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A conservative discrete velocity method (DVM) is developed for the ellipsoidal Fokker-Planck (ES-FP)
equation in prediction of nonequilibrium neutral gas flows in this paper. The ES-FP collision operator is solved
in discrete velocity space in a concise and quick finite difference framework. The conservation problem of the
discrete ES-FP collision operator is solved by multiplying each term in it by extra conservative coefficients
whose values are very close to unity. Their differences to unity are in the same order of the numerical error in
approximating the ES-FP operator in discrete velocity space. All the macroscopic conservative variables (mass,
momentum, and energy) are conserved in the present modified discrete ES-FP collision operator. Since the
conservation property in a discrete element of physical space is very important for the numerical scheme when
discontinuity and a large gradient exist in the flow field, a finite volume framework is adopted for the transport
term of the ES-FP equation. For nD-3V (n < 3) cases, a nD-quasi nV reduction is specifically proposed for
the ES-FP equation and the corresponding FP-DVM method, which can greatly reduce the computational cost.
The validity and accuracy of both the ES-FP equation and FP-DVM method are examined using a series of
0D-3V homogenous relaxation cases and 1D-3V shock structure cases with different Mach numbers, in which
1D-3V cases are reduced to 1D-quasi 1V cases. Both the predictions of 0D-3V and 1D-3V cases match well
with the benchmark results such as the analytical Boltzmann solution, direct full-Boltzmann numerical solution,
and DSMC result. Especially, the FP-DVM predictions match well with the DSMC results in the Mach 8.0 shock
structure case, which is in high nonequilibrium, and is a challenge case of the model Boltzmann equation and
the corresponding numerical methods.
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I. INTRODUCTION

The Fokker-Planck (FP) equation with advection-diffusion
collision operator is widely used in modeling dynamic sys-
tems such as neutral molecule [1–3], plasma [4–6], photonics
[7,8], and even biological [9], economic [10], and social
[11] systems. The first FP equation for a molecule system
is derived from the Boltzmann equation in gas kinetic theory
when counting the gazing effect of molecule collisions [12].
The Prandtl (Pr) number yielded from this FP equation is
fixed at 3/2. Since the Pr number of real gas is below unity
(2/3 for monatomic gas), two types of modified FP equa-
tions are proposed. They are the cubic-FP equation [2] and
ellipsoidal-FP (ES-FP) equation [3]. Recently, by mapping
these FP equations to stochastic differential equations (SDEs),
the FP equations are solved in a stochastic and particle way
[1,2]. Comparing to other particle methods such as the direct
simulation Monte Carlo (DSMC) [13], its computational cost
is greatly reduced in the continuum limit (dissipation limit
in FP research). Since the mechanism of drag and diffusion
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forces holds for both micro and macroscales, then the large
time step and cell length can be used. This advantage is very
important for the prediction of flow fields in either transitional
or continuum regimes where the molecular mean free path
(m.f.p.) and mean collision time (m.c.t.) are comparable to
or greatly less than the characteristic length and time, respec-
tively. On the other hand, since the deterministic methods are
not affected by statistical fluctuation, they are very useful in
the precise computation of multiscale nonequilibrium flows,
and are helpful in investigating the mechanism of such flows.
Moreover, the accuracy of modified FP equations, especially
their collision operators, should be examined using a deter-
ministic method.

The first deterministic numerical scheme for FP equation,
which can preserve equilibrium, is proposed for a 1V (one-
dimensional velocity space) isotropic linear Fokker-Planck-
Landau (FPL) system [14]. Then it is extended to a mass,
energy, and equilibrium preserving scheme [15], 2V cases
in discrete cylindrical velocity space [16], and nonlinear
equation [17,18]. Besides the FPL-type, another form of FP
equation is the Rosenbluth-Fokker-Planck equation (RFP) [4].
The RFP equation has a similar mathematical form of the
FP equation that is derived from the Boltzmann equation
[12]. Its collision operator is written in a differential form
with nonlinear advection and diffusion coefficients. By us-
ing a finite volume framework in velocity space and extra
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coefficients on advection terms for conservation purpose, the
RFP equation is well solved by the deterministic numerical
method in Refs. [19,20].

Plenty of the FP research focuses on the homogenous
FP equation where the particle transport in physical space
is assumed to be zero [21]. Several works address the non-
homogenous FP equation in the topic of FPL-type equa-
tion [22,23]. In flow predictions, the particle transport in
physical space is an essential aspect that cannot be ignored.
The transport term in the FP equation of gas-kinetic theory
(similar to the RFP-type) should be calculated. By taking the
particle transport into consideration, the deterministic numer-
ical framework will be the discrete velocity method (DVM).
There are several multiscale methods in gas kinetic theory,
such as the unified gas-kinetic scheme (UGKS) [24], discrete
unified gas-kinetic scheme (DUGKS) [25], gas-kinetic unified
algorithm (GKUA) [26], and the improved DVM [27,28],
using the DVM framework for predictions of flows from
the continuum regime to a rarefied regime. Recently, these
methods were widely used in the prediction of nonequilibrium
flows [24], plasmas [29], and photonics [30]. Since they used
the Bhatnagar-Gross-Krook (BGK)-type model equations, a
certain degree of deviation (from the Boltzmann equation) ex-
ists in the prediction of high nonequilibrium flows [31], such
as the shock structure cases with high Mach (Ma) numbers,
which will be calculated in a later section. Since a discrete ve-
locity space is used, the conservation problem of the discrete
BGK-type collision operator is addressed by trimming the
macroscopic variables that determine the equilibrium state,
according to the numerical error of the discrete collision
operator [32–35].

