
PHYSICAL REVIEW E 100, 033307 (2019)

Modeling of nonequilibrium surface growth by a limited-mobility model
with distributed diffusion length

Thomas Martynec * and Sabine H.L. Klapp†

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

(Received 20 March 2019; revised manuscript received 9 July 2019; published 12 September 2019)

Kinetic Monte Carlo (KMC) simulations are a well-established numerical tool to investigate the time-
dependent surface morphology in molecular beam epitaxy experiments. In parallel, simplified approaches such
as limited mobility (LM) models characterized by a fixed diffusion length have been studied. Here we investigate
an extended LM model to gain deeper insight into the role of diffusional processes concerning the growth
morphology. Our model is based on the stochastic transition rules of the Das Sarma–Tamborena model but
differs from the latter via a variable diffusion length. A first guess for this length can be extracted from
the saturation value of the mean-squared displacement calculated from short KMC simulations. Comparing
the resulting surface morphologies in the sub- and multilayer growth regime to those obtained from KMC
simulations, we find deviations which can be cured by adding fluctuations to the diffusion length. This mimics
the stochastic nature of particle diffusion on a substrate, an aspect which is usually neglected in LM models.
We propose to add fluctuations to the diffusion length by choosing this quantity for each adsorbed particle
from a Gaussian distribution, where the variance of the distribution serves as a fitting parameter. We show
that the diffusional fluctuations have a huge impact on cluster properties during submonolayer growth as well
as on the surface profile in the high coverage regime. The analysis of the surface morphologies on one- and
two-dimensional substrates during sub- and multilayer growth shows that the LM model can produce structures
that are indistinguishable to the ones from KMC simulations at arbitrary growth conditions.
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I. INTRODUCTION

Nonequilibrium surface growth by means of molecular
beam epitaxy (MBE) is one of the most widely used tech-
niques to fabricate thin film devices for various technological
applications [1–3]. Since the growth conditions can be pre-
cisely controlled, MBE also serves as an exemplary experi-
mental setup to study fundamental aspects of nonequilibrium
statistical mechanics [4–6].

The time-dependent morphologies in MBE evolve due to
a competition between adsorption of particles on the sys-
tem’s surface, on the one hand, and diffusion processes,
on the other hand. Particles like atoms, organic molecules,
or colloids get adsorbed on a flat and defect-free sub-
strate (ideal growth conditions) at rate F , which is typically
given in deposited monolayers (MLs) per second (MLs/s)
[4–7]. The adsorption is followed by thermally activated
(Arrhenius-type) diffusion processes with energy-dependent
rates D(T ) = ν0exp(−EA/kBT ), where ν0 = 2kBT/h is the
attempt frequency (with kB being the Boltzmann constant, h
the Planck constant, and T the substrate temperature) and
EA the activation energy that consists of different energetic
contributions. “Free” particles, i.e., particles without in-plane
bonds towards particles on neighboring sites, diffuse laterally
on the substrate at rate D0(T ) until they participate in a

*martynec@tu-berlin.de
†klapp@physik.tu-berlin.de

cluster formation event (nucleation) or attach to an existing
cluster. Depending on the details of the system (i.e., the type
of deposited particles and substrate material) and the growth
conditions, that is, the temperature T and adsorption rate F ,
the surface evolves either smooth or rough. Commonly, the
growth conditions are expressed by the growth parameter

R = R(T, F ) = D0(T )/F. (1)

There are various conceptually different simulation strate-
gies to model the emerging morphologies in nonequilib-
rium surface growth, including the level-set method [8,9],
geometry-based approaches [10], molecular dynamics simula-
tions [11–18], and numerical solutions of stochastic equations
governing the evolution of the surface height [19–24]. One
further, very popular simulation strategy is to employ lattice
models that are based on activation energy-dependent hopping
rates for all particles in the topmost layer. These models
are often referred to as “full diffusion” or Arrhenius-type
models [25–35]. One major example is the (event-driven)
kinetic Monte Carlo (KMC) method based on the Clarke-
Vvedensky bond-counting Ansatz [36] involving diffusion
to nearest-neighbor lattice sites. Concerning atomic systems,
not only can the experimental morphologies seen in MBE
experiments be reproduced by KMC simulations, but also fine
details of the growth process at the atomistic length scale
[37–44]. More complicated is the growth of organic systems
where essentially only the morphologies can be described
[45–48] due to the generally more complicated interparticle
interactions involved.
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Even though the KMC method can nowadays handle
growth simulations with large growth parameters and many
deposited layers, they still require a significant amount of
computational time. This is mainly due to the computational
effort required to simulate the trajectories of freely diffusing
particles, without making much progress in the actual time
evolution of the system. To speed up the simulations, mul-
tiscale approaches, where the fastest dynamical process in-
volved (i.e., free lateral diffusion) is described in an averaged
mean-field manner or by an appropriate diffusion equation,
have been introduced and investigated in detail [49–55].

An alternative class of systems to model nonequilibrium
surface growth are discrete lattice growth models, which are
known as limited mobility (LM) models [56–60]. Due to their
simplicity, these models are especially suitable to investigate
scaling properties, to study kinetic surface roughening and
morphological properties, as well as to investigate details like
crossover and long-lived transient effects in nonequilibrium
surface growth [61–64]. In LM models, the process rates that
are used in KMC simulations are replaced by a certain set
of stochastic rules for particle movements that depend on
the local environment of the position of particle adsorption.
Importantly, the deposited particles perform only one single
movement that depends on the specific rules of the underlying
LM model. Well-known examples of LM models with surface
diffusion include the Family (F) model [56], the Wolf-Villain
(WV) model [57,58], and the model of Das Sarma and Tam-
borenea (DT) [59,60].

