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Over the last decades, several types of collision models have been proposed to extend the validity domain
of the lattice Boltzmann method (LBM), each of them being introduced in its own formalism. This article
proposes a formalism that describes all these methods within a common mathematical framework, and in this way
allows us to draw direct links between them. Here, the focus is put on single and multirelaxation time collision
models in either their raw moment, central moment, cumulant, or regularized form. In parallel with that, several
bases (nonorthogonal, orthogonal, Hermite) are considered for the polynomial expansion of populations. General
relationships between moments are first derived to understand how moment spaces are related to each other. In
addition, a review of collision models further sheds light on collision models that can be rewritten in a linear
matrix form. More quantitative mathematical studies are then carried out by comparing explicit expressions for
the post-collision populations. Thanks to this, it is possible to deduce the impact of both the polynomial basis
(raw, Hermite, central, central Hermite, cumulant) and the inclusion of regularization steps on isothermal LBMs.
Extensive results are provided for the D1Q3, D2Q9, and D3Q27 lattices, the latter being further extended to
the D3Q19 velocity discretization. Links with the most common two and multirelaxation time collision models
are also provided for the sake of completeness. This work ends by emphasizing the importance of an accurate
representation of the equilibrium state, independently of the choice of moment space. As an addition to the
theoretical purpose of this article, general instructions are provided to help the reader with the implementation
of the most complicated collision models.
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I. INTRODUCTION

During the past three decades, the lattice Boltzmann
method (LBM) was proven to be of particular interest to the
field of computational fluid dynamics. This started showing its
efficiency for the simulation of isothermal and weakly com-
pressible flows, where it is now considered to be a particularly
tough challenger for more conventional fluid solvers based on
the solving of Navier-Stokes-Fourier equations [1,2]. In the
meantime, the validity domain of LBMs was extended to a
very large set of phenomena which are not restricted any-
more to fluid mechanics [3]. Despite these successes, severe
stability issues were also encountered when simulating high
Reynolds number flows with LBMs based on the Bhatnagar-
Gross-Krook (BGK) collision operator [4,5]. A great number
of collision models have been proposed to circumvent this
issue. These models are either based on dynamic or static
single (multiple) relaxation time(s).

Most common LBMs based on dynamic relaxation times
can be divided into two categories: (1) large eddy simula-
tion (LES) based LBMs, and (2) entropic LBMs (ELBMs).
LES-LBMs rely on the well known fact that under-resolved
turbulent scales must be accounted for through the use of a
subgrid scale model [6,7]. This model mainly consists in mim-
icking the behavior of small scales through the dissipation of
structures at the grid cutoff size. This can be done modifying
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the relaxation time to take into account the additional eddy
viscosity which usually scales as the strain rate tensor.

Regarding ELBMs, these models ensure the H-theorem
to be valid after the velocity discretization of the Boltzmann
equation [8,9]. This is done solving a minimization problem
at each grid point and time step. This leads to a variable
relaxation time that locally self-adjusts to the flow. Hence,
a nonconstant dynamic viscosity is obtained with ELBMs,
especially when under-resolved mesh grids are used for the
simulation of high Reynolds (turbulent) flows. In that sense,
ELBMs seem very similar to LES-LBMs. In fact, Malaspinas
et al. proved the behavior of the ELBM was sharing simi-
larities with the standard Smagorinsky subgrid scale model
[6] since its dynamic viscosity also scales as the strain rate
tensor, and its value tends toward zero when the resolution
of the mesh grid is increased [10]. Nevertheless, solving a
minimization problem at each grid node and for each time step
induces a non-negligible extra CPU cost, which is higher than
for subgrid scale models, while sharing an equivalent accuracy
[11].

Hence, one may prefer to rely on the essentially ELBM
that was recently proposed by Atif et al. [12]. The latter sim-
plifies the minimization problem into the solving of a simple
quadratic inequation. Doing so, the CPU time efficiency of the
dynamic relaxation time computation is drastically improved.
Collision models proposed by Karlin, Bösch, and Chikata-
marla (KBC) are also an interesting alternative to improve
the numerical stability of LBMs at a low CPU cost, and
without modifying the kinematic viscosity. These collision
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models are based on an approximation to the minimization
problem, and use an analytic formula for the computation
of the dynamic relaxation time [13–19]. They can further
decouple the relaxation of shear modes from acoustic and
ghost modes, hence, freeing themselves from the generation
of spurious vortices induced by the use of a varying shear
viscosity in under-resolved conditions. Nevertheless, it is
worth noting that some theoretical work remains to be done in
order to properly define the validity range of the approximated
minimization problem [20]. Eventually, one can further find in
the literature stabilization techniques based on other kinds of
dissipation control [21–24].

Regarding LBMs based on static relaxation times,
d’Humières originally proposed to apply the collision step
within the moment space to improve the numerical stability
of the resulting LBM through the increase of the number
of free parameters. This ended up in a multirelaxation time
(MRT) collision model for the D3Q19 velocity discretization
[25]. With this approach, several relaxation times controlled
the relaxation process of moments toward their respective
equilibrium state. This model was further popularized by the
two-dimensional (2D) formulation (D2Q9) of Lallemand and
Luo [26]. In their work, stability gains were obtained through
fine tuning of these free parameters via a linear stability anal-
ysis. Nevertheless, finding optimal values for all relaxation
times rapidly becomes a tedious task, especially in the three-
dimensional (3D) case. This is why two relaxation time (TRT)
models were then proposed by Ginzburg et al. [27,28]. In
their most simple and naive form, these models can be related
to both Lallemand’s and Luo’s work in 2D, and d’Humière
et al. 3D extension [29], where a particular distinction is made
between the relaxation times of even (τ+) and odd moments
(τ−). While the former is related to the dynamic viscosity,
the second one is a free parameter. Using very thorough
mathematical derivations, general relationships between τ+
and τ− were proposed through the so called “magic number”
� to improve both the accuracy and the stability of these TRT-
LBMs [30–32]. Both types of collision model were shown to
be of particular interest for the simulation of various types of
phenomena [32–37].

To further improve the numerical stability of MRT-LBMs,
several authors proposed to perform the collision step in the
moment space associated to the comoving reference frame
[38–52]. These models were originally named as cascaded
LBM by Geier et al. [38] due to the construction of high order
moments from lower order ones in a cascade-like way. Despite
an improved stability for high Reynolds flow simulations, this
model was still suffering from Galilean invariance defects
that were partially corrected later by the same authors [39].
Nonetheless, the complex implementation of the cascaded
process made it difficult to extend this collision model to both
a broader range of physics, and to other kinds of lattices. This
deficiency was overcome, for example, by Lycett-Brown and
Luo who simplified the derivation of the cascaded mechanism,
and applied it to the simulation of multiphase flows [41,49].
In the meantime, Dubois et al. properly reformulated the
cascaded model in terms of collisions performed in the central
moment (CM) space [42]. The latter being well known from
the point of view of statistics, more solid mathematical foun-
dations were then provided to these models. The same authors

also quantified the stability gain obtained with this kind of
collision models through a linear stability analysis [50]. In
their work, they further confirmed the superiority, in terms
of linear stability, of the tensor product basis as compared to
the more standard ones used in common MRT models. All of
these led to the extension of CM-LBMs to very different fields
of research such as shallow water and magnetohydrodynamics
among others [45,51,52].

The last version of these MRT-LBMs is based on a collision
step occurring this time in the cumulant space. By defini-
tion, cumulants are another kind of statistical quantities, such
as raw and central moments, that allow the description of
both continuous and discrete probability distribution functions
[53]. They were originally used for the simulation of gas
dynamics by Seeger et al. [54–56]. Their method was based
on solving equations obtained by taking cumulants of the
Boltzmann equation. In the LBM context, Geier et al. did
confirm the stability improvement induced by the collision
model based on cumulants instead of raw moments [57].
Nonetheless, it was done in an extremely reduced configu-
ration where the diffusive scaling was adopted, thus reducing
the validity of the comparison to flows governed by the incom-
pressible Navier-Stokes equations [58,59]. Hence, no infor-
mation regarding the generation and propagation of acoustic
waves can be deduced from either their work or from those
that followed [60–62]. More surprisingly, no comparison with
central moments was provided for the most complicated case,
i.e., the study of the flow around a sphere. As a consequence, it
is still not clear if cumulant methods are (or not) always more
stable than CM-LBMs at the time of writing.