In this paper, a novel deterministic method (FP-DVM) is
proposed for nonequilibrium flows, which solves the ES-FP
equation numerically in the DVM framework. In FP-DVM,
the ES-FP collision operator is solved in a deterministic way
in discrete velocity space using a framework of the finite
difference method (FDM). Instead of considering the conser-
vation in a discrete element of velocity space, the discrete
ES-FP collision operator is treated in a relaxation way, and
the conservations of mass, momentum, and energy are ensured
by coefficients being added to both advection and dissipation
terms. The deviations of their values from unity have the same
order as the truncation error of the numerical approximation to
the ES-FP collision operator. The computational complexity
of solving the discrete ES-FP collision operator is O(N ), here
“N” is the number of discrete points in velocity space. Four
0D-3V (nD-mV is a denotation of cases whose dimension
of physical space is “n” and the dimension of velocity space
is “m” in the scope of FP research) homogenous relaxation
cases and three 1D-3V shock structure cases with different
Ma numbers are conducted to examine the validity and ac-
curacy of both the ES-FP equation and the present numerical
method. Using the dimensional reduction method for the ES-
FP equation proposed in this paper, 1D-3V cases are reduced
to 1D-quasi 1V cases, and the computational cost is greatly
reduced. The remainder of this paper is organized as follows.
Section II is a quick review of gas-kinetic theory and FP
equation. Section III is the construction of FP-DVM method.
Section IV is the numerical experiment. Section V is the
discussion and conclusion.

II. GAS KINETIC THEORY AND FOKKER-PLANCK
EQUATION

A. Distribution function and Boltzmann equation

In gas kinetic theory, the molecular system is described us-
ing the distribution function f (xi, ξ j, t ) depending on location
xi, molecular velocity ξ j , and time t . It is the number density
of molecules that arrived at xi at time t with velocity ξ j . For
dilute gas, the evolution of f is governed by the Boltzmann
equation [36]:

∂ f

∂t
+ ξi

∂ f

∂xi
+ ai

∂ f

∂ξi
= C( f , f ), (1)

where ai is the acceleration of a molecule due to a body force
such as gravity. The Einstein summation convention is used
throughout this paper if without special statement. The left-
hand side (LHS) of Eq. (1) is the free transport operator, while
the right-hand side (RHS) is the collision operator which is
mathematically a five-fold nonlinear integral.

Given the distribution function f , macroscopic physical
variables, such as mass density ρ, momentum density ρui (ui

is macroscopic velocity), energy density ρe (e is energy per
mass), stress τi j , and heat flux qi, can be obtained using their
definition in gas-kinetic theory as follows:

ρ = 〈m f 〉 = mn,

ρui = 〈mξi f 〉,
ρe = 〈

1
2 mξkξk f

〉 = 1
2ρukuk + 3

2 nkT, (2)

τi j = −〈
m

(
cic j − 1

3 ckckδi j
)

f
〉 = −nk(Ti j − T δi j ),

qi = 〈
1
2 mcickck

〉
,

where n is number density, ci is the peculiar velocity defined
as ξi − ui, T is thermodynamic temperature, Ti j is the temper-
ature tensor in gas kinetic theory whose trace is 3T , k is the
Boltzmann constant, m is the mass of a molecule, and δi j is the
Kronecker delta, the operator 〈·〉 is an integral over the whole
velocity space, which can be written as

〈·〉 =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(·)dξ1dξ2dξ3. (3)

B. Fokker-Planck equation for gas kinetic theory

In the scope of gas kinetic theory, the original Fokker-
Planck equation without body force is derived in Ref. [12],
where the grazing effect of binary collisions is considered. By
changing its relaxation rate to τFP = 2μ/p (μ is viscosity, p is
pressure), the standard Fokker-Planck equation as a model of
the Boltzmann equation can be written as follows:

∂ f

∂t
+ ξi

∂ f

∂xi
= 1

τFP

{
∂ ((ξi − ui ) f )

∂ξi
+ RT δi j

∂2 f

∂ξi∂ξ j

}
, (4)

where R = k/m is the specific gas constant. Since the standard
Fokker-Planck equation corresponds to a fix Prandtl number
of 3/2, two types of modified Fokker-Planck equations, the
cubic-FP equation equation [2] and ES-FP equation [3], are
proposed. In cubic-FP, the advection term is multiplied by
a polynomial of molecular velocity ξi, whose coefficients
are used to get the right relaxation rate of both stress and
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heat flux, thus a right Prandtl is realized. In ES-FP equation,
the diagonal dissipation coefficient RT δi j in the standard FP
equation is replaced by TES,i j which is defined as follows:

TES,i j = (1 − ν)T δi j + νTi j, (5)

as a combination of isotropic temperature T and anisotropic
temperature Ti j (Ti j = 〈mcic j f 〉/ρR), and ν is defined as

ν = max

(
−5

4
,− T

λmax − T

)
, (6)

where λmax is the maximum eigenvalue of the positive definite
matrix Ti j . Since ν and the Pr number have the following
relation:

Pr = 3

2(1 − ν)
, (7)

the Pr number is 2/3 except in the extreme condition λmax >

1.8T . In this extreme condition, Pr varies from 2/3 to unity.
The relaxation time τES in the ES-FP collision operator is
defined as

τES = 2(1 − ν)
μ

p
. (8)

Since the procedure of deriving ES-FP equation from the
standard FP equation is similar to that of extending the BGK
equation to the ES-BGK equation, it is called the ES-FP in
Ref. [3]. Similar to the standard FP, ES-FP is written in the
following form:

∂ f

∂t
+ ξi

∂ f

∂xi
= 1

τES

{
∂ ((ξi − ui ) f )

∂ξi
+ RTES,i j

∂2 f

∂ξi∂ξ j

}
. (9)

III. DETERMINISTIC DISCRETE VELOCITY METHOD
FOR ELLIPSOIDAL FOKKER-PLANCK EQUATION

In the DVM framework, the physical space xi, the velocity
space ξi, and the time t are discrete. The ES-FP equation is
solved in an operator splitting way. The free transport operator
[LHS of Eq. (9)] is solved in the physical space first to get the
distribution f ∗ at intermediate step in each discrete element
in physical space. Given f ∗, the collision operator [RHS of
Eq. (9)] can be solved in the discrete velocity space, then the
distribution can be evolved to the next time step.