In the present study, we introduce an extended version
of the DT model since the latter is particularly suitable to
describe low temperature MBE growth (detachment processes
can be essentially neglected). In the original version of the
DT model [59], adsorbed particles explore only the nearest
neighbors of the adsorption site. This scenario corresponds
to a diffusion length l = 1 (in units of the lattice constant).
However, under realistic conditions for MBE growth, the av-
erage diffusion length of particles is usually l > 1, a situation
that has been studied in the literature in different variants
[61,65–68]. Studying the case l > 1 generally requires the use
of various fit parameters in the chosen LM model to match
the results of corresponding KMC simulations [67,68]. Here
we employ a LM model with fit parameters that are based
on physical quantities only. Extending the DT model towards
l > 1 implies that we have to find a prescription of how to
choose l for a given value of R [see Eq. (1)]. This is the first
objective of the present paper.

More specifically, we aim to choose the value of l based
on an appropriate quantity calculated by (short) KMC simula-
tions in the submonolayer growth regime. In other words, we
seek a mapping procedure between the two type of models.
The goal is that the resulting LM model produces surface
structures indistinguishable to those obtained from KMC
simulations (and therefore also identical to low-temperature
MBE growth) at any value of R with, at the same time, highly
reduced computational effort. In this way, the LM model can
be used to simulate MBE at growth conditions and system
sizes that are typically hard to access in KMC simulations,
especially when averaging over many realizations is required.
This would enable us, for example, to study the asymptotic
regime of the surface growth where we expect to observe

scaling behavior of the growing surface. In particular, one
would like to extract the corresponding critical exponents
describing the scaling of the surface roughness [69] without
being limited by finite-size effects or computational manipu-
lations like the noise reduction technique (NRT) [63,64,70–
72].

The second main goal of this study is to investigate how the
strength of fluctuations of the diffusion length in the model
with limited particle mobility alters the resulting surface
morphologies, as compared to the case where the diffusion
length is the same for all particles that are deposited during
the growth process.

The remainder of the paper is structured as follows. In
Sec. II the KMC model and the LM model are introduced
and explained in detail. In line with other studies in this
area [61,65–68], we mainly focus on the one-dimensional
case but consider two-dimensional lattices as well. Following
this, we establish in Sec. III B a relation between R and l to
connect both models. A numerical analysis and comparison
of the two models in the sub- and multilayer growth regime
at various growth conditions are given in Sec. IV. There we
also highlight the importance of diffusional fluctuations in the
regime of large values of l and investigate the general effect
of a variable diffusion length on the surface morphology in
the multilayer growth regime. Results of our approach in two
dimensions are presented in Sec. V. Finally, we summarize
and conclude in Sec. VI.

II. SIMULATION DETAILS

A. System settings

Simulations in this study were performed on one- and
quadratic two-dimensional substrates (d = 1, 2) with discrete,
equidistant positions i, j = 1, 2, . . . , L. The corresponding
local surface heights in one-dimension are given by the inte-
gers hi and by hi j in two dimensions (i.e., hi = 0 corresponds
to an empty site).

We apply periodic boundary conditions and the solid-on-
solid condition; that is, vacancies and overhanging particles
are not allowed. As a consequence, the spatially averaged
surface height on the one-dimensional lattice at time t is given
by

〈h(t )〉 = 1

L

L∑
i=1

hi(t ) = Ft, (2)

where the expression on the right side corresponds to the
number of deposited particles. Generalization to the two-
dimensional case is straightforward. The product Ft is
henceforth referred to as coverage θ = Ft . Therefore, time-
dependent quantities can also be expressed as functions of
θ . Throughout this work, we characterize the growth condi-
tions via the dimensionless, free diffusion to adsorption ratio
R(T, F ) defined in Eq. (1).

B. The kinetic Monte Carlo model

Within the KMC method, particles are adsorbed on ran-
domly chosen lattice sites with an (effective) adsorption
rate F . The adsorption process is followed by diffusion
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processes to nearest-neighbor lattice sites. Following the
Clarke-Vvedensky bond-counting ansatz [36], the hopping
rates are given by

D(T ) = ν0exp(−EA/kT ), (3)

with activation energy EA = ED + nEN . Here ED is the energy
barrier for free diffusion, which we set to ED = 0.5 eV in
all KMC simulations in this study. We use this value for ED

because it is close to the known diffusion barriers of various,
intensely studied, atomic and organic systems [39,47], and
because this choice is consistent with previous KMC studies
[29,47]. The rate for free diffusion to neighboring lattice sites
is then given by

D0(T ) = ν0exp(−ED/kT ). (4)

The additional energy contribution EN stems from inter-
actions with nearest neighbors in lateral directions. Here n
is the number of such bonds. In one dimension, this number
can take the values n = 0, 1, 2, while n = 0, 1, 2, 3, 4 in two
dimensions. We here choose a high value of EN , that is, EN =
1.0 eV, in order to mimic MBE growth at low T . Then already
one in-plane bond is sufficient to suppress further diffusion.
In other words, particles immediately immobilize once they
sit on a lattice site i with n > 0. Consequently, dimers already
represent stable clusters, and the critical cluster size i∗ is one
[73].

A typical KMC simulation consists of a large number of
iterations p. In each iteration step, either a particle performs a
hopping process to a neighboring lattice site, or a new particle
gets adsorbed. The simulation time (with t0 = 0 being the
starting time) after p iteration steps is updated stochastically
as

tp+1 = tp + τ, (5)

where τ is defined as

τ = − ln(X )

rall
. (6)

Here X ∈ (0, 1) is a random number chosen uniformly from
the given interval, and

rall =
L∑

i=1

⎛
⎝ 2∑

j=1

Di j + F

⎞
⎠ (7)

is the sum of rates related to all particles in the topmost
layer of the discretized (one-dimensional) lattice. Again, the
generalization to a two-dimensional lattice is straightforward.

For simplicity, we do not consider an additional energy bar-
rier EES for interlayer diffusion processes across step edges,
usually referred to as Ehrlich-Schwoebel barrier [74–76].
However, such a barrier could be included, in principle. The
temperature is fixed to T = 273 K in all KMC simulations
in this study. In order to realize different growth conditions
expressed via the growth parameter R = D0(T )/F , we use F
as a variable.

C. The limited mobility model

The second model we investigate falls into the class of
limited mobility models. Specifically, we consider a variant of

the intensively studied model by Das Sarma and Tamborenea
(DT model), in which the diffusion length is restricted to one
lattice constant (l = 1) [59,60]. In contrast, here we consider
the case l � 1 [61,67,68] and, additionally, consider l as a
fluctuating quantity.