In parallel to MRT-like collision operators, regularization
steps were proposed to increase the stability of the BGK-
LBM in the low viscosity limit. This kind of LBM was
originally proposed by Ladd et al. to reduce the memory
consumption [63]. Nevertheless, it was rapidly shown to be
able to improve the numerical stability by filtering out nonhy-
drodynamic modes (Latt and Chopard [64,65]), and ensuring
the rotational invariance of the numerical scheme (Chen et al.
[66]). This model was further extended to high order velocity
discretizations by Zhang et al. [67]. A recursive version of
these models was recently derived for standard [68] and high
order LBMs [69]. This recursive approach was proven to
increase the numerical stability of LBMs as compared to
the original regularized collision model [70]. It was further
shown to be competitive against state of the art Navier-Stokes-
Fourier and LBM solvers for the simulation of jet noise [71].
This confirmed its capability for high fidelity simulations,
including computational aeroacoustics of moderate to high
Reynods number flows. In the meantime, Mattila et al. worked
on a regularization step operating in the comoving reference
frame [72]. They noticed that by neglecting particular central
Hermite coefficients, they were able to recover the recursive
formulation of Malaspinas. These coefficients being related
to diffusive phenomena, they were supposed to be negligible
for high Reynolds number flows. In the end, all the aforemen-
tioned regularized models were also employed to simulate a
large panel of distinct phenomena [69,71,73–78].

Despite a wide variety of collision models, only very few
comprehensive and consistent comparative studies have been
conducted in the past. Most of them are restricted to less than
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four collision models, or are only based on numerical test
cases, and contain only very few sound comments on their
respective theoretical discrepancies. The former issue most
likely comes from the fact that each type of collision model is
usually introduced in its own framework. Consequently, it is
complicated to express all the collision models within the very
same framework in order to eventually compare them to each
other from a general viewpoint. Regarding the lack of theoret-
ical comparisons, it can be explained by the non-negligible
mathematical background required to properly derive links
between collision models. Nonetheless, rigorous comparisons
relying on different tools are also available in the literature.
As an example, several authors used linear stability analy-
ses to quantify the numerical stability of collision models
[4,26,32,34,50,70,79–85]. In addition, it is worth noting that
studies dedicated to the derivation of links between several
kinds of LBMs from a (more or less) theoretical viewpoint can
also be found in the literature. Among them, one may refer to
Refs. [24,27,42,57,69,86] and references therein. Eventually,
it is worth citing the recent work by Gehrke et al. which
focuses on stabilizing mechanisms that might explain the
discrepancies, in terms of robustness and accuracy, between
several collision models in both resolved and under-resolved
conditions [87]. Another particularly interesting comparative
study was proposed by Haussmann et al. in order to quantify
the impact of both the collision model, as well as the time step
scaling, on the simulation of decaying homogeneous isotropic
turbulence via D3Q19-LBMs [88].

Knowing all of this, this work proposes a formalism that
describes all static methods within a common mathematical
framework, and in this way allows us to draw direct links
between them. This is done considering the LBM in its general
form, i.e., with no restriction to the incompressible regime.
In addition, it is intended to answer several questions that
arise from the literature. For instance, one can wonder if all
collision models can be rewritten in a linear matrix form
as originally proposed by Higuera et al. [89], and further
discussed in the context of LBMs by several authors [25,90].
If this assumption were to be true, then it would be possible
to easily switch from one collision model to another through
(1) matrix products and (2) adjustments of relaxation frequen-
cies. One can also wonder if the equilibrium state does or does
not depend on the Galilean invariance properties of the col-
lision model, and consequently, if the resulting macroscopic
behavior of the LBM also depends on the collision model
[38,39,57,60]. As a consequence, this work can be considered
as the first (theoretical) stage of a large project that intends
to compare collision models from both a theoretical and a
numerical viewpoint.

The rest of the paper is organized as follows. Recalls on
statistics are first provided in Sec. II. Thanks to them, the way
all kinds of statistical quantities are linked is determined by
relating their moment generating function to each other. All
collision models are then thoroughly reviewed, and potential
links between the models that have been previously pointed
out in the literature are recalled (Sec. III). In this way, a first
picture of all the families of collision models is drawn. In
the following sections (Secs. IV–VI), relationships derived
between moments are used to carry out, in a straightforward
way, the comparative study of post-collision populations for

lattices of increasing complexity (D1Q3, D2Q9, D3Q27, and
D3Q19). All algebraic manipulations are detailed for the most
simple lattices, hence allowing the reader to readily extend
the present approach to any kind of LBMs. This comparative
study ends with a reflection on macroscopic equations result-
ing from the LBM. General conclusions regarding the main
discrepancies and similarities between collision models are
finally made in Sec. VII.

For the sake of completeness, several appendices are also
provided to help the interested reader properly understand
all concepts addressed in this work. Lattice structures and
partial Bell polynomials are described in Appendices A and
B. Relationships between one-, two-, and three-dimensional
statistical quantities are gathered in Appendices C–E, respec-
tively. Linear transformations leading to the matrix form of
collision models are compiled in Appendix F for the D2Q9
lattice. Explanations regarding the way to build them are
also provided, which allows a straightforward calculation of
these matrices for any type of lattice. The D3Q27 formula-
tions of all types of populations are recalled in Appendix G.
It is also explained how to easily derive their D3Q19 counter-
parts. Eventually, the most general form of equilibrium states
is presented in Appendix H.

To help the reader with the implementation of the most
complicated collision models, general instructions are fi-
nally provided. More specifically, pseudocodes, describing the
computation of each type of moment, as well as, equilibrium
and post-collision populations, are supplied for both the D2Q9
and the D3Q27 formulations as Supplemental Material [91].

II. THEORETICAL BACKGROUND ON STATISTICS

This section aims at deriving links between statistical
quantities of interest, which can be used to (1) relate collision
models between each other, but also to (2) derive them in
any dimension and for any lattice. The reader that is more
interested in results that are related to statistical physics and
LBMs can directly refer to Sec. II G and subsequent sections.

A. Motivations

As it will be shown in Sec. IV A, the choice of the moment
space directly impacts the derivation of LBMs through their
populations

fi =
∑

n

ci,nPi,n,

where ci,n is a coefficient related to the moment Pi,n, both
yet to be defined. To properly quantify differences between
LBMs, it is then essential to understand how all kinds of
moments are derived, and how they are linked to each other.
In this work, it is proposed to relate families of moments
through their sole common feature, namely, their generating
function. This method further simplifies their calculation in
any D dimension, D being the number of physical dimensions.

B. Moment generating function

To properly understand how relationships between raw,
Hermite, central, central Hermite moments, and cumulants
are derived, it is necessary to introduce the notion of (raw)
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moment generating function (MGF) M of a probability dis-
tribution function f :

M(X ) =
∫

exp(ξX ) f (ξ )dξ . (1)

By expanding the generating function of monomials in power
series,

�M = exp(ξX ) =
∑

n

(ξX )n

n!
,

the MGF can be directly linked to raw moments Mn of f as
follows:

M(X ) =
∑

n

(∫
ξ n f (ξ )dξ

)
X n

n!
=
∑

n

Mn
X n

n!
, (2)

where n! = n × (n − 1) × . . . × 2 × 1. Hence, (raw) mo-
ments of order n are obtained through the partial derivatives
of the MGF (2) evaluated at X = 0,

Mn = M(n)(0), (3)

M(n) being the nth derivative of M with respect to X . In
the rest of the paper, M0 = 1 will be assumed. This corre-
sponds to the assumption of normalized moments, as already
used by several authors in the lattice Boltzmann community
[14,41,92].

C. Hermite moment generating function

Hermite moments are defined through their generating
function

H(X ) =
∫

exp
(
ξX − c2

s X 2/2
)

f (ξ )dξ, (4)

where �H = exp(ξX − c2
s X 2/2) is the generating function of

Hermite polynomials as they are usually defined in the lattice
Boltzmann framework, i.e., taking into account the lattice
constant cs [69]. As a reminder, Hermite polynomials up to
n = 6 are

H0(ξ ) = 1,

H1(ξ ) = ξ,

H2(ξ ) = ξ 2 − c2
s ,

H3(ξ ) = ξ 3 − 3c2
s ξ, (5)

H4(ξ ) = ξ 4 − 6c2
s ξ

2 + 3c4
s ,

H5(ξ ) = ξ 5 − 10c2
s ξ

3 + 15c4
s ξ,

H6(ξ ) = ξ 6 − 15c2
s ξ

4 + 45c4
s ξ

2 − 15c6
s .