A. Free transport operator

For a numerical scheme in flow predictions, the
conservation property in a discrete cell (in physical
space) is very important when discontinuity, such as
the shock wave, exists in the flow field. So the trans-
port operator of the ES-FP equation is solved in a
finite volume framework where the extra numerical viscosity
needed by capturing the discontinuity is provided by the slope
limiters. In this paper, a Euler method is used for temporal
discretization. Second-order upwind reconstruction in physi-
cal space is used for the flux term. The FVM-type numerical
scheme for the transport operator can be written as

f ∗ − f n

	t
+ 1




A∑
a=1

(ξi fa)Sa,i = 0, (10)

where

fa = f n + ∂ f n

∂x j
(xa, j − xc, j ). (11)

In Eq. (10), Sa,i is the cell interface whose direction is from the
inside to outside. Its subscript “a” is an index of the discrete
cell interface, and the total number of discrete interfaces in
a cell is denoted by “A”. 
 is the volume of the cell. 	t is
the time interval. The superscript “n” denotes the nth iteration
step, and “∗” denotes the intermediate time step between the
nth and (n + 1)th steps in the operator splitting treatment.
In Eq. 11, the subscript “c” denotes the “cell center”. In the
present method, the calculation of slope ∂ f /∂x j is to the
second order, and the van Leer slope limiter is used.

B. Collision operator

The collision operator is solved in a finite difference
framework since it is computationally efficient. It should
be noted that the free transport operator is treated in a
finite volume framework to make the transport process con-
servative when discontinuity occurs in the flow field. Theo-
retically, the evolution equation of collision operator can be
directly written using the information at intermediate time
step as follows:

f n+1 − f ∗

	t
= 1

τ ∗
ES

{
∂ ((ξi − u∗

i ) f ∗)

∂ξi
+ RT ∗

ES,i j

∂2 f ∗

∂ξi∂ξ j

}
, (12)

where the first- and second-order slopes in velocity space can
be numerically approximated using the central difference.

The numerical approximation to the slopes has a truncation
error related to 	ξ . If a second-order central difference is
used, the truncation error is O(	ξ 2). The numerical quadra-
tures in velocity space also generate numerical errors. If the
above numerical scheme for the ES-FP collision operator is
directly used without treatment of these numerical errors,
the aggregate effect will produce undesired variations of
mass, momentum, and energy which should be zero since
the collision operator fulfills the conservation property. As a
result, it often leads to a nonconvergent and nonconservative
numerical scheme. This problem is addressed in several works
on the topic of the FPL equation [6,37]. For the RFP equation
which has a similar mathematical form as the FP and ES-FP
equations used in gas-kinetic theory, the authors of Ref. [19]
constructed a conservative finite volume scheme in velocity
space.

In this paper, the nonconvergence problem for the efficient
finite difference framework is handled in a similar way as
Ref. [19] as follows. Because in a finite difference frame-
work in velocity space, the distribution function only lives at
discrete nodes, the corresponding discrete collision operator
should be slightly different from the continuous one due to
the inevitable numerical errors. First, the collision operator is
rewritten as follows by decomposing the advection term into
a distribution function and a first-order slope

∂ f

∂t
= 1

τES

{
3 f + (ξi − ui )

∂ f

∂ξi
+ RTES,i j

∂2 f

∂ξi∂ξ j

}
. (13)
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Then each term in the brace is multiplied by a coefficient
ε which is designed to eliminate the influence of numerical
errors on conservation property, and the collision operator
turns into

∂ f

∂t
= 1

τES

{
3εF f + εA,i(ξi − ui )

∂ f

∂ξi
+ εDRTES,i j

∂2 f

∂ξi∂ξ j

}
.

(14)

The values of εF , εA,i, and εD are very close to unity, and their
departures from unity (denoted by |ε − 1|) are directly related
to the numerical error. Being similar to Ref. [19], the treatment

of εA,i is as follows:

εA,i �= 1, ξi < 0,

εA,i = 1, ξi � 0. (15)

That means that εA,i only exerts on half of the velocity space.
For continuous velocity space, these ε become unity since
it is the basic property of ES-FP equation that mass, mo-
mentum, and energy conservations are fulfilled. For discrete
velocity space, these coefficients can be obtained using the
conservation of mass, momentum, and energy, and solving the
following algebraic equations analytically:

εF

∑
3 f + εA,1

∑
ξ1<0

A1 + εA,2

∑
ξ2<0

A2 + εA,3

∑
ξ3<0

A3 + εD

∑
D = −

⎛
⎝∑

ξ1�0

A1 +
∑
ξ2�0

A2 +
∑
ξ3�0

A3

⎞
⎠,

εF

∑
3ξ1 f + εA,1

∑
ξ1<0

ξ1A1 + εA,2

∑
ξ2<0

ξ1A2 + εA,3

∑
ξ3<0

ξ1A3 + εD

∑
ξ1D = −

⎛
⎝∑

ξ1�0

ξ1A1 +
∑
ξ2�0

ξ1A2 +
∑
ξ3�0

ξ1A3

⎞
⎠,

εF

∑
3ξ2 f + εA,1

∑
ξ1<0

ξ2A1 + εA,2

∑
ξ2<0

ξ2A2 + εA,3

∑
ξ3<0

ξ2A3 + εD

∑
ξ2D = −

⎛
⎝∑

ξ1�0

ξ2A1 +
∑
ξ2�0

ξ2A2 +
∑
ξ3�0

ξ2A3

⎞
⎠, (16)