To clarify our approach, we first summarize the algorithm
of the original DT model on a one-dimensional lattice. In each
iteration step, a particle is adsorbed at a randomly chosen
lattice site i ∈ [1, L] and sticks there permanently if it has at
least one in-plane nearest neighbor. Otherwise, the particle is
allowed to hop either to the left neighboring site, j = i − 1,
or to the right neighboring site, j = i + 1, if one of these two
sites provides at least one in-plane bond. If both sites provide
at least one such lateral bond, one of the two sites is chosen
randomly and the particle hops to this site and sticks there.
If none of the neighboring sites provides lateral bonds, the
particle will remain at the initial adsorption site i.

In-plane bonds for a particle at site i are present if hi +
1 � h j ( j = i ± 1). If the site provides exactly one in-plane
bond (n = 1), it is called a kink site, while a site that provides
two such bonds (n = 2) is called a valley site. Since particles
with n � 1 are immobile, the DT model represents a minimal
model for MBE growth at low T . In this situation, one in-plane
bond already is enough to suppress particle diffusion.

In the present study, we extend the DT model by allow-
ing adsorbed particles to explore not only nearest-neighbor
lattices sites but also sites that are farther away from the
deposition site. In other words, we consider the case l � 1.
In general, nonequilibrium surface growth is dominated by
stochastic processes that involve fluctuations not only in the
deposition but also in the diffusive motion of the particles.
By setting a constant diffusion length l in the LM model,
this fundamental aspect is fully neglected. Our strategy to
add fluctuations to the diffusion processes in the LM model
is as follows. Instead of taking a fixed diffusion length for all
particles, we choose l individually for each particle from a
Gaussian distribution

P(l | ln, σ
2) = 1√

2πσ 2
exp

[
− (l − ln)2

2σ 2

]
. (8)

In Eq. (8), ln is the mean value of the diffusion length
(which we determine via KMC simulations) and the variance
σ 2 represents the control parameter that allows us to vary the
degree of variability in the diffusion length l . In this sense, σ 2

controls the strength of diffusional fluctuations. The system
in one dimension is illustrated in Fig. 1. We note here that
our extended model can be generalized to two dimensions. In
that case, care has to be taken since there may exist multiple
appropriate final sites at the same distance from the adsorption
site and one has to define rules which of the possible final sites
is chosen (see Sec. V).

III. CONNECTING BOTH MODELS

A. Strategy

It is well established that the surface morphologies ob-
served in MBE (and KMC) depend on the growth parameter
R(T, F ) [see Eq. (1)]. The latter determines, in particular,
the cluster properties in the submonolayer as well as the
overall surface morphology in the multilayer growth regime.
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FIG. 1. Illustration of particle deposition and surface relaxation
in the system (in one dimension) that is used to simulate low-
temperature MBE growth. The quantities F and D0(T ) refer to the
KMC simulation, while the Gaussian distribution P(l|ln, σ

2) for the
diffusion length l is characteristic for the LM model with diffusional
fluctuations whose strength is controlled via the variance σ 2.

Our aim is to establish a direct connection between the
KMC and our LM model with distributed diffusion length
in order to mimic growth by the KMC model at any value
of R(T, F ) (in the following we use only R). To compare
the resulting morphologies in the submonolayer regime, we
calculate the total number of clusters on the lattice, N (θ ),
and the cluster size distribution, P(S), at various values of the
growth parameters R. In the multilayer regime (see Sec. IV B),
we calculate and compare layer coverages θk (with k being
the layer index), compute the global interface width W (L, θ )
[see Eq. (13)], and perform a scaling analysis. Moreover,
we consider the height-height autocorrelation function �(r, θ )
[where r = |i − j|; see Eq. (20)] in order to extract a cor-
relation length ξ0 that allows us to characterize mounded
surface profiles. If all these measured quantities match in
both models for all values of the growth parameter R, we
conclude that the LM model with distributed diffusion length
l correctly mimics the surface structures produced in KMC
simulations.

Our first main objective of this study is to find a consistent
relation between the growth parameter R in the KMC model,
on the one hand, and the diffusion length l in the LM model,
on the other hand, such that the resulting morphologies are
indistinguishable. Second, we investigate the general effect
of the variance σ 2 in our LM model on the morphological
evolution of the surface in the sub- and multilayer growth
regime.

B. Diffusion properties

1. Nucleation length and the geometrical cluster distance

We calculate via KMC simulations the mean-squared dis-
placement (MSD) of adsorbed particles as a function of time
t̃ they spend on the lattice. The MSD is defined as

MSD(t̃ ) = 〈[i(t̃ ) − i(0)]2〉 . (9)

Here i(t̃ ) ∈ [1, L] represents the discrete position of the par-
ticle on the lattice at time t̃ , and i(0) is the site where the
particle has been initially adsorbed at t̃ = 0. Further, 〈·〉 is
an average over many realizations. Depending on the growth
conditions, MSD(t̃ ) saturates at a characteristic time t̃S and

FIG. 2. KMC results for the nucleation length ln [see Eq. (10)] of
particles adsorbed at the very early stage of submonolayer growth,
and the geometrical distance dg [see Eq. (11)] between clusters,
as a function of R. The dashed black line describes the depen-
dency ∼Rγ , with γ = 1/4 (d = 1), and the dash-dotted line follows
∼R1/6 (d = 2).

corresponding value MSDS = MSD(t̃S ). This reflects the im-
mobilization induced by the formation of in-plane bonds. In
each simulation run, only the first deposited particle is tracked
since this particle is expected to travel the maximum possible
distance at the given value of the growth parameter R. We
average MSD(t̃ ) over O (105) realizations for all considered
values of R.