Since (Hermite) polynomials are linear combinations of
monomials, then relationships between Hermite and raw mo-
ments will be the same as those between their polynomial
counterparts. To derive these relationships, let us start notic-
ing that both polynomial generating functions are linked as
follows:

�H = exp
(
ξX − c2

s X 2/2
) = �M exp

(−c2
s X 2/2

)
.

Since these polynomials are obtained by deriving n times
�H (�M) about X = 0, the only expression that needs to

be evaluated is the nth derivative of exp(−c2
s X 2/2). While

its general formulation is quite complicated, it can easily be
shown by induction that

d (k)

dX k
e−c2

s X 2/2|X=0 =
⎧⎨⎩

1 if k = 0,(−c2
s

)k/2
(k − 1)!! if k is even,
0 otherwise,

(6)

with “!!” standing for the double factorial, i.e.,

(k − 1)!! = (k − 1) × (k − 3) × · · · × 3 × 1.

Hence,

H(n)(X ) =
n∑

k=0

(
n

k

)(
d (k)

dX k
e−c2

s X 2/2

)
M(n−k)(X ), (7)

with (n
k) = n!/k!(n − k)! being the binomial coefficient, and

where Hermite moments are defined as

An = H(n)(0).

The inversion formula is simply obtained changing −c2
s to

+c2
s in Eq. (7),

M(n)(X ) =
n∑

k=0

(
n

k

)(
d (k)

dX k
ec2

s X 2/2

)
H(n−k)(X ), (8)

where now

d (k)

dX k
ec2

s X 2/2|X=0 =
⎧⎨⎩

1 if k = 0,(
c2

s

)k/2
(k − 1)!! if k is even,
0 otherwise.

(9)

D. Central moment generating functions

Regarding central moments M̃n, their generating function
reads as

M̃(X ) =
∫

exp[(ξ − M1)X ] f (ξ ) dξ

=
∑

n

[∫
(ξ − M1)n f (ξ ) dξ

]
X n

n!

=
∑

n

M̃n
X n

n!
. (10)

A simple way to link raw and central moments is to express
the central moment generating function as

M̃(X ) = exp(−M1X )M(X ).

Using the binomial formula, the nth derivative of M̃(X ) then
becomes

M̃(n)(X ) =
n∑

k=0

(
n

k

)
(−M1)n−kM(k)(X ).

Eventually, evaluating the nth derivative about X = 0 leads to

M̃n =
n∑

k=0

(
n

k

)
(−M1)n−kMk. (11)

The inversion formula is simply obtained noticing that

M(X ) = exp(M1X )M̃(X ).
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Following the very same steps as before, one ends up with

Mn =
n∑

k=0

(
n

k

)
(M1)n−kM̃k . (12)

Since Hermite polynomials are linear combinations of
monomials, the above derivation can be applied to link raw
and central moments in the Hermite expansion framework

Ãn =
n∑

k=0

(
n

k

)
(−A1)n−kAk, (13)

where Ãn are central Hermite moments, and A1 = M1 since
H1(ξ ) = ξ . Finally, the inversion formula is

An =
n∑

k=0

(
n

k

)
(A1)n−kÃk . (14)

E. Cumulant generating function

When it comes to cumulants, their generating function K
is defined as [53]

K(X ) = ln[M(X )]. (15)

Its power series expansion allows us to link cumulants and
raw moments as follows:∑

n

Kn
X n

n!
= ln

[
M0

(∑
p

Mp

M0

X p

p!

)]

= ln(M0) + ln

⎛⎝1 +
∑
p�1

Mp

M0

X p

p!

⎞⎠
= ln(M0) +

∑
q�1

(−1)q−1

q

⎛⎝∑
p�1

Mp

M0

X p

p!

⎞⎠q

=
∑
q�1

(−1)q−1

q

⎛⎝∑
p�1

Mp
X p

p!

⎞⎠q

, (16)

where ln(M0) = 0 due to the normalization M0 = 1. The
series expansion of the logarithmic part was computed using

ln(1 + Y ) =
∑
q�1

(−1)q−1

q
Y q,

with Y = ∑
p�1 MpX p/p!.

To determine the inversion formula, the starting point is

M(X ) = exp[K(X )]. (17)

Taking its power series expansion, the following expression is
derived: ∑

n

Mn
X n

n!
= exp

(∑
p

Kp
X p

p!

)

= 1 +
∑
q�1

1

q!

⎛⎝∑
p�1

Kp
X p

p!

⎞⎠q

. (18)

In their current formulation, it is quite difficult to use Eqs. (16)
and (18). This is why two ways of simplifying these formulas,
as originally proposed by Kendall [93], are presented here-
after:

“Handmade” expansion of the double sum. It consists on
expanding the right hand side of these formulas assuming
truncated sums. Relationships are then obtained identifying
polynomials coefficients of t n with those of t p+q, where p +
q = n (uniqueness of the power series expansion). In other
words, by considering p � n and q � n, one just needs to
collect all coefficients of t n. Even if this method is rather
general, it rapidly leads to lengthy calculations even for small
values of n.

Partial Bell polynomials. They are used in combinatorial
mathematics to study set partitions [94,95]. These polynomi-
als are defined as follows:

n∑
k=q

Bn,k (x1, . . . , xn−k+1)
X n

n!
= 1

q!

⎛⎝∑
p�1

xp
X p

p!

⎞⎠q

, (19)

where Bn,k are partial Bell polynomials. They can be individ-
ually computed thanks to the recursive formula

Bn,k (x1, . . . , xn−k+1) =
n−k+1∑

l=1

(
n − 1

l − 1

)
xlBn−l,k−1,

with

B0,0 = 1, Bn,0 = 0 (k � 1), B0,k = 0 (n � 1).

Expressions up to n = 6, and further details concerning these
polynomials, are given in Appendix B. Injecting Eq. (19) into
(18), the nth raw moment is simply expressed as

Mn =
n∑

k=1

Bn,k (K1, . . . , Kn−k+1). (20)

Likewise, the nth cumulant is obtained via the inversion
formula of partial Bell polynomials [93]

Kn =
n∑

k=1

(−1)k−1(k − 1)!Bn,k (M1, . . . , Mn−k+1). (21)

To obtain formulas between cumulants and other statistical
quantities, one simply needs to switch between the quantity of
interest to its raw moment counterpart, and then use the above
formulas. Relationships between all kinds of moments, up to
n = 6, are detailed in Appendix C.

F. Multivariate extensions

In the D-dimensional case, the multivariate generating
moment function is now defined as

M(X ) =
∫

exp

(
D∑

k=1

ξkXk

)
f (ξ) dξ, (22)

where X = (X1, . . . , XD) and ξ = (ξ1, . . . , ξD) are now vec-
tors. As in the univariate case, moments are obtained through
successive differentiations of M(X ) about X = 0. For the
most complicated case (D = 3), this leads to

Mpqr = M(p,q,r)(0, 0, 0). (23)
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Mpqr is a raw moment of order n = p + q + r. M(p,q,r) is
the nth derivative of M, where p, q, r are the number of
differentiations with respect to ξx, ξy, and ξz.

While rederiving all relationships between statistical quan-
tities using Eq. (22) is relatively straightforward, the compu-
tation of multivariate cumulants rapidly becomes lengthy. It is
proposed hereafter to rely on a rather elegant way to extend the
derivation of cumulant formulas to the D-dimensional case.
The most general way relies on advanced knowledge of set
partitioning. Here, it is preferred to use a simpler, yet rigorous,
method based on a particular kind of differential operator.
This approach was originally proposed by Kendall [93], and
explained in more details by Cook [53]. Let us start from

M3 = K3 + 3K2K1 + K3
1 . (24)

Each component of Mn or Kn depends on ξ n
x in such a way that

Eq. (24) can be rewritten as

M
(
ξ 3

x

) = K
(
ξ 3

x

)+ 3K
(
ξ 2

x

)
K (ξx ) + K (ξx )3. (25)

Applying the operator �x
y ≡ ξy∂/∂ξx to the variable of M(ξ 3

x )
leads to [53,93]

�x
y

[
M
(
ξ 3

x

)] = ξy
∂

∂ξx
M
(
ξ 3

x

)
= M

(
3ξ 2

x ξy
)

= 3M
(
ξ 2

x ξy
)

= 3M21. (26)

When it comes to the right hand side terms of Eq. (25), the
following formulas are obtained:

�x
y

[
K
(
ξ 3

x

)] = 3K21, (27)

�x
y

[
3K
(
ξ 2

x

)
K (ξx )

] = 6K11K10 + 3K20K01, (28)

�x
y[K (ξx )3] = 3K2

10K01. (29)

Using Eqs. (26)–(29), M21 is eventually linked to cumulants
through

M21 = K21 + K20K01 + 2K11K10 + K2
10K01. (30)

Applying �x
y a second time leads to

M12 = K12 + 2K11K01 + K02K10 + K10K2
01, (31)

while applying it a third time further gives the expression

M03 = K03 + 3K02K01 + K3
01. (32)

The formula for M30 is simply obtained noticing that ξ 3
x =

ξ 3
x ξ 0

y , and then taking 0 as second subscript for all terms in
Eq. (24):

M30 = K30 + 3K20K10 + K3
10. (33)

As a way to confirm the validity of the above third order
bivariate moments, one just has to sum all subscripts for each
moment. If the bivariate formula is correct, then one should
obtain the univariate formula for M3 as a result.