εF

∑
3ξ3 f + εA,1

∑
ξ1<0

ξ3A1 + εA,2

∑
ξ2<0

ξ3A2 + εA,3

∑
ξ3<0

ξ3A3 + εD

∑
ξ3D = −

⎛
⎝∑

ξ1�0

ξ3A1 +
∑
ξ2�0

ξ3A2 +
∑
ξ3�0

ξ3A3

⎞
⎠,

εF

∑
3ξ 2 f + εA,1

∑
ξ1<0

ξ 2A1 + εA,2

∑
ξ2<0

ξ 2A2 + εA,3

∑
ξ3<0

ξ 2A3 + εD

∑
ξ 2D = −

⎛
⎝∑

ξ1�0

ξ 2A1 +
∑
ξ2�0

ξ 2A2 +
∑
ξ3�0

ξ 2A3

⎞
⎠,

where Ai (i = 1, 2, 3) and D are defined as

Ai = (ξi − ui )
∂ f

∂ξi
, D = RTES,i j

∂2 f

∂ξi∂ξ j
. (17)

In Eq. (16), the numerical integrals in whole velocity space and half velocity space are denoted by
∑

(·), ∑ξi<0 (·), and
∑

ξi�0 (·),
respectively. Take index i = 1, for example, these integrals are in the following form:∑

(·) =
∑

ξ1∈(ξ1,min,ξ1,max )

∑
ξ2∈(ξ2,min,ξ2,max )

∑
ξ3∈(ξ3,min,ξ3,max )

(·)	ξ1	ξ2	ξ3,

∑
ξ1<0

(·) =
∑

ξ1∈(ξ1,min,0)

∑
ξ2∈(ξ2,min,ξ2,max )

∑
ξ3∈(ξ3,min,ξ3,max )

(·)	ξ1	ξ2	ξ3,

∑
ξ1�0

(·) =
∑

ξ1∈[ 0,ξ1,max )

∑
ξ2∈(ξ2,min,ξ2,max )

∑
ξ3∈(ξ3,min,ξ3,max )

(·)	ξ1	ξ2	ξ3. (18)

where the subscript “min” and “max” denote the boundaries in each direction of truncated velocity space.
Finally, the evolution of the distribution function according to the discrete ES-FP collision operator can be written as

f n+1 − f ∗

	t
= 1

τ ∗
ES

{
3ε∗

F f ∗ + ε∗
A,i(ξi − u∗

i )
∂ f ∗

∂ξi
+ ε∗

F RT ∗
ES,i j

∂2 f ∗

∂ξi∂ξ j

}
. (19)

The calculation process of the collision operator can be
summed up as follows. First, using the information f ∗ at
the intermediate step, the first- and second-order slopes (in
velocity space) in Eq. (19) can be calculated and stored. Then
the contribution of each term in the brace of Eq. (19) to mass,
momentum, and energy can be calculated using numerical

integration in Eq. (18). In the process of numerical integration,
ui and Ti j can also be obtained as

T ∗
i j =

∑
cic j f ∗

R
∑

f ∗ , u∗
i =

∑
ξi f ∗∑
f ∗ . (20)
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Then, using the obtained numerical integrals, the coefficient
ε∗ can be calculated using Eq. (16). Up to this point, every
term in Eq. (19) is obtained, and the distribution function can
be updated to the (n + 1)th time step.

C. Reduced ES-FP equation

Real monatomic gas flows have a three-dimensional phys-
ical space and a three-dimensional velocity space (3D-3V
case). For the nD-3V case where n < 3, the ES-FP equation
can be reduced to the nD-quasi nV case whose computational
cost is greatly reduced. The reduction method used in ES-
FP is the same with that used for reducing the BGK-type
model equations in several numerical schemes [38–41], which
splits the distribution function into a mass distribution and
an energy distribution, and splits the BGK-type equation into
two equations for mass distribution and energy distribution,
respectively. The following context takes the reducing process
from the 1D-3V case to the 1D-quasi 1V case, for example
(which is also used in the case of shock wave structure
calculation in this paper). For the 1D case in the x1 direction,
there is

∂ f

∂x2
= 0,

∂ f

∂x3
= 0,

u2 = 0, u3 = 0,

T12 = T21 = 0, T23 = T32 = 0, T13 = T31 = 0,

T22 = T33=(3T − T11)/2. (21)

The slopes in x2 and x3 directions are zero. The off-diagonal
elements in temperature tensor Ti j are zero because the tan-
gential stress is zero [according to Eq. (2)].

The ES-FP equation can be first reduced to

∂ f

∂t
+ ξ1

∂ f

∂x1
= 1

τES

{
3 f + (ξ1 − u1)

∂ f

∂ξ1
+ ξ2

∂ f

∂ξ2
+ ξ3

∂ f

∂ξ3

+ RTES,11
∂2 f

∂ξ 2
1

+RTES,22
∂2 f

∂ξ 2
2

+ RTES,33
∂2 f

∂ξ 2
3

}
.