From the saturation value MSDS , we then define the “nu-
cleation length”

ln(R) =
√

MSDS (R). (10)

An additional (and experimentally accessible) measure for the
length a particle travels until getting immobilized is the “geo-
metrical cluster distance.” This quantity (for a d-dimensional
system) is given by

dg(R) =
[

Ld

Nmax(R)

]1/d

, (11)

where Nmax(R) is the maximum number of clusters in the
first layer during submonolayer growth and L is the linear
system size. It is known that for one-dimensional systems
with irreversible attachment, Nmax ∼ R−1/4 [77,78], whereas
Nmax ∼ R−1/3 for irreversible attachment in two dimensions
[73].

Now the question arises whether ln (or dg) might serve as
an appropriate choice for the diffusion length l in our LM
model. To explore this issue, we plot ln along with dg as a
function of R (in the experimentally relevant regime) in Fig. 2.
For values R < 103, particle adsorption dominates, and we
observe an increase of ln with R, while dg remains nearly
constant. As soon as we enter the regime R � 103, particle
diffusion becomes the dominant process, and we identify the
characteristic scaling ln ≈ dg ∼ R1/4 (d = 1), because dg ∼
1/Nmax [see Eq. (11)]. For the two-dimensional scenario (d =
2) we find dg ∼ R1/6, since dg ∼ (1/Nmax)1/2.
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FIG. 3. Comparison of N (θ ) in the KMC model for various
values of R (solid lines) with the LM model where l = ln(R) is used.
The dashed lines represent results of the LM model with σ 2 = 0, and
the dots correspond to N (θ ) with optimal values of σ 2.

The intriguing result is that ln follows the same scaling and
takes (approximately) the same values. This means that it is
sufficient to know Nmax (which can be experimentally deter-
mined from AFM or STM snapshots) to find both lengths, ln
and dg.

Based on these findings, we henceforth take the nucleation
length ln (or, equivalently, dg for R � 103) as an estimate for
the diffusion length l in the LM model. In the following,
we analyze corresponding numerical results in detail where
we particularly focus on the effect of diffusional fluctuations
which are controlled via σ 2.

IV. RESULTS IN ONE DIMENSION

A. The submonolayer growth regime

In this section, we aim at investigating whether the LM
model with mean diffusion length l = ln(R) and variance
σ 2 can indeed reproduce morphologies in the submonolayer
regime (θ < 1) that are equivalent to those obtained from
KMC simulations at arbitrary values of R. Here we focus
on the one-dimensional case. To compare the two models
quantitatively, we calculate N (θ ), the number of clusters in
the first layer, as well as the corresponding distribution P(S) of
clusters of size S. Since detachment of particles from cluster
boundary sites is neglected, dimers already represent stable
clusters. We thus distinguish between clusters N (of size 2 �
S � L) and monomers n.

1. Number of clusters in the first layer

The evolution of N (θ ) for various values of the growth
parameter R is shown in Fig. 3. We here focus on clusters
in the first layer and monitor them up to a final coverage of
θ = 2.5. In this regime, we observe good agreement between
the KMC (solid lines) and the LM model with constant l (i.e.,
σ 2 = 0 represented by dashed lines) at the lowest value of R
considered, R = 4 × 102 (corresponding to l = 5 in the LM
model). In particular, the location and value of the maximum,
Nmax, is matching perfectly. However, for larger values of R,

TABLE I. Maxmimum number of clusters Nmax and the relative
error ε (in %) in Nmax during submonolayer growth in the LM model
without fluctuations in l compared to KMC simulations at various
values of the growth parameter R (in d = 1).

R l Nmax KMC Nmax LM, σ 2 = 0 ε in %

1.5 × 102 3 403.85 403.21 0.16
4.0 × 102 5 333.72 332.56 0.35
1.3 × 103 8 272.54 252.55 7.33
4.0 × 103 12 220.08 186.29 15.35
4.0 × 104 23 134.84 105.36 21.86
8.0 × 104 30 116.76 86.99 25.50
4.0 × 105 46 80.69 59.61 26.13
4.0 × 106 85 32.55 21.61 33.61

we find pronounced deviations. Particularly striking are the
discrepancies in Nmax and the emergence of a plateau in N (θ )
within the LM model in comparison to KMC simulations with
R � 103. This shows that at growth conditions where diffu-
sion dominates over adsorption, the LM model with a constant
diffusion length for all particles fails to correctly reproduce
the KMC simulations. To quantify the mismatch between the
two models (in the absence of diffusional fluctuations, i.e.,
σ 2 = 0, in the LM model), we show in Table I the values of
Nmax and the relative error ε for various growth conditions
expressed via R and corresponding values of l .

Furthermore, Fig. 3 also shows that the deviations regard-
ing N (θ ) between the two models become much smaller when
fluctuations in l are “switched on.” This is done by choosing
the variance σ 2 appropriately for a given value of l (symbols
in Fig. 3 represent the LM model with optimal values of σ 2).
To this end, we consider the difference between the maximum
number of clusters

�Nmax = NKMC
max (R) − NLM

max(l, σ 2) (12)

in the KMC and the LM model, respectively. Results for
�Nmax as a function of σ 2 for various growth conditions
are shown in Fig. 4. One observes that �Nmax is positive
for small σ 2, reflecting the fact that the LM model with
negligible fluctuations in l underestimates the values of Nmax

from KMC simulations. As the strength of fluctuations is
increased, �Nmax decreases until it crosses the black dashed
line that corresponds to �Nmax = 0. The values of σ 2 for
which �Nmax = 0 are referred to as optimal σ 2 (the inset of
Fig. 4 shows the dependency of the optimal value of σ 2 as
a function of l). These optimal values are used in Fig. 3 to
match the KMC results (and they are also used for all further
analyzed quantities). Upon increasing σ 2 above the optimal
value, �Nmax takes negative values. In this range, the number
of clusters overshoots the values Nmax obtained from KMC
simulations. Taken together, Fig. 4 shows the importance of
diffusional fluctuations but also reveals that their strength has
to be chosen carefully.