To derive trivariate (D = 3) formulas, two operators of the
same kind are required, namely, �x

z and �
y
z . Using them, it is

straightforward to obtain trivariate expressions, such as

M201 = �x
z [M30]/3

= K201 + K200K001 + 2K101K100 + K2
100K001, (34)

and

M111 = �y
z[M12]/2

= K111 + K110K001 + K101K010

+ K011K100 + K100K010K001. (35)

Once again, one can check the validity of the above formulas
summing all subscripts for each moment, and comparing the
result with the univariate case, i.e., M3. While Kendall’s differ-
ential operators might appear rather empirical, it is important
to know that they rely on rigorous mathematical derivations
originating from the multivariate version of the Taylor series
expansion of generating functions [53,93]. Using this method,
only univariate formulas up to n = 4 (n = 6) are needed to
derive bivariate (trivariate) statistical quantities of interest
for the D2Q9 (D3Q19, D3Q27) lattice. Univariate formulas
are summarized in Appendix C, whereas expressions needed
for the implementation of the D2Q9-, D3Q19-, and D3Q27-
LBMs are compiled in Appendices D and E.

G. Application to the normal distribution

In kinetic theory, the normal (or Gaussian) distribution
plays a major role in the modeling of the collision term.
Indeed, the relaxation process is usually based on the BGK
assumption which says that collisions make distribution func-
tions tend toward their equilibrium state [96]. The latter
follows a normal distribution function and is usually named as
the Maxwell-Boltzmann equilibrium (distribution) function. It
reads as

f eq(ρ, u, θ ) = ρ(
2πc2

s θ
)D/2 exp

[
− (ξ − u)2

2c2
s θ

]
, (36)

where D is the number of physical dimensions, ρ being the
density, u the macroscopic velocity, ξ the mesoscopic velocity,
θ = T/T0 the reduced temperature, and cs the isothermal (or
Newtonian) sound speed. In this work, only isothermal LBMs
are considered, which implies that T = T0 so that θ = 1.

Injecting Eq. (36) in the definition of raw, central, Hermite,
central Hermite moments, and cumulants, one can derive their
equilibrium counterparts. Another way to obtain all equilib-
rium quantities is to start with equilibrium raw moments in
either the univariate or the multivariate case, and then use
corresponding formulas (Appendices C–E) to compute other
families of moments.

Starting with one-dimensional equilibrium raw moments,
one obtains, up to n = 4,

Meq
0 = 1, Meq

1 = ux, Meq
2 = u2

x + c2
s ,

Meq
3 = u3

x + 3uxc2
s , Meq

4 = u4
x + 6u2

xc2
s + 3c4

s .

Related central moments are then

M̃eq
0 = 1, M̃eq

1 = 0, M̃eq
2 = c2

s , M̃eq
3 = 0, M̃eq

4 = 3c4
s ,

while equilibrium Hermite moments read as

Aeq
0 = 1, Aeq

1 = ux, Aeq
2 = u2

x, Aeq
3 = u3

x, Aeq
4 = u4

x,
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and equilibrium central Hermite moments are expressed as

Ãeq
0 = 1, Ãeq

1 = Ãeq
2 = Ãeq

3 = Ãeq
4 = 0.

Eventually, equilibrium cumulants are

Keq
0 = 0, Keq

1 = ux, Keq
2 = c2

s , Keq
3 = 0, Keq

4 = 0.

In the context of LBMs, central moments are usually
preferred to their counterparts in the reference frame at rest
because, for the former, the collision is applied in a moment
space that is not impacted by Galilean invariance issues
[38,39,43]. Nonetheless, lattice dependent defects still remain
in M̃eq

2p (p > 0) through terms proportional to cs that are non-
negligible in the weakly compressible limit since cs � u for
the latter. Thus, one may wonder if, in the isothermal case,
it would not be wiser to apply the collision in the central
Hermite moment space instead. In addition, one of the reasons
behind the use of cumulants is that they allow us to easily
quantify deviations from a normal distribution since Keq

n = 0
for n � 3 [97]. But once again, it seems more logical to rely
on central Hermite moments since Ãeq

n = 0 for n � 1 in the
isothermal case. Such a result can further be extended to the
thermal case by relying on temperature-normalized velocities
[98].

Multivariate formulations of all kinds of equilibrium mo-
ments are simply obtained thanks to the isotropy of the mul-
tivariate normal distribution. Hence, multivariate equilibrium
moments are built through products of univariate ones.

Henceforth, only equilibrium moments computed via the
Maxwell-Boltzmann distribution function will be considered.
But it is also worth noting that depending of the physics
of interest, other equilibrium distribution functions might be
used, e.g., those derived from the principle of maximum
entropy [99,100]. Interestingly, the latter methodology was
used in the lattice Boltzmann community for the derivation
of exact [101,102] and approximated [103,104] equilibrium
distribution functions. A few words about exact formulations
can be found at the end of Appendix H.

III. REVIEW OF COLLISION MODELS

The LBM is a very specific numerical scheme employed
to solve the lattice Boltzmann equation, a set of Boltzmann
equations resulting from the discretization of the velocity
space.

A. Lattice Boltzmann method

This method describes the space and time evolution of
the velocity distribution function (VDF) fi(x, ξi, t ), also re-
ferred to as “population” in this work. Roughly speaking,
this quantity can be assimilated to the number of fictive
particles at a point (x, t ) and characterized by a given velocity
ξi. Its space and time evolution are obtained following two
(dimensionless) successive steps:

f ∗
i (x, t ) = f eq

i (x, t ) + (1 − �) f neq
i (x, t ), (37)

fi(x + ξi, t + 1) = f ∗
i (x, t ), (38)

where f ∗
i are post-collision VDFs. Equation (37) is the colli-

sion step that locally takes into account the rate of change of fi

due to collisions, where � is the collision model in its general
form, f eq

i is the equilibrium VDF, and f neq
i is the deviation

from the equilibrium state. Equation (38) corresponds to the
streaming step that propagates fi to their neighboring nodes
following the direction ξi. Altogether, they form the famous
“collide and stream” algorithm which shows both CPU time
efficiency and accuracy [59].

Hereafter, the discussion will be restricted to the D2Q9
lattice. This is done for the sake of simplicity, and because it is
sufficient to explain the differences between collision models
of interest in this work.

B. BGK collision model

In the particular case of the BGK collision operator,

� = ων, f neq
i = (

fi − f eq,2
i

)
,

with ων = 1/(τ + 1/2) the collision frequency, τ being the
relaxation time, ν the kinematic viscosity, and f eq,2

i is the
standard second order equilibrium VDF [105,106]. Using this
collision model, severe stability issues have been reported
in the zero viscosity limit [3]. While one can improve the
numerical stability of the LBM changing either the space or
the time discretizations of the streaming and collision steps
[107–111], it is usually preferred to derive new collision
models introducing new forms for either � [25–27,38,42,57]
or f neq

i [64,65,68,69]. Doing so, both the efficiency and the
accuracy can be preserved in most of the cases, and the
stability of the resulting LBM is drastically improved.

C. Raw moment space

To circumvent the stability issue, it has first been proposed
to apply the collision step in the moment space through a MRT
collision model [26]

�MRT = M−1SM, f neq
i = (

fi − f eq,2
i

)
,

where S is the collision matrix which may have a diagonal
form depending on the choice of moments. M and M−1 are
commonly defined as orthogonal matrices allowing us to
move from the nine-dimensional velocity space

( f0, f1, f2, f3, f4, f5, f6, f7, f8)

to the nine-dimensional orthogonal moment space

(ρ, jx, jy, e, pxx, pxy, qx, qy, ε),

and vice versa. The polynomial basis related to this moment
space is

BMRT = (
Mρ, Mjx , Mjy , Me, Mpxx , Mpxy , Mqx , Mqy , Mε

)
, (39)

and it is built using the Gram-Schmidt orthogonalization
procedure based on a unweighted scalar product.