(22)

Define a mass distribution and an energy distribution in the ξ1

axis as follows:

F =
∫ +∞

−∞

∫ +∞

−∞
m f dξ2dξ3,

G =
∫ +∞

−∞

∫ +∞

−∞
m

(
ξ 2

2 + ξ 2
3

)
f dξ2dξ3. (23)

Then multiply the ES-FP equation by unity and ξ 2
2 + ξ 2

3 , and
integrate it in both ξ2 and ξ3 directions. After calculating the
integrals, the reduced ES-FP equation becomes a system of
two equations about “F” and “G” as follows:

∂F

∂t
+ ξ1

∂F

∂x1
= 1

τES

{
F + (ξ1 − u1)

∂F

∂ξ1
+ RTES,11

∂2F

∂ξ 2
1

}
,

∂G

∂t
+ ξ1

∂G

∂x1
= 1

τES

{
G + (ξ1 − u1)

∂G

∂ξ1
− 2G + RTES,11

∂2G

∂ξ 2
1

+ 2R
(
TES,22+TES,33

)
F

}
. (24)

Then the solving of f in three-dimensional velocity space is turned into the solving of F and G in one-dimensional velocity
space. Here the evolutions of F and G are coupled through a relaxation process from 2G to 2R(TES,22 + TES,33)F in the second
equation (G equation) in Eq. (24). If the integrated equation is Eq. (14) (the discrete form), ε will appear in the corresponding
terms in both the F and G equations in Eq. (24). Practically, these ε can only appear in the F equation since it can be seen from
the later equation [Eq. (27)] that both mass and momentum conservations are only involved by F , and F also appears in the
expression of energy conservation. So the reduced ES-FP equations in discrete velocity space can be written as

∂F

∂t
+ ξ1

∂F

∂x1
= 1

τES

{
εF F + εA,1(ξ1 − u1)

∂F

∂ξ1
+ εDRTES,11

∂2F

∂ξ 2
1

}
,

(25)
∂G

∂t
+ ξ1

∂G

∂x1
= 1

τES

{
G + (ξ1 − u1)

∂G

∂ξ1
− 2G + RTES,11

∂2G

∂ξ 2
1

+ 2R
(
TES,22+TES,33

)
F

}
,

here, in the 1D case, the “A” and “D” in Eq. (17) are reduced to

A1 = (ξ1 − u1)
∂F

∂ξ1
,

D = RTES,11
∂2F

∂ξ1∂ξ1
. (26)
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Using conservations of mass, momentum, and energy, the ε for conservation purpose can be obtained by solving the following
linear equations:

εF

∑
F + εA,1

∑
ξ1<0

A1 + +εDRTES,11

∑
D11 = −

⎛
⎝∑

ξ1<0

A1

⎞
⎠,

εF

∑
ξ1F + εA,1

∑
ξ1<0

ξ1A1 + εDRTES,11

∑
ξ1D11 = −

⎛
⎝∑

ξ1<0

ξ1A1

⎞
⎠, (27)

εF

∑
ξ 2

1 F + εA,1

∑
ξ1<0

ξ 2
1 A1 + εDRTES,11

∑
ξ 2

1 D11 = −
⎛
⎝∑

ξ1<0

ξ 2
1 A1 +

∑
RHSG

⎞
⎠,

here RHSG is the RHS of the G equation [Eq. (25)]. The
numerical process for the 1V case is the same with the 3V
case in Secs. III A and III B, expect that the operation of f is
now on F and G.

D. Numerical error in discrete Fokker-Planck collision operator

The numerical error in discrete velocity space comes from
the three items below:

(1) The truncation in velocity space;
(2) The error in numerical integration; and
(3) The truncation error in calculating the slopes using

discrete points.
For the first item, the domain of truncated velocity space

should be as large as possible. But to achieve high computa-
tional efficiency, it cannot be too large. The Maxwellian distri-
bution suggests that the domain should be at least larger than
3
√

RT since beyond 3
√

RT the distribution only contributes
0.3% of mass.

For the second item, high-order numerical integration can
be used, such as the Newton-Cotes integration, to suppress the

Molecule velocity ξ1/ξref
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FIG. 1. Stable Maxwellian distribution computed by FP-DVM
on 503 and 1003 uniform meshes.

numerical error in this item. While for the sake of clarity, the
rectangular integration is used in this paper.

For the third item, a high-order central difference can
be used, which will be analyzed in Sec. IV A. Much of its
influence is on the order of the departure of ε from unity. A
too high-order central difference will harm the computational
efficiency.

IV. NUMERICAL EXPERIMENT

A. Maintain the thermal equilibrium Maxwellian distribution
(0D-3V case)

In this case, the initial distribution function is the
Maxwellian distribution g in the following form:

g = n
( m

2πkT

)3/2
exp

(
−mcici

2kT

)
. (28)

If a discrete numerical method is conservative, the distribution
function will maintain the Maxwellian distribution.

Using this case, the numerical stability of the present
method is examined. The validity of conservative coefficients
ε and the accuracy of the present scheme are also investigated.
For Maxwellian distribution, n = 1, ui = 0, and T = 1 are
chosen. The domain of truncated velocity space in each di-
rection is [−5, 5]. Both 50 × 50 × 50 and 100 × 100 × 100
meshes in velocity space are tested. Both second- and fourth-
order central difference are used in approximating the first-
and second-order slopes in the ES-FP collision operator. The
maintained distribution functions that are predicted using

TABLE I. Macroscopic variables and ε at different settings.