It has been shown that the asymptotic scaling of the number
of clusters as a function of θ (in one dimension) follows
N ∼ θ1/4 [53,79], and the results in Fig. 5 reveal that the LM
model obeys this scaling only with optimal σ 2. Additionally,
we observe unexpectedly good agreement with KMC results
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FIG. 4. The quantity �Nmax [see Eq. (12)] as a function of the
variance σ 2 in the LM model for various values of the mean diffusion
length ln(R) = l . The black dashed line indicates �Nmax = 0. The
inset shows the optimal values of σ 2 as a function of l fulfilling
�Nmax = 0.

concerning the number of monomers n as a function of θ

(during submonolayer growth), provided that the optimal σ 2

is chosen. Even though the values for n obtained from KMC
and LM do not perfectly match, the scaling n ∼ θ−r , with
r ≈ 0.64, is quite similar [53]. In this context we note that
the mean-field theory predicts r = 0.5 [79], and the difference
in r (between simulations and mean-field theory) is because
our value for R is chosen too small. However, r ≈ 0.64 was
also found in Ref. [53]. This is rather surprising since we do
not explicitly model the particle diffusion and thus did not
expect such a resemblance. In contrast, the LM model with
fixed diffusion length (σ 2 = 0) gives a wrong scaling for both
N and n.

2. Cluster size distributions in the first layer

We now consider the cluster size distribution P(S) in the
LM model for two representative values of the mean diffusion
length, l = 8 and l = 20 (see Fig. 6). Our goal is to explore the

FIG. 5. Number of clusters N and monomers n as a function
of coverage θ on a lattice of size L = 16 384 for the KMC model
and the LM model with corresponding diffusion length and different
values of the variance σ 2. The solid black line follows ∼ θ1/4, and the
dashed black line scales according to ∼ θ−r , with r ≈ 0.64 [53,79].

FIG. 6. Comparison of the cluster size distribution P(S) during
submonolayer growth at θ = 0.5 for (a) l = 12, (b) l = 24, and vari-
ous values of the variance σ 2 that controls the strength of diffusional
fluctuations.

effect of fluctuations in l on P(S) in the submonolayer regime
(at θ = 0.5) on a qualitative level only, without performing a
detailed scaling analysis of cluster size distributions as done
in previous studies [77,80]. For both values of l , we observe
a shift of the maximum of P(S) towards smaller values of S
as the value of σ 2 is increased. Together with this shift, there
emerges a left shoulder that indeed corresponds to the correct
form of P(S) for small cluster sizes S in the precoalescence
regime [6,7]. At σ 2 = 0 this shoulder is absent for l = 24 and
too small for l = 12. Using the earlier obtained optimal values
for σ 2 (see Fig. 4), we find good agreement between P(S)
obtained from the LM and the KMC model, respectively. As
σ 2 is increased above the optimal σ 2, the maximum of P(S) is
shifted to smaller values of S until the left shoulder vanishes
and P(S) becomes a monotonically decreasing function of
S. The dependency of P(S) on σ 2 shows that diffusional
fluctuations are essential to retain the correct form of P(S)
in systems that model nonequilibrium surface growth with
limited mobility of particles.

Finally, we shortly summarize our reasoning for the ob-
served discrepancies in N (θ ) and P(S) between the KMC
and the LM model without fluctuations in l for certain
growth conditions, R > 4 × 102 (l > 5), and thereby justify
our LM model. Nonequilibrium surface growth is dominated
by stochastic processes that involve fluctuations not only in
the deposition but also in the diffusive motion of the adsorbed
particles. By setting a constant diffusion length l in the
LM model, this fundamental aspect is fully neglected. As a
consequence, we obtain less clusters which are, moreover, too
regular in size as opposed to the clusters in the KMC sim-
ulations, where the stochastic nature of diffusion is included
(see Figs. 3, 5, 6). While diffusional fluctuations seem to be
negligible at R � 4 × 102 (l � 5), they do become significant
for growth conditions where diffusion dominates, R > 103

(l > 5). Therefore, to realistically model nonequilibrium sur-
face growth in the LM model at large values of R, one has to
introduce diffusional fluctuations. The way we have chosen to
include them is to pick the diffusion length for each deposited
particle from a Gaussian distribution P(l|ln, σ 2) where the
variance controls the strength of fluctuations around the mean
value l .
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B. The multilayer growth regime

Having found a suitable LM model to describe the sub-
monolayer growth, it is an important question whether this
model is also capable of describing multilayer growth. The
main quantity of interest concerning the surface morphol-
ogy in the multilayer regime is the global interface width
[4,56,81,82,84], defined as the root of the integrated mean-
square fluctuations of the local surface height at coverage θ . In
continuous form, the global interface width in one dimension
reads

W (L, θ ) =
√

1

L

∫ L

0
[h(x, θ ) − 〈h(θ )〉]2 dx. (13)

Here h(x, θ ) is the local surface height at position x (or i in
discrete form) and coverage θ , L is the size of the substrate,
and

〈h(θ )〉 = 1

L

∫ L

0
h(x, θ ) dx (14)

represents the average surface height of the growing film.
Thus, W (L, θ ) is a measure of the surface roughness. Further,
studying W (L, θ ) allows us to explore whether the dynamics
of the growing surface exhibits universal behavior and can
thus be assigned to one of the established universality classes
in nonequilibrium surface growth [4,7,59,60,83–88]. To be
more specific, investigating W (L, θ ) helps to identify whether
the local surface height evolves (in the hydrodynamic limit)
in the functional form ∂θh(x, θ ) = F[∇nh(x, θ )], where F
is a characteristic functional involving gradient terms. Thus,
examining W (L, θ ) can contribute to a deeper understanding
of the interface dynamics during MBE growth and may lead to
improved control strategies for epitaxially fabricated devices.

Generally, the global interface width is expected to follow
the Family-Vicsek scaling relation [69]

W (L, θ ) ∼ θβ f

(
L

θ1/z

)
, (15)

where β and z are the growth and dynamic exponent, respec-
tively. Further, f (u) is a scaling function that obeys

f (u) ∼
{

uα, u 
 1
const, u � 1 , (16)

which involves the global roughness exponent α = βz that
depends on the two independent exponents β and z. The
set of these three critical exponents (α, β, z) determines the
universality class of the growth process under study.