In the present case, the collision matrix is defined as [26]

SMRT = diag(0, 0, 0, ωe, ων, ων, ωq, ωq, ωε ).

Hence, the linear matrix form of � allows the proper control
of the relaxation process of each moment. This approach can
drastically increase the numerical stability of the MRT-LBM,
but this will depend on the choice of both the moment space,
M and M−1 [50], and the relaxation frequencies composing
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the collision matrix S [26]. This last point becomes a huge
drawback in either the 3D case or when dealing with high
order LBMs since the number of parameters that need to be
fine tuned rapidly becomes very large.

To reduce the number of free parameters in a general
way, the TRT-LBM was proposed [27,28]. In the context of
the orthogonal basis BMRT (39), it relies on the following
decomposition into a symmetric (even moments), and an
antisymmetric (odd moments) subbases [59]

BTRT = B+
MRT ∪ B−

MRT,

with

B+
MRT = (

Mρ, Me, Mpxx , Mpxy , Mε

)
,

and

B−
MRT = (

Mjx , Mjy , Mqx , Mqy

)
.

Hence, the relaxation of even and odd moments is decoupled
using two relaxation frequencies. In the above context, this
leads to

STRT = diag(0, 0, 0, ω+, ω+, ω+, ω−, ω−, ω+),

with ω+ = ων , (1/ω− − 1/2) = �/(1/ω+ − 1/2), and � the
“magic parameter” that controls both accuracy and stability of
the TRT-LBM [30–32,37].

It is worth noting that, by relying on its original set of
relaxation frequencies, the orthogonal MRT model is not well
suited for aeroacoustic simulations. Indeed, the standard value
of the relaxation frequency related to acoustic modes (ωe)
is always far from 2, hence leading to huge values of the
bulk viscosity [26,29]. This further increases the stability of
the corresponding LBM by overdissipating acoustic waves
[34,81,112]. But, from the theoretical viewpoint, the major
defect of the above models is that they originally relied on
polynomial bases including high order terms that are not
compliant with the velocity discretization. Taking the example
of qx, its associated vector is

Mqx = [−5 + 3
(
ξ 2

i,x + ξ 2
i,y

)]
ξi,x,

and it reduces to

Mqx = (−2 + ξ 2
i,y

)
ξi,x,

due to the aliasing defects ξ 3
i,x = ξi,x and ξ 3

i,y = ξi,y of the
D2Q9 lattice, where ξi,x, ξi,y ∈ {0,±1}. The same issue is
also encountered with Mqy and Mε. Unfortunately, this alias-
ing problem remains present for D3Q19 and D3Q27 lattices
where it might be even more dominant. Nevertheless, both
defects can easily be circumvented by using (1) the correct
value of the bulk viscosity to compute ωe, and (2) a poly-
nomial basis that is not affected by aliasing issues [see, for
example, Eq. (40)].

It is also worth noting that these models were shown to
recover the behavior of the BGK collision operator based on
f eq,2
i if one neglects higher order velocity dependent terms.

Knowing that a fourth order equilibrium state f eq,4
i increases

the linear stability of the LBM [70,85], it would be interest-
ing to determine if these orthogonal MRT and TRT models
recover the behavior of the corresponding BGK-LBM. A few
words regarding this possible link can be found in Sec. V C.

In the rest of the paper, LBMs based on the orthogonal
basis (39), and their 3D extensions [29,113,114], will be
denoted as orthogonal MRT and TRT models.

To find polynomial bases compliant with the order of accu-
racy of the velocity discretization, it was proposed to build
D-dimensional bases following tensor product rules of 1D
bases [92]. Since the D2Q9 lattice is a second order velocity
discretization [106], these rules lead to the construction of a
basis only composed of polynomials of the form ξ n

i,xξ
m
i,y with

n � 2 and m � 2. The most natural basis compliant with the
D2Q9 lattice is then

BTP = (
1, ξi,x, ξi,y, ξ

2
i,x, ξ

2
i,y, ξi,xξi,y, ξ

2
i,xξi,y, ξi,xξ

2
i,y, ξ

2
i,xξ

2
i,y

)
,

(40)

where the subscript TP stands for the tensor product for-
malism. In fact, any basis composed of linear combinations
of BTP elements would also be correct. Hence, its Hermite
counterpart (HTP) could also be used [68,69],

BHTP = (Hi,00, Hi,10, Hi,01, Hi,20, Hi,02,

Hi,11, Hi,21, Hi,12, Hi,22). (41)

If one wants to further decouple shear and bulk viscosities,
one simply needs to change ξ 2

i,x and ξ 2
i,y (Hi,20 and Hi,02) to

ξ 2
i,x + ξ 2

i,y and ξ 2
i,x − ξ 2

i,y (Hi,20 + Hi,02 and Hi,20 − Hi,02) as
proposed in Refs. [13,41,115].

This TP approach paved the way for a systematic derivation
of new MRT-LBMs as introduced hereafter. It is finally worth
noting that other kinds of TRT models were also proposed in
different contexts [80,116], but they will not be studied in this
work since they do not introduce new concepts as compared
to those already contained within the orthogonal TRT model.

D. Central moment space

Despite a non-negligible increase in stability of both the
MRT- and TRT-LBMs, issues were still encountered when
simulating high Reynolds number flows. It was then sug-
gested by several authors to improve the numerical stability
of MRT-LBMs by applying the collision step in the comoving
reference frame [38–52].

These models rely on two modifications of the previous
MRT-LBMs. First, the collision is applied in the central
moment (CM) space based on either the TP [38,39,41,44–48]
or the orthogonal MRT formalism [42,50], i.e.,

BCM = B̃TP or B̃MRT,

where the tilde stands for the velocity shift of each vector
of the basis: ξ̃i,x = ξi,x − ux and ξ̃i,y = ξi,y − uy. Second, the
equilibrium state is also expanded following the TP formal-
ism, leading to the inclusion of third and fourth order terms
in the definition of f eq

i . It is important to note that while
these terms were added in an a posteriori manner in the
first (cascaded) model [38,39], the TP formalism offers an a
priori and systematic way to include high order terms without
exceeding the order of accuracy of the lattice. By extending
the previous reasoning on equilibrium moments to the equilib-
rium population itself, one can derive new equilibrium states
that includes high order Hermite polynomials. This improves
the Galilean invariance of the resulting LBM in a systematic
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and a priori way, using either the CM formalism [47,48,117]
or any other one. This point will further be investigated in
Sec. VI D.

The CM-LBM can be summarized by

�CM = M−1N−1SNM, f neq
i = (

fi − f eq,ext
i

)
,

where N and N−1 are the velocity dependent matrices used
to move from the raw to the central moment space, and vice
versa [42,44]. In the particular case of a flow at rest (ux =
uy = 0), these matrices reduce to the identity matrix, and the
orthogonal MRT (or TP) collision model is recovered. f eq,ext

is the extended equilibrium state that includes up to fourth
order (sixth order) terms for the D2Q9 (D3Q27) velocity
discretization [47,48,117]. Both of these modifications lead to
a drastic stability gain, and especially when the TP formalism
is adopted for the moment space [50]. This is why only this
formalism will be considered in this work.

Eventually, it is important to note that despite a further
stability increase, these models were mostly validated impos-
ing acoustically related moments (those including the trace of
second order moments) to their equilibrium value in the single
phase and isothermal case [38–40,43]. This translates in a
severe overdissipation of acoustic waves. As a consequence, it
is of paramount importance to properly decouple the stability
increase induced by the CM-LBM itself, from the one induced
by the bulk viscosity. A few results about this problem can be
found in Ref. [50], but more in depth investigations are still
required to properly decouple these two stabilization mech-
anisms. For example, it would be interesting to quantify the
impact of the moment space, and of relaxation frequencies, on
both academic and realistic configurations that would include
acoustically related phenomena.