503 mesh 503 mesh 1003 mesh 1003 mesh
2nd order 4th order 2nd order 4th order

|ρ − 1| 8.5e − 5 8.5e − 5 1.3e − 5 1.2e − 5
|u1| 5.0e − 5 5.0e − 5 4.7e − 6 2.0e − 17
|T − 1| 5.2e − 4 5.2e − 4 9.5e − 5 9.1e − 5

|ε f − 1| 7.7e − 5 4.6e − 5 4.5e − 6 2.1e − 7
|εA,1 − 1| 3.0e − 5 7.4e − 5 1.1e − 6 8.9e − 16
|εD − 1| 2.0e − 2 6.4e − 4 5.0e − 3 9.3e − 5

log |ε f − 1|/ log 	ξ 5.8 6.2 5.3 6.7
log |εA,1 − 1|/ log 	ξ 6.5 5.9 6.0 15.0
log |εD − 1|/ log 	ξ 2.4 4.6 2.3 4.0
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FIG. 2. The relaxation process of distribution with initial anisotropic temperatures, only the region with distribution function greater than
5 × 10−3 is plotted, and the contour is on the plane ξ3 = 0. The evolution time τ is (a) 0, (b) 1, (c) 2, and (d) 10, respectively, in clockwise
from the top-left figure.

50 × 50 × 50 and 100 × 100 × 100 meshes are shown in the
radial direction in Fig. 1, respectively. Although the distribu-
tion on 50 × 50 × 50 meshes slightly deviates from the ana-
lytical Maxwellian distribution near the zero point, it is stable
since the discrete ES-FP is conservative. In Table I, there is
a comparison of integral error and ε under dense or coarse
meshes and using low- or high-order central difference for
calculating slopes. It can be seen that integral error (|ρ − 1|,
|u1|, |T − 1|) is related to the mesh number, and almost has
no relation to the order of central difference. Comparing to
the coarse mesh, by using a dense mesh, the precision of
macroscopic variables will increase, while the computational
cost will also increase. To increase the integration precision,
the high-order integration method such as Newton-Cotes can
be used without using a dense mesh. While for clarity, the
direct rectangular integration is used in this paper. Using
either a dense mesh or a higher-order difference will make
the deviation of ε from unity a smaller value. The largest
deviation comes from εD. From the log data, it can be seen that

when fourth-order difference is used, the order of |εD − 1| is
about 4, while for a second-order difference, it is about 2. This
data show that the order of |εD − 1| is related to the order of
numerical difference, and is almost not affected by the mesh
number. In the following test cases, the second-order central
difference is used in the velocity space for efficiency.

B. Energy relaxation among directions (0D-3V case)

In this case, initially the temperatures in different direc-
tions are not the same (anisotropic temperature). Through
molecular collisions, these temperatures will gradually
achieve equilibrium during several m.c.t. Here the initial
temperatures are set to be T1 = 2.0, T2 = 1.0, T3 = 1.0. The
truncated discrete velocity space is [−7, 7] in each direction
with 70 discrete points (70 × 70 × 70 mesh). The iteration
time 	t is chosen as 0.005τ . Here the τ = μ/p has the same
order of magnitude as τFP and τES, but their values are not the
same.
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FIG. 3. The relaxation process of anisotropic temperatures with
initial values T11 = 2T22 = 2T33.

For the Maxwell molecule, the relaxation of stress and heat
flux from the Boltzmann equation is [12]

∂τi j

∂t
= −τi j

τ
,

∂qi

∂t
= −Pr qi

τ
. (29)

For the homogenous case, since the density is a constant,
the relaxation of anisotropic temperature can be derived from
Eq. (29) as follows:

∂Ti j

∂t
= −Ti j − T δi j

τ
. (30)

So the analytical solution of temperature and heat flux can be
obtained as

Ti j (t ) = e−t/τ {Ti j (0) − T (0)δi j} + T (0)δi j,

qi(t ) = e− Pr t/τ qi(0). (31)

The relaxation process of distribution in the 3V space pre-
dicted by the present method is shown in Fig. 2, where the iso-
surface of distribution gradually transforms from an ellipsoid
to a sphere during several τ . In Fig. 3, the relaxation process
of anisotropic temperatures predicted by the present method
matches precisely with the analytical solution [Eq. (31)].

C. Relaxation of bi-model distribution function (0D-3V case)

In this case, the distribution function is composed of two
Maxwellian distributions determined by the physical vari-
ables before and after the shock wave, respectively. Accord-
ing to the Rankine-Hugoniot relation for a Ma 8.0 shock
wave, the physical variables before the shock are ua,1 = 8.0,
ua,2 = ua,3 = 0, Ta = 1.0, and the physical variables after
the shock wave are ub,1 = 2.09, ub,2 = ub,3 = 0, Tb = 20.87.
The weights of two Maxwellian distributions are chosen as
ρa = 0.9 and ρb = 0.1 to mimic the distribution function
in the front of the shock wave, where high nonequilibrium

exists. This case investigates the relaxation of this highly
nonequilibrium distribution function. The truncated discrete
velocity space is [−26, 26] in each direction with 260 dis-
crete points (260 × 260 × 260 mesh). The iteration time 	t
is chosen as 0.001τ . The time evolution of this initial bi-
model distribution is shown in Fig. 4, where two Maxwellian
distributions merge into a single one during about 10τ . The
evolutions of anisotropic temperatures and heat flux predicted
by the present method are shown in Fig. 5, and they match
with the analytical solution [Eq. (31)] precisely.

D. Relaxation of discontinuous distribution function
(0D-3V case)

The discontinuous distribution function in this case mimics
the nonequilibrium distribution at the gas-solid boundary or in
the Knudsen layer. It is composed of two half Maxwellian dis-
tributions. The interface of two half Maxwellian distributions
in velocity space is the face ξ1 = 0. Across the interface, the
distribution is discontinuous. The Maxwellian distribution on
the left is determined from ρa = 1.0, ua,i = 0, Ta = 2.0, while
the Maxwellian distribution on the right is determined from
ρb = 1.0, ub,i = 0, Tb = 1.0. This setting mimics the situation
that the temperature of fluid is different from the temperature
of the solid wall. The truncated discrete velocity space is
[−8, 8] in each direction with 80 discrete points (80 × 80 ×
80 mesh). The iteration time 	t is chosen as 0.005τ . The time
evolution of the initial discontinuous distribution is shown in
Fig. 6, where the discontinuity disappears during only one τ ,
and gradually achieves equilibrium during several τ . The evo-
lutions of anisotropic temperatures and heat flux predicted by
the present method are shown in Fig. 7. Due to the exponent
term in Eq. (31), at first the distribution function approaches
the equilibrium in a fast rate. This phenomenon can also be
seen from the quick disappearance of discontinuity. Then the
rate slows down when the distribution is near equilibrium.