The growth exponent β can be extracted from the short-
time behavior of the interface width, which is known [69] to
scale as W (L, θ ) ∼ θβ for coverages θ < θ∗ [with θ∗ being
the crossover coverage at which W (L, θ ) reaches a saturation
value Wsat (L)]. To obtain the exponents α and z, it is necessary
to reach the asymptotic regime, θ � θ∗. Since the crossover
coverage θ∗ scales with system size L according to [69]

θ∗ ∼ Lz, (17)

it is very difficult to determine α and z for large L. This is due
to the high computational demand to reach Wsat (L), especially
when α > 1 and z > 2 [63,64,72].

FIG. 7. (a) Evolution of the coverage in the first 10 layers in
the KMC model at R = 102 and l = 5 (σ 2 = 0.1) in the LM model.
(b) The same at R = 4 × 104 in the KMC model and l = 24 (σ 2 =
7.0) in the LM model. (c) Coverage evolution of the tenth layer at
various growth conditions in both models. Solid lines represent KMC
simulations, dotted lines are results from the LM model (with optimal
variance σ 2).

1. Evolution of layer coverages

In order to compare both models the initial stage of multi-
layer growth, we compute the evolution of the coverage in the
first 10 layers. In the following, layer coverages are denoted
by θk , with k being the layer index. They are defined as

θk = 1

L

L∑
i=1

�(|hi − k|), (18)

with the Heaviside step function �(X ) that obeys �(X ) =
0 for X < 0 and �(X ) = 1 for X � 0. We note that θk is
different from the quantity θ , since the latter describes the
total coverage.

Results for θk (for k = 1 to k = 10) are shown in Fig. 7
for two different values of R and corresponding distributions
P(l | ln, σ 2). For both considered growth conditions we find
perfect agreement between the layer coverage evolution in
both models. To show that this agreement holds at any value of
the growth parameter R, we present in Fig. 7(c) the evolution
of θ10(θ ) for various values of R and corresponding P(l |
ln, σ 2). Again, we find nearly perfect agreement between
results from both models. Thus, we conclude that the LM
model with optimal σ 2 yields a very good description of the
KMC results during the early stages of multilayer growth.
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KMC

KMC

KMCKMC

FIG. 8. Global interface width W (L, θ ) as a function of coverage
θ for four different values of R in the KMC model (symbols) and
corresponding diffusion length l in the LM model (solid lines) with
optimal values for σ 2 for system sizes from L = 64 to L = 256.

2. Roughness and scaling in the multilayer growth regime

In this section we study the regime of many layers (up to
θ = 106) by investigating the global interface width W (L, θ )
[see Eq. (8)]. The evolution of W (L, θ ) for different system
sizes L and four exemplary values of R and corresponding
distributions P(l | ln, σ 2) is shown in Fig. 8. Results from
KMC simulations are given by symbols, while for the LM
model, W (L, θ ) is represented by solid lines.

According to the Family-Vicsek scaling relation [69],
W (L, θ ) initially shows power-law scaling, W (L, θ ) ∼ θβ .
From our KMC data, we identify β ≈ 1/3 for all considered
values of R. The reason why β does not depend on R is
that varying R does not change the symmetry properties
of the system [88–90]. The growth exponent β ≈ 1/3 also
correctly describes the roughening in the LM model. Not is
only the scaling exponent β ≈ 1/3 the same in both models,
but also the actual values of W (L, θ ) for all considered growth
conditions and system sizes L [see Fig. 9(c)].

After a crossover to the asymptotic regime at the crossover
coverage θ∗, the interface width saturates. Independent of the
value of R and P(l | ln, σ 2), the onset of roughness satura-
tion scales θ∗ ∼ L3. Again, the scaling exponents are very
similar in both models for all considered growth conditions
[see Fig. 9(d)].

In addition, we find that the saturation values obey
Wsat (L) ∼ L1 [see Fig. 9(b)]. Thus, the roughness exponent
α ≈ 1 is the same in both models for all considered growth
conditions.

At this point it is worth recalling that our LM model
involves a fluctuating diffusion length. To demonstrate the
importance of fluctuations in the multilayer regime, we
show in Fig. 10 the relative error ε(Wsat ) = |Wsat (L)LM −

FIG. 9. (a) Scaling of the saturation roughness Wsat as a function
of system size L for two values of R in the KMC model and the
corresponding values of l and σ 2 in the LM model (dotted black
line ∼L1). (b) Roughness exponent α, (c) growth exponent β, and
(d) dynamic exponent z for various growth conditions in both models.
The lines in panels (b–d) represent the values of α, β, z according
to the VLDS universality class in one dimension.

Wsat (L)KMC|/Wsat (L)KMC × 100 of Wsat (L) for the LM model
with σ 2 = 0 and the version with optimal σ 2. We find that,
as L is increased, ε(Wsat ) diminishes with optimal σ 2, while
the error is � 40% in absence of diffusional fluctuations
(σ 2 = 0).

We now turn back to the scaling behavior. In summary, we
identify the following critical exponents in our simulations:
α ≈ 1, β ≈ 1/3, z ≈ 3. As known from simulations and an-
alytical calculations of the DT model (with l = 1), this set

FIG. 10. Relative error ε(Wsat ) of the saturation roughness
Wsat (L) in the LM model compared to KMC simulations. Results for
ε(Wsat ) without fluctuations in the diffusion length l (i.e., σ 2 = 0) are
given by hexagons, while ε(Wsat ) with optimal σ 2 are represented by
triangles.
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FIG. 11. (a) Scaling of the saturation roughness Wsat (l ) in the LM
model as a function of the average diffusion length l with optimal
values for σ 2 for different system sizes L. The black dotted line
follows ∼l−3/2. (b) Scaling of Wsat (R) as a function of the growth
parameter R. The black dotted line follows ∼R−1/2. (c) Rescaled
saturation roughness W RE

sat in the LM model and corresponding KMC
simulations.

of critical exponents belongs to the Villain-Lai–Das Sarma
(VLDS) universality class in one dimension [60,83,91]. The
corresponding evolution equation for the surface height in the
hydrodynamic limit is given by

∂t h(x, t ) = −ν4∂
4
x h(x, t ) + λ4[∂2

x h(x, t )]2 + F. (19)

In Eq. (19), h(x, t ) is the surface height at position x at time
t , ν4 and λ4 are constants, and F is a Gaussian white noise,
representing the randomness accompanying the deposition of
particles. Thus, Eq. (19) is a stochastic, nonlinear partial dif-
ferential equation. Note that for λ4 = 0 the equation reduces
to the linear Mullins-Herring (MH) equation (characterized by
the critical exponents, in one dimension, α = 3/2, β = 3/8,
z = 4) [92,93]. The nonlinear equation, λ4 �= 0, is known to
have the same symmetry as several discrete lattice models
(including the DT model) [59,60] that are frequently used to
model surface growth. Thus, the nonlinear equation displays
the same set of critical exponents.