E. Regularization steps and Hermite moments

In parallel of the derivation of CM-LBMs, another type of
collision models has been proposed to increase the numerical
stability of the BGK-LBM without accounting for collisions
in the moment space. Instead, these regularized collision
models aim at filtering out nonhydrodynamic contributions
that appear during the streaming step [64–78]. This is done
projecting the nonequilibrium VDF on Hermite polynomials
up to a given order N . Hence, this regularized collision model
can be summarized as

�PRN = ων, f neq
i = wi

N∑
n=0

1

n!c2n
s

aneq
n : H i,n,

where “:” is the tensor index contraction (or Frobenius in-
ner product) wi are the quadrature weights, cs is the lattice
constant, an are Hermite coefficients, and the subscript PRN
stands for the projection based regularization at order N , with
N = 2 in the original model [64,65], whereas N � 3 for high
order LBMs [67,69,70,73]. In the original PR framework,
Hermite nonequilibrium coefficients read as

aneq
n =

∑
i

(
fi − f eq,2

i

)
H i,n. (42)

The above description corresponds to the way the regulariza-
tion step was first introduced. In fact, it can be reinterpreted in

terms of a MRT collision model based on BHTP (41) and the
corresponding extended equilibrium state [70]

�PR2 = M−1SM, f neq
i = (

fi − f eq,4
i

)
,

and where SPR2 = diag(0, 0, 0, ων, ων, ων, ω3, ω3, ω4), with
ω3 = ω4 = 1. This is the sole set of relaxation frequencies
that will be considered for this collision model in this work.
It is interesting to note that a more general MRT-LBM
based on the Hermite moment space was also introduced in
Refs. [118,119], and that this model was recently shown to be
a generalization of the lattice kinetic scheme [85].

Despite its great success in various fields [73,75–77], it
was recently proven that this model does not filter out all
nonhydrodynamic contributions [68,69]. The reason lies in the
fact that part of them are still present in aneq

n via fi − f eq,4
i .

Indeed, the latter only reduces to the first order (Navier-
Stokes-Fourier) nonequilibrium VDF f (1)

i in the continuum
limit, which might not be valid anymore when the mesh
becomes very coarse, i.e., non-negligible Knudsen number
based on the grid cell size. To counter this defect, its was
proposed to impose the correct nonequilibrium part through
a recursive computation of a(1)

n using formulas derived from
the Chapman-Enskog expansion [68–71]. This recursive reg-
ularized (RR) collision model is defined as

�RRN = M−1SM, f neq
i = wi

N∑
n=0

1

n!c2n
s

a(1)
n : H i,n,

with S = ωνI in the original model, I being the identity
matrix. The recursive formulas for the computation of a(1)

n
were derived in Refs. [68,69]. They are recalled in the case of
the D2Q9 lattice in Eq. (83), whereas formulas for the D3Q27
are summarized in Eq. (90). The single relaxation time (SRT)
PR collision model was shown to recover the behavior of the
BGK operator when it is applied to the complete Hermite
polynomial basis of the D2Q9 lattice, i.e., ω4 = ω3 = ων [69].
When it comes to the RR procedure, no direct link with the
BGK operator is known at the time of writing.

Before moving to LBMs based on cumulants, it is worth
noting that extensions of the PR model to other moment
spaces have been proposed in the literature. A first extension
was proposed in the TRT context [37]. Imposing �−

q �+
ε = 1

4 ,
it was noticed that nonhydrodynamic contributions could be
filtered out in the same spirit as for the original PR model.
Unfortunately, this model suffers the same problems as the
orthogonal TRT since it also relies on the same polynomial
basis BTRT. Another extension was proposed in the framework
of collisions occurring in the comoving reference frame. Orig-
inally, the purpose of such an extension was to improve the
Galilean invariance of LBMs relying on the central Hermite
polynomial expansion of VDFs [120]. This formalism was
further used to increase the stability of the PR model for the
simulation of high Reynolds number flows [72]. Discarding
several diffusive terms in an ad hoc manner, the authors recov-
ered recursive formulas obtained from the Chapman-Enskog
expansion in the context of the isothermal RR collision model.
This suggests that there might be an underlying link between
the CHM and the RR frameworks. More information will be
given in Sec. V D regarding this last point.
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F. Cumulant space

The most recent improvement of the MRT-LBM is based
on a collision step occurring in the cumulant space [57,60–
62]. The main advantage of cumulants, as compared to stan-
dard raw and central moments, is their ability to quantify
the deviation of a probability density function with respect
to a Gaussian distribution [97], in our case, the normalized
equilibrium VDF f eq/ρ. This was confirmed in Sec. II G
where the only nonzero equilibrium cumulants were the first
and the second ones:

Keq
1 = ux, Keq

2 = c2
s , Keq

n = 0 (n � 3).

By definition, cumulants belong to a type of statistical quanti-
ties quite different from raw and central moments. Neverthe-
less, they directly flow from (the logarithm of) the moment
generating function as explained in Sec. II. Besides, they also
share some similarities with central moments in the sense that
their second and third order terms are strictly equivalent, as
already precised in Refs. [53,93], and further illustrated in
Appendices C–E. This means that without doing any calcula-
tions, it is known for sure that CM-LBM and cumulant-LBM
(K-LBM) are identical for the D1Q3 lattice.

Due to the nonlinear relationships between cumulants
and the other moment-like quantities for n � 4, it is not
possible to express the collision model in a linear matrix
form. Nonetheless, one obtains a very simple algorithm using
formulas derived to link central moments with respect to the
cumulant one, and vice versa (Appendices C–E). According to
Refs. [57,60–62], the K-LBM cannot recover the behavior of
the BGK-LBM. This point will be further studied in Sec. V E.

G. Partial conclusions

Almost all collision models can be rewritten in a linear
matrix form

� = M−1SM, (43)

with the exception of the K-LBM. Hence, it is already known
for sure that this LBM belongs to a completely different
family of LBMs. For collision models that satisfy Eq. (43),
another distinction can be made between those relying on
the approximation of the continuum limit f neq

i = fi − f eq
i and

the RR collision model which imposes f neq
i = f (1)

i instead.
Regarding models operating in the comoving reference frame,
their linear matrix form depends on the local velocity. Hence,
it seems complicated, at first sight, to find relationships with
other collision models expressed in the reference frame at
rest. Consequently, four different groups seem to emerge from
the above review: (1) RM, HM, and PR, (2) CM and CHM,
(3) RR, and (4) cumulant based collision models. Neverthe-
less, the possible relationship between RR- and CHM-LBMs
remains to be addressed.

The rest of the paper will mainly be devoted to the valida-
tion of the above assumptions. To do so, it will be confirmed if
the form of the equilibrium state is independent of the moment
space or not. In the meantime, possible sets of relaxation
frequencies allowing to link different types of collision model
will be sought.

For the sake of completeness, the derivation of all linear
transformations matrices M and M−1 are detailed for the
D2Q9 lattice in Appendix F. General explanations regarding
their construction are also provided, which makes possible
their derivation for both the D3Q19 and D3Q27 lattices in a
straightforward manner.

IV. THEORETICAL COMPARISON USING
THE D1Q3 LATTICE

The purpose of this section is to compare, in the one-
dimensional case, the most common collision models en-
countered in the LBM framework through their equilibrium,
precollision and post-collision populations. To do so, the
derivation of raw, Hermite, central, central Hermite LBMs is
first recalled before moving to the comparative study.

A. Discrete moments and populations

Let us consider the one-dimensional discretization of the
velocity space using the following three discrete velocities
(ξ0, ξ±1) = (0,±1), namely, the D1Q3 lattice [59]. This
model has three degrees of freedom meaning it allows, at best,
to preserve the first three moments of the VDF during the
velocity discretization, i.e., ∀ n ∈ {0, 1, 2},

ρPn =
∫

fPndξx =
∑

i

fiPi,n, (44)

where Pn is a normalized moment of order n, yet to be defined.
Pn, and Pi,n (its discrete counterpart), also depend on the
framework on which the collision model relies. Four different
moment spaces will be considered hereafter. Hence, Pi,n can
be defined using the following:

(1) Raw moment (RM) space

ξ n
i,x; (45)

(2) Hermite moment (HM) space

Hi,n(ξi,x ); (46)

(3) Central moment (CM) space

ξ̃ n
i,x = (ξi,x − ux )n; (47)

(4) Central Hermite moment (CHM) space

H̃i,n(ξi,x ) = Hi,n(ξi,x − ux ), (48)

where Hi,n is the discrete version of the Hermite polynomial
of degree n, as introduced in Eq. (5). The tilde symbol
stands for the central moment version of the polynomial basis
considered for the collision process.