E. Normal shock wave structure (1D-quasi 1V case reduced
from 1D-3V case)

Shock structure prediction is a benchmark test case for
nonequilibrium flow models and corresponding numerical
methods. In the macroscopic point of view, normal shock
wave is a discontinuity in space, across which physical vari-
ables change suddenly. While, in the microscopic point of
view (zoom into the thin shock wave), the physical variables
in the shock wave changes smoothly from the front to the
back of the shock wave. Physically, the molecules in the shock
wave are composed of the molecules before the shock (super,
hyper-sonic, low temperature) and the molecules after the
shock (subsonic, high temperature). When shock Ma number
is high, the separation of distribution functions before and
after the shock in velocity space is large. Since the molecular
collisions in the thin shock wave (about twenty m.f.p.) are
insufficient, the distribution function will be far from equi-
librium (high nonequilibrium).

The variable soft sphere (VSS) model is used in this
case since it can be reduced to the hard sphere (HS) model
and inverse power potential model directly by using their
scattering factor α and heat index ω. The m.f.p. of the VSS
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FIG. 4. The relaxation process of bi-model distribution, only the region with distribution function greater than (a)–(c) 5 × 10−5 or (d) 5 ×
10−4 is plotted, and the contour is on the plane ξ3 = 0. The evolution time τ is (a) 0, (b) 1, (c) 2, and (d) 10, respectively, in clockwise from
the top-left figure.
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FIG. 5. The relaxation process of anisotropic temperatures and heat flux of initial bi-model distribution. The left figure is the (a) anisotropic
temperatures, the right figure is the (b) heat flux.
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FIG. 6. The relaxation process of discontinuous distribution, only the region with distribution function greater than 5 × 10−3 is plotted,
and the contour is on the plane ξ3 = 0. The evolution time τ is (a) 0, (b) 1, (c) 2, and (d) 10, respectively, in clockwise from the top-left figure.
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FIG. 8. The structures of density, temperature, stress, and heat in Ma = 1.2 shock wave. The left figure is the (a) density and temperature,
the right figure is the (b) stress and heat flux.

model (denoted by λm) is defined as

λm = 1

β

√
RT

2π

μ

p
, (32)

where β is defined as

β= 5(α+1)(α+2)

4α(5 − 2ω)(7 − 2ω)
. (33)

In the shock structure case, the upstream and downstream
conditions are determined by the Rankine-Hugoniot relation.
The iteration time step of FP-DVM is chosen as

	t = min (	tFP,	tTP), (34)

here the subscript “TP” stands for “transport” and corresponds
to the free transport operator. 	tFP and 	tTP can be calculated
using the following equation:

	tFP = aFPτFP
	ξ 2

max (RT )
,

(35)

	tTP = aTP
	x

max (ξi )
,

where aTP and aFP denote the Courant-Friedrichs-Lewy (CFL)
numbers for the transport operator and collision operator,
respectively.

1. Mach 1.2

In this case, the HS molecule model (ω = 0.5, α = 1.0) is
used which is the same with the deterministic solution of the
full-Boltzmann equation in Ref. [42]. For the full-Boltzmann
solution, the x coordinate is nondimensionalized using the
m.f.p. of the HS molecule [42]. The density, temperature,
stress, and heat flux in the shock wave are nondimensionalized
using

ρ̂ = ρ

ρup
, T̂ = T

Tup
,

(36)
τ̂11 = − τ11

pup
, q̂1 = q1

pup
√

2RTup
,

here subscripts “up” and “down” are used to indicate the
variables in the upstream and downstream of the shock
wave, respectively. The truncated discrete velocity space is
[−7

√
RTup, 7

√
RTup] with 70 points. The cell Knudsen num-

ber Kncell = m.f.p./	x is chosen as 4.0 (the cell length in
physical space is a quarter of m.f.p.). aFP and aTP are set as
1.0 and 0.9, respectively. The density-temperature profile and
stress-heat flux profile are illustrated in Figs. 8(a) and 8(b).
The FP-DVM predictions match well with the full-Boltzmann
result in Ref. [42]. In this case, the Ma number is low, and the
nonequilibrium is not too strong.

2. Mach 3.0

The same HS model (ω = 0.5, α = 1.0) as the Ma 1.2
case is used here along with the same nondimensional-
ized x coordinate and physical variable [Eq. (36)]. Com-
paring to the Ma 1.2 case, the degree of nonequilibrium
increases in this case. The truncated discrete velocity is
[−10

√
RTup, 10

√
RTup] with 100 points. Kncell = 4.0 is used.

aFP and aTP are set as 1.0 and 0.8, respectively. The density-
temperature profile and stress-heat flux profile are illustrated
in Figs. 9(a) and 9(b). The FP-DVM predictions match well
with the full-Boltzmann result in Ref. [42], except that the
temperature profile rises a little earlier, so are the stress and
heat flux profiles.