As known from experiments [94–96] and KMC simula-
tions [97–99], the surface of a growing thin film becomes
smoother as the value of R is increased. We systematically
study this smoothing of the surface and the thus resulting
decrease of the surface roughness in the LM model in detail
by plotting Wsat versus l for different system sizes L in
Fig. 11(a). We observe that Wsat (L, l ) obeys a power law,
Wsat (L, l ) ∼ l−φ , with scaling exponent φ ≈ 3/2 that is in-
dependent of L. In KMC simulations, the saturation rough-
ness decreases according to Wsat (L, R) ∼ R−δ , with δ ≈ 1/2
[see Fig. 11(b)]. To confirm the correctness of the scaling

FIG. 12. (a–f) Height profiles in the LM model at θ = 106 for
two representative values of l and different values of the variance σ 2

at coverage θ = 106 in systems of size L = 4096. (g) Height-height
correlation function �(r)/�(0) for the depicted system settings with
l = 5 and different values of σ 2 at θ = 104. (h) The same as in panel
(g) for l = 10.

exponents φ and δ, we define a rescaled saturation roughness
for both models, W RE

sat = Wsat (L, l )/(Lαl−φ ) (LM) and W RE
sat =

Wsat (L, R)/(LαR−δ ) (KMC). Results for W RE
sat are shown in

Fig. 11(c). We find that W RE
sat as a function of l (LM model)

is indeed a constant. The same holds for KMC simulations
where W RE

sat is plotted as a function of ln(R).

3. Interface profiles and the effect of diffusional fluctuations

Growth instabilities can induce the formation of moundlike
patterns, and it is well accepted that the original DT model
displays quasiregular mound formation [61–63,100–103]. To
investigate how diffusional fluctuations alter this character-
istic feature, we show exemplary interface profiles for two
diffusion lengths l and different values of σ 2 in Figs. 12(a)–
12(f) [please note that h(x) = hi − hmin, where hmin is the
minimum height in the depicted profiles in Fig. 12]. Upon
the increase of σ 2 from zero, the characteristic mound size
decreases, while the number of mounds increases. Further,
individual mounds appear to be sharper and steeper, with
the result that the overall interface looks rougher, yielding a
higher value of the interface width.

To analyze in detail how the value of σ 2 modifies the
interface height profile, we calculate a characteristic length ξ0

that contains information regarding the characteristic mound
size [68,102]. This quantity is defined as the first zero of the
height-height correlation function

�(r, θ ) = 〈h̃i(θ )h̃i+r (θ )〉
〈h̃i(θ )2〉 , (20)
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FIG. 13. (a) Height-height correlation function �(r)/�(0) for
KMC simulations at R = 4 × 102 together with results of the LM
model at l = 5 and various values of the variance σ 2. (b) The same as
in panel (a) for R = 4 × 103 and l = 12. (c) Correlation length ξ0 for
different combinations of l and σ 2 (lines with symbols) together with
corresponding values of ξ0 from KMC simulations (dashed lines).
Stars in panel (c) represent the optimal values of σ 2.

with h̃i(θ ) = hi(θ ) − 〈h(θ )〉. Calculating �(r)/�(0) reveals
that with increasing σ 2, �(r)/�(0) decays faster to zero with
the distance r = |i − (i + r)| from site i. As a consequence,
the value of ξ0 decreases [see Figs. 12(g) and 12(h) where
�(r)/�(0) reaches zero at smaller values of r as σ 2 is in-
creased]. This goes along with a decrease of the characteristic
mound size.

To demonstrate the equality of the morphologies generated
by both models, we compare �(r)/�(0) obtained from the
KMC and the LM model at θ = 104 in Fig. 13. For both
considered growth conditions [l = 5 and l = 12; Fig. 13(c)
additionally shows ξ0 for l = 20], we observe good agreement
using the optimal values of σ 2.

V. RESULTS IN TWO DIMENSIONS

The analysis so far was restricted to systems in one di-
mension. From a physical point of view, however, it is clear
that the case of two spatial dimensions is more relevant. The
aim of this section is to show by exemplary calculations
that the mapping strategies developed in the one-dimensional
case also work in two dimensions. To start, we note that the
procedure to relate the values of R in KMC simulations to
the parameters l and σ 2 in the LM model in two dimensions
can be followed as in the one-dimensional case. However,
the decision for the final attachment site has to be carefully
considered, since in two dimensions more than two lattice
sites at the same distance from the adsorption site can provide
at least one lateral bond. As a first step, we decided to select
the cluster boundary site for attachment that is closest to
the initial adsorption site and in case there exist multiple
ones at the same distance, we randomly choose one of them.
However, we want to emphasize that different variants for
choosing the final site are possible and even necessary when
turning towards growth conditions where edge diffusion and
bond breaking are possible.

FIG. 14. Nmax in the submonolayer growth regime on two di-
mensional substrates of lateral size L = 200 for various growth
conditions in the KMC and the LM model, respectively. The black
dotted line follows ∼R−1/3.

A. The submonolayer growth regime

To demonstrate that our approach also works on two-
dimensional lattices, we show in Fig. 14 the maximum num-
ber of clusters Nmax in the submonolayer growth regime as
a function of R and corresponding P(l|ln, σ 2) (with optimal
σ 2). The results for Nmax reflect good agreement between both
models for all considered growth conditions. In particular,
Nmax decays identically in both models as the values of R and
l are increased.