Once the moment space has been chosen, Eq. (44) is
enforced adopting the correct form of f+1, f0, and f−1.
Assuming the collision takes place in the RM space, the
following system needs to be solved:

ρM0 = f RM
+1 + f RM

0 + f RM
−1 ,

ρM1 = f RM
+1 − f RM

−1 , (49)

ρM2 = f RM
+1 + f RM

−1 ,
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which gives

f RM
0 = ρ(M0 − M2) and f RM

σ = ρ

2
(σM1 + M2),

with σ = ±1. Corresponding equilibrium VDFs are then
obtained computing equilibrium moments Meq

n that satisfy
the moment conservation rule (44). By using the isothermal
moments of the continuous Maxwell equilibrium VDF (36),
one obtains

Meq
0 = 1,

Meq
1 = ux, (50)

Meq
2 = u2

x + c2
s ,

which leads to

f eq,RM
0 = ρ

[
1 − (u2

x + c2
s

)]
, f eq,RM

σ = ρ

2

[
σux + (u2

x + c2
s

)]
.

cs is the isothermal (or Newtonian) speed of sound, and it
corresponds to the lattice constant when the lattice Boltzmann
unit system is adopted [121].

Instead of performing collisions in the moment space using
the linear matrix form of the collision operator, it is preferred
here to work directly with VDFs. Post-collision VDFs then
read as

f ∗,RM
0 = ρ(M∗

0 − M∗
2 ), f ∗,RM

σ = ρ

2
(σM∗

1 + M∗
2 ), (51)

with M∗
n the post-collision moment defined as

M∗
n = (1 − ωn)Mn + ωnMeq

n , (52)

where ωn = 1/(τn + 1/2) is the relaxation frequency asso-
ciated to Mn, and τn the corresponding relaxation time. In
the case of the D1Q3 lattice, only mass and momentum are
collision invariants, thus, one can freely choose the value of
their corresponding relaxation frequency. Most of the time,
one imposes ω0 = ω1 = 0 in the absence of external forces
[27].

Injecting equilibrium moments (50) into the definition of
post-collision moments (52), post-collision VDFs (51) now
read as

f ∗,RM
0 = ρ

[
1 − (1 − ων )M2 − ων

(
u2

x + c2
s

)]
, (53)

f ∗,RM
σ = ρ

2

[
σux + (1 − ων )M2 + ων

(
u2

x + c2
s

)]
, (54)

where ων = ω2 is the relaxation frequency related to the
kinematic viscosity ν through 1/ων = ν/c2

s + 1/2.

B. Impact of the moment space (D1Q3)

By solving Eq. (44) in different moment frameworks,
various forms of post-collision VDFs are obtained. In the HM
framework,

f ∗,HM
0 = ρ

[(
1 − c2

s

)− (1 − ων )A2 − ωνu2
x

]
,

f ∗,HM
σ = ρ

2

[
c2

s + σux + (1 − ων )A2 + ωνu2
x

]
, (55)

since A∗
0 = Aeq

0 = 1, A∗
1 = Aeq

1 = ux, Aeq
2 = u2

x . Using central
moments, these VDFs are then

f ∗,CM
0 = ρ

[(
1 − u2

x

)− (1 − ων )M̃2 − ωνc2
s

]
,

f ∗,CM
σ = ρ

2

[
σux + u2

x + (1 − ων )M̃2 + ωνc2
s

]
, (56)

where M̃∗
0 = M̃eq

0 = 1, M̃∗
1 = M̃eq

1 = 0, M̃eq
2 = c2

s . Eventually,
the CHM framework leads to

f ∗,CHM
0 = ρ

[
1 − c2

s − u2
x − (1 − ων )Ã2

]
,

f ∗,CHM
σ = ρ

2

[
c2

s + σux + u2
x + (1 − ων )Ã2

]
, (57)

using Ã∗
0 = Ãeq

0 = 1, Ã∗
1 = Ãeq

1 = 0, Ãeq
2 = 0.

Regarding equilibrium moments, it is interesting to note
that one can simply derive them applying two simple rules
to Eq. (50). First, one can switch from equilibrium raw or
central moments to their Hermite counterparts by neglecting
cs dependent terms. The reason behind this is that Hermite
polynomials reduce to monomials when terms proportional to
cs are discarded. Second, the change from equilibrium raw
(or Hermite) moments to their central (Hermite) versions is
done discarding velocity dependent terms. This is explained
by the fact that in the comoving reference frame, equilibrium
moments are velocity independent. Consequently, all isother-
mal equilibrium moments, but the zeroth, are null in the CHM
framework.

At first sight, all moment spaces seem to lead to different
expressions for VDFs. Nonetheless, links can be drawn be-
tween all the above populations. Starting from post-collision
VDFs obtained within the RM framework (51),

f ∗,RM
0 = ρ(1 − M∗

2 )

= ρ
(
1 − (1 − ων )M2 − ωνMeq

2

)
= ρ

(
1 − (1 − ων )

(
A2 + c2

s

)− ων

(
Aeq

2 + c2
s

))
= ρ

(
1 − c2

s − (1 − ων )A2 − ωνAeq
2

)
= ρ

(
1 − c2

s − A∗
2

)
= f ∗,HM

0 , (58)

and

f ∗,RM
σ = ρ

2
(σux + M∗

2 )

= ρ

2

(
σux + (1 − ων )M2 + ωνMeq

2

)
= ρ

2

(
σux + (1 − ων )

(
A2 + c2

s

)+ ων

(
Aeq

2 + c2
s

))
= ρ

2

(
c2

s + σux + (1 − ων )A2 + ωνAeq
2

)
= ρ

2

(
c2

s + σux + A∗
2

)
= f ∗,HM

σ . (59)

Thus, the definition of post-collision VDFs originating from
the HM framework (55) are recovered from those of the RM
approach. Moving now to the CM framework (56),

f ∗,CM
0 = ρ

(
1 − u2

x − M̃∗
2

)
= ρ

(
1 − u2

x − (1 − ων )M̃2 − ωνM̃eq
2

)
= ρ

(
1 − c2

s − u2
x − (1 − ων )Ã2 − ωνÃeq

2

)
= ρ

(
1 − c2

s − u2
x − Ã∗

2

)
= f ∗,CHM

0 , (60)
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and

f ∗,CM
σ = ρ

2

(
σux + u2

x + M̃∗
2

)
= ρ

2

(
σux + u2

x + (1 − ων )M̃2 + ωνM̃eq
2

)
= ρ

2

(
c2

s + σux + u2
x + (1 − ων )Ã2 + ων Ãeq

2

)
= ρ

2

(
c2

s + σux + u2
x + Ã∗

2

)
= f ∗,CHM

σ , (61)

which proves that post-collision VDFs originating from the
CHM framework (57) are also recovered.

The question remains regarding the validity of this result
when the reference frame is changed. Starting with

f ∗,RM
0 = ρ(1 − M∗

2 ),

f ∗,RM
σ = ρ

2

(
σux + u2

x + M̃∗
2

)
, (62)

and using Eq. (12), one obtains M∗
1 = M̃∗

1 + ux and M∗
2 =

M̃∗
2 + u2

x . This leads to

f ∗,RM
0 = ρ

[
1 − (

M̃∗
2 + u2

x

)] = f ∗,CM
0 ,

f ∗,RM
σ = ρ

2

[
σux + (

M̃∗
2 + u2

x

)] = f ∗,CM
σ , (63)

and it results in the equivalence between raw and central
moment frameworks for the D1Q3 lattice.

In summary, raw, Hermite, central, and central Hermite
frameworks recover the very same behavior (BGK) when the
D1Q3 lattice is employed. Imposing ων = 1, one can further
confirm that all models share the very same equilibrium state.

It is important to note that the K-LBM reduces to the
CM-LBM as far as the D1Q3 lattice is employed since only
moments up to the second order are considered for this
velocity discretization. To quantify the possible benefit of the
cumulant collision model in 1D, one must consider LBMs
derived from high order velocity discretizations, such as the
(zero-one-three) D1Q5 or the D1Q7 lattices [92,122,123].

The last point that needs to be checked is the way regular-
ized collision operators are related to the above collision mod-
els. To answer this question, it is necessary to link populations
derived through the Gauss-Hermite quadrature [106,124,125]
with those obtained via the conservation of Hermite moments
(55).

