on the simulations of Sec. V A 2 with
〈J/J0〉 = 1. The coefficients α6, α7, α9, α10, α12, α13, and α14

are found with an error less than than 1%. One important
point should be emphasized: At first glance, the damping
coefficient α30 seems to be completely wrong. However, a
closer look reveals that the coefficient α1 supports the damp-
ing effect. If one takes into account that the average height
h in the simulations was not absolutely zero, but was found
as h ≈ 0.025 07 an effective coefficient given by the sum
α1/h + α30 ≈ −99.87 provides almost the right value for the
damping. This kind of mismatch in the constant damping term
α1 and the damping of the average height h via α30 is found
as a systematic bias in the algorithm. It is recommended that
these two shares are always considered together, because these
two terms cannot be separated cleanly in the reconstruction.
On the other hand, all other terms, despite of their com-
plexity and nonlinearity can be reproduced with quite high
accuracy.
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