Analyzing P(S) we observe, analogous to the one-
dimensional scenario (see Fig. 6 and Sec. IV A 2), a shift of
the peak of P(S) towards smaller values of S as the strength
of diffusional fluctuations is increased (see Fig. 15). This
results in the emergence of a left shoulder in P(S) as observed
earlier in one dimension. For too large values of σ 2 the distri-
butions P(S) become monotonically decreasing functions of
S, which is clearly unphysical. For l = 10, this behavior is
seen already at σ 2 = 5, while for l = 30 it occurs only for
σ 2 > 10.

FIG. 15. Cluster size distribution P(S) during submonolayer
growth at θ = 0.3 on two-dimensional substrates of lateral size
L = 200 for two values of l and various strengths of diffusional
fluctuations controlled via σ 2 in the LM model.

033307-10



MODELING OF NONEQUILIBRIUM SURFACE GROWTH BY … PHYSICAL REVIEW E 100, 033307 (2019)

FIG. 16. (a) Exemplary lattice structures (of size 100 × 100 from
lattice with L = 200) from KMC simulations with R = 4 × 102

(a) and R = 2 × 104 (d) at θ = 50 along with results obtained from
the LM model with l = 4 and σ 2 = 1.1, (b) l = 11 and σ 2 = 2.8 (e),
at the same coverage, θ = 50. Panels (c) and (f) depict �(r)/�(0) for
both considered growth conditions in the KMC and the LM model,
respectively.

B. The multilayer growth regime

To compare both models on two-dimensional lattices in
the multilayer regime, we show exemplary lattice structures
in Fig. 16 for two values of R and corresponding optimal
distributions P(l|ln, σ 2). While the lattice structures at R =
4 × 102 look indistinguishable [Figs. 16(a) and 16(b)], we
find visible deviations at R = 2 × 104 [Figs. 16(d) and 16(e)].
These discrepancies may be resolved by using a different vari-
ant for choosing the final attachment site as discussed earlier
in this section. Despite the spatial deviations, the functions
�(r)/�(0) [see Eq. (20) and plots in Fig. 16(c) for R = 4 ×
102 and Fig. 16(f) for R = 2 × 104] reveal a good agreement
between both models concerning height-height correlations
and the correlation length ξ0. Both of these quantities are very
sensitive to changes in l and σ 2, as shown in Fig. 12 and
Fig. 13 for the one-dimensional case.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have introduced an extended limited mo-
bility (LM) model for nonequilibrium surface growth, which
is capable of predicting low-temperature MBE growth for ar-
bitrary values of the growth parameter R. Compared to earlier
versions of the LM model, particularly the DT model, our
extension concerns the diffusion length l , which we treat as
a variable parameter whose value for each deposited particle
is chosen from a Gaussian distribution.

To relate our LM model to another standard model for
surface growth, namely, KMC, we proposed to set the mean

value of l equal to the nucleation length ln resulting from
short KMC simulations for the particle displacements. We
tested this ansatz by comparing LM and KMC results for the
cluster evolution during sub- and multilayer growth. While
the LM model with fixed l works well at small values of
the growth parameter R, this is not the case at larger R.
As a next step, we therefore included fluctuations to the
diffusion length of particles in the LM model in order to model
diffusional fluctuations. Specifically, we employed a Gaussian
distribution where the mean diffusion length l is given by the
nucleation length extracted from KMC, whereas the variance
σ 2 is fitted to match the maximum number of clusters Nmax in
KMC simulations during growth in the submonolayer regime.
For each considered value of l we have identified the variance
σ 2 that leads to NKMC

max − NLM
max ≈ 0. Using these optimal values

of σ 2 also lead to nearly identical cluster size distributions
P(S).

Turning towards multilayer growth, we compared layer
coverages for different growth conditions and found excellent
agreement between both models. Moreover, we analyzed in
detail the global interface width for different system sizes up
to coverages deep in the regime of saturated surface rough-
ness. Not only is the transient regime of the global interface
width identical in both models but also the crossover coverage
where saturation is reached. Additionally, we showed that
by using our LM model with variable diffusion length, the
values of the saturation roughness also match in both models
for all considered system sizes and growth conditions. A
scaling analysis revealed that the LM model belongs to the
VLDS universality class for arbitrary diffusion lengths. We
also observed that the variance σ 2 can strongly alter the
interface height profile in the high coverage regime. As the
value of σ 2 is increased, we observed less and, at the same
time, steeper mounds. Moreover, we found good agreement
concerning height-height correlations in both models using
the optimal values of σ 2 in both one- and two-dimensional
systems.

The present model can be extended in various direc-
tions. First, it is possible to modify the model such that
it also mimics MBE growth at high temperatures where
detachment of particles is present. This may be achieved
by using a mixture of the transition rules of the DT and
the Wolf-Villain model [57,58] with a variable, distributed
diffusion length. Concerning the two-dimensional scenario,
it would be very interesting to investigate how different
variants for the rules regarding the final attachment site of
deposited particles affects the cluster shape properties and
the overall growth behavior. This is especially important
when moving towards higher temperatures or lower bind-
ing energies, where clusters are usually compact rather than
ramified.

Second, the effect of an additional energy barrier for inter-
layer diffusion processes across step edges, usually referred to
as the Ehrlich-Schwoebel barrier, can be included to account
for growth instabilities. Normally, in the presence of such
a barrier, KMC simulations are slowed due to the sampling
of diffusion trajectories of free particles on top of clusters
that are reflected at the cluster edge due to the additional en-
ergy barrier for crossing step edges. A physically reasonable
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treatment of an Ehrlich-Schwoebel barrier in our LM model
would lead to a further computational speedup compared to
KMC simulations.

Finally, we want to point out that, especially concerning
growth conditions where the critical cluster size takes large
values, there exist alternative numerical techniques beyond the
lattice-based models with limited particle mobility that can
be further advanced to realistically model this specific growth

regime. Examples include level-set [8] and geometry-based
[10] models.
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