3. Mach 8.0

The working gas is Argon in this case. When the Ma
number is 8.0, the flow inside the shock wave is in high
nonequilibrium. Being the same with Ref. [43], an eleventh
power inverse power potential model is used, whose model
coefficients can be calculated from Ref. [44] as ω = 0.68, α =
1.4225. The density, temperature, stress, and heat flux profiles
are calculated and compared to the DSMC results in Ref. [43].
Instead of using the m.f.p. of the inverse power potential
model and being the same with the setting in Ref. [43], the
x coordinates in the profiles are nondimensionalized using the
m.f.p. of the HS molecule. The density and temperature are
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FIG. 9. The structures of density, temperature, stress, and heat flux in Ma = 3.0 shock wave. The left figure is the (a) density and
temperature, the right figure is the (b) stress and heat flux.

normalized using

ρ̂= ρ − ρup

ρdown − ρup
, T̂ = T − Tup

Tdown − Tup
. (37)

The stress and heat flux are nondimensionalized using

τ̂11= − τ11

ρup(2RTup)
, q̂1 = q1

ρup(2RTup)3/2 . (38)

The truncated discrete velocity space is [−30
√

RTup, 30√
RTup] with 300 points, and the cell Knudsen number

Kncell = 4.0. aFP and aTP are set as 1.0 and 0.6, respectively.
The density-temperature profile and stress-heat flux profile are
illustrated in Figs. 10(a) and 10(b) along with the numerical
prediction using the BGK-type Shakhov model in Ref. [45].
The temperature, stress, and heat flux profiles predicted by the

Shakhov model deviate from the DSMC results in the front of
the shock wave, while the FP-DVM predictions match well
with the DSMC results in such a high Ma number and high
nonequilibrium case.

Since the aim of the above cases is examining the va-
lidity of the present FP-DVM method, then the scope of
the truncated velocity space and the amount of the discrete
velocity points are set to be large. For the Ma 8.0 case,
the velocity scope [−25

√
RTup, 25

√
RTup] is sufficient. With

different amounts of discrete velocity points in the ξ1 direction
(300, 200, 100, and 50 points, respectively), the numerical
results predicted by FP-DVM are examined in Fig. 11. It
can be seen that the results with different amount of discrete
velocity points almost coincide with each other, except in the
front of the shock wave where the results obtained using 50
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FIG. 10. The structures of density, temperature, stress, and heat flux in Ma = 8.0 Argon shock wave. The left figure is the (a) density and
temperature, the right figure is the (b) stress and heat flux.
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FIG. 11. The structures of density, temperature, stress, and heat flux in Ma = 8.0 Argon shock wave predicted by FP-DVM with different
amount of discrete velocity points in ξ1 direction. The left figure is the (a) density and temperature, the right figure is the (b) stress and heat
flux.

discrete velocity points deviate sightly from the others. The
distribution functions F (mass distribution along ξ1) and G
(energy distribution along ξ1) at different locations inside the
shock wave are shown in Fig. 12. They are predicted using
300 points and 50 points in the ξ1 direction, respectively.
Since this case is a high nonequilibrium one, the distribu-
tion functions inside the shock wave deviate much from the
Maxwellian distribution. It can be seen from Fig. 12 that
the positive property of distribution function is fulfilled in
this high nonequilibrium case. It can also be seen in Fig. 12
that distributions predicted using 50 discrete velocity points
match well with that predicted using 300 points. Since the
discrete velocity space with 50 points is very coarse, its

resolution for precipitous distribution is low. For example, the
setting of 50 discrete velocity points only has seven points
for approximating the peak of F at x = −5 [Fig. 12(a)], and
may be the reason of slight deviations in the front of the shock
wave (Fig. 11).

V. CONCLUSION

In this paper, a deterministic FP-DVM method is proposed
for the nonequilibrium flow simulations. The conservation
problem of the discrete ES-FP equation is resolved by multi-
plying conservative coefficients whose differences with unity
are small and have the same orders with the truncation error

FIG. 12. The distribution function at different x1 locations inside a Ma = 8.0 Argon shock wave predicted using 300 and 50 discrete
velocity points in ξ1 direction, respectively. The left figure is the (a) number distribution F , the right figure is the (b) energy distribution G.
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of the difference scheme for ES-FP collision operator. Using
four 0D-3V cases which mimic different types of distributions
that exist in real flow fields, the validity of the FP-DVM
method and ES-FP model for homogenous cases are proved.
In these cases, the evolution of nonequilibrium anisotropic
temperatures and heat flux match with the analytical Boltz-
mann solution precisely. To further extend the scope to the
ordinary inhomogeneous cases, a nD-quasi nV reduction for
the nD-3V (n < 3) ES-FP equation is developed, which can
greatly reduce the computational cost. Using the reduced
1D-quasi 1V FP-DVM method, the shock structure cases
from low to high Ma numbers are calculated. The negative
distribution function and early rise of temperature profile for
high Ma number cases do not appear in the present FP-DVM
predictions. All the density, temperature, stress, and heat flux
profiles match well with the direct full-Botlzmann results
and DSMC results. The validity and accuracy of both FP-
DVM and ES-FP model for nonequilibrium flow simulation
are proved, and the shock structure profiles predicted by the
FP-DVM method are probably the best numerical prediction
using model Boltzmann equations up to now to the best of our
knowledge. The advantages of the present FP-DVM method
can be summarized as follows.

(1) The present method for the ES-FP equation does
not suffer from the nonphysical negative distribution
function.

(2) By using the ES-FP equation, the information of the
derivatives in velocity space can be utilized, therefore, less
discrete velocity points can be adopted.

(3) The ES-FP equation has a good model precision (such
as in the high Ma number shock structure case).

Since the FP-type model equations have a stiffness prob-
lem, the penalty and implicit treatments used in previous
research should be considered in the further works of the
FP-DVM method to further increase its iteration time step.
The time integral solution of BGK-type equations can also be
used in the flux calculation of the present method to extend
its scope to the whole flow regime (make it a UGKS-type
method).
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