C. Gauss-Hermite quadrature and regularized collision models

Another way to derive populations associated to a given
velocity discretization is based on the Gauss-Hermite (GH)
quadrature [106,124,125]. This mathematical tool allows the
exact preservation of certain properties (moments up to a
certain order N) during the discretization of the velocity space.
This method defines, in a unique and systematic way, the
discrete populations fi as

fi = wi

N∑
n=0

1

n!c2n
s

an : H i,n, (64)

where the quadrature weights wi and the lattice constant cs

can be obtained, for example, ensuring the preservation of

Hermite polynomial orthogonality properties up to the order
N [126]. For the D1Q3 lattice, the above expression reduces
to

fi = wi

[
aeq

0 Hi,0 + 1

c2
s

aeq
1 Hi,1 + 1

2c4
s

(
aeq

2 + aneq
2

)
Hi,2

]
, (65)

with w0 = 2/3, wσ = 1/6, cs = 1/
√

3, and aeq
n = ρun

x in the
isothermal case [68]. Thus,

f ∗,GH
0 = w0

(
ρ − a∗

2/2c2
s

)
= ρ(2/3 − A∗

2 )

= ρ
(
1 − c2

s − A∗
2

)
= f ∗,HM

0 (66)

using a∗
2 = ∑

i f ∗
i Hi,2 = ρA∗

2. Furthermore,

f ∗,GH
σ = wσ

[
ρ + σρux + a∗

2

(
1 − c2

s

)/
2c4

s

]
= ρ

2

(
c2

s + σux + A∗
2

)
= f ∗,HM

σ . (67)

Since both PR and RR collision models rely on this Gauss-
Hermite quadrature, and that PR and RR approaches are
equivalent for moments of order n � 2 [69], it can be con-
cluded that both regularization steps recover the behavior of
all aforementioned collision models.

All in all, every collision model considered in this work
reduces to the BGK collision model, as far as the D1Q3
lattice is employed. The question is now to determine if the
present conclusion remains valid in both 2D and 3D cases. To
answer it, the D-dimensional extension based on the tensor
product formulation will be adopted for both monomial [92]
and Hermite polynomial bases [70]. This step will allow us to
properly understand which moments should be included in the
derivation of populations, in the case of tensor product based
LBMs such as the D2Q9 or the D3Q27 lattices (Secs. V and
VI, respectively).

V. THEORETICAL COMPARISONS USING
THE D2Q9 LATTICE

A. D-dimensional extension

The D-dimensional extension is done following the tensor
product rules proposed in Refs. [92,127]. In the most general
(3D) case, they read as follows.

(1) Lattice:

ξ(i, j,k) = (ξi, ξ j, ξk ). (68)

(2) Population:

f(i, j,k) = ρφiφ jφk, (69)

with φi = fi/ρ, φ j = f j/ρ, φk = fk/ρ.
(3) Weight:

w(i, j,k) = wiw jwk. (70)

If not otherwise stated, the 3-tuple (i, j, k) [or 2-tuple
(i, j)] will be used instead of the conventional single index
i to describe a discrete velocity and its associated population.
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Before moving to the derivation of post-collision VDFs
in the 2D case, it is important to note that by following the
above rules, it can be shown (Appendix H) that all equilibrium
states derived following these rules recover the exact same
form whatever the polynomial basis used, and in any D
dimension. This important result flows from the fact that they
already share the same equilibrium state in the 1D case, as
demonstrated in Sec. IV.

Thanks to tensor product rules (68) and (69), populations
evolving in the RM space now read as

f RM
(0,0) = ρ(M00 − M20)(M00 − M02),

f RM
(σ,0) = ρ

2
(σM10 + M20)(M00 − M02),

f RM
(0,λ) = ρ

2
(M00 − M20)(λM01 + M02),

f RM
(σ,λ) = ρ

4
(σM10 + M20)(λM01 + M02),

with (σ, λ) ∈ {−1,+1}2. This leads to

f RM
(0,0) = ρ(M00 − (M20 + M02) + M22), (71a)

f RM
(σ,0) = ρ

2
(σM10 + M20 − σM12 − M22), (71b)

f RM
(0,λ) = ρ

2
(λM01 + M02 − λM21 − M22), (71c)

f RM
(σ,λ) = ρ

4
(σλM11 + σM12 + λM21 + M22), (71d)

where the isotropy of the VDF itself is enforced up to the
second order (in each direction) imposing [92]

M1D
p M1D

q = M2D
p0 M2D

0q = Mpq,

with (p, q) ∈ {0, 1, 2}2.
Hence, post-collision populations for the RM framework

read as

f ∗,RM
(0,0) = ρ[M∗

00 − (M∗
20 + M∗

02) + M∗
22], (72a)

f ∗,RM
(σ,0) = ρ

2
(σM∗

10 + M∗
20 − σM∗

12 − M∗
22), (72b)

f ∗,RM
(0,λ) = ρ

2
(λM∗

01 + M∗
02 − λM∗

21 − M∗
22), (72c)

f ∗,RM
(σ,λ) = ρ

4
(σλM∗

11 + σM∗
12 + λM∗

21 + M∗
22), (72d)

where post-collision raw moments are defined as

M∗
20 + M∗

02 = (
1 − ωνb

)
(M20 + M02) + ωνb

(
Meq

20 + Meq
02

)
,

M∗
20 − M∗

02 = (1 − ων )(M20 − M02) + ων

(
Meq

20 − Meq
02

)
,

M∗
11 = (1 − ων )M11 + ωνMeq

11,

M∗
21 = (1 − ω3)M21 + ω3Meq

21,

M∗
12 = (1 − ω3)M12 + ω3Meq

12,

M∗
22 = (1 − ω4)M22 + ω4Meq

22,

with νb being the bulk viscosity, and ν the kinematic vis-
cosity. ω3 and ω4 are the relaxation frequencies associated
to third and fourth order moments, respectively. Furthermore,
corresponding equilibrium moments are

Meq
20 + Meq

02 = u2
x + u2

y + 2c2
s , (73a)

Meq
20 − Meq

02 = u2
x − u2

y, (73b)

Meq
11 = uxuy, (73c)

Meq
21 = (

u2
x + c2

s

)
uy, (73d)

Meq
12 = ux

(
u2

y + c2
s

)
, (73e)

Meq
22 = (

u2
x + c2

s

)(
u2

y + c2
s

)
. (73f)

From this, the collision matrix cannot be diagonal if one
requires νb 	= ν [59]. A simple remedy consists in replacing
(ξ 2

i,x, ξ
2
i,y) in BTP by (ξ 2

i,x + ξ 2
i,y, ξ

2
i,x − ξ 2

i,y) as proposed in
Ref. [14].

From a more general viewpoint, attention must be paid to
the polynomial basis that is chosen since it may introduce
extra computations as compared to the original one, and this
overhead can become non-negligible in the 3D case. As an
example, this was investigated in Ref. [46] by comparing the
CPU times required by several CM-LBMs to simulate the very
same configuration.

From now on, let us determine if previous conclusions
regarding the impact of the polynomial basis in 1D are still
valid in the 2D case.

B. Impact of the moment space (D2Q9)

Regarding Hermite, central, and central Hermite moment
spaces, their post-collision populations are obtained following
the very same tensor product rules as before [Eqs. (68) and
(69)]. In the HM framework, one obtains

f ∗,HM
(0,0) = ρ[C2 − C(A∗

20 + A∗
02) + A∗

22],

f ∗,HM
(σ,0) = ρ

2

[
C
(
c2

s + σux
)+ CA∗

20 − c2
s A∗

02 − σA∗
12 − A∗

22

]
,

f ∗,HM
(0,λ) = ρ

2

[
C
(
c2

s + λuy
)− c2

s A∗
20 + CA∗

02 − λA∗
21 − A∗

22

]
,

f ∗,HM
(σ,λ) = ρ

4

[
c2

s

(
c2

s + σux + λuy
)+ σλA∗

11 + c2
s (A∗

20 + A∗
02) + λA∗

21 + σA∗
12 + A∗

22

]
, (74a)

while for the CM framework

f ∗,CM
(0,0) = ρ[UxUy + 4uxuyM̃∗

11 − UyM̃∗
20 − UxM̃∗

02 + 2uyM̃∗
21 + 2uxM̃∗

12 + M̃∗
22],

f ∗,CM
(σ,0) = ρ

2
[uxσxUy − 2σ2xuyM̃∗

11 + UyM̃∗
20 − uxσxM̃∗

02 − 2uyM̃∗
21 − σ2xM̃∗

12 − M̃∗
22],
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f ∗,CM
(0,λ) = ρ

2
[Uxuyλy − 2uxλ2yM̃∗

11 − uyλyM̃∗
20 + UxM̃∗

02 − λ2yM̃∗
21 − 2uxM̃∗

12 − M̃∗
22],

f ∗,CM
(σ,λ) = ρ

4
[uxσxuyλy + σ2xλ2yM̃∗

11 + uyλyM̃∗
20 + uxσxM̃∗

02 + λ2yM̃∗
21 + σ2xM̃∗

12 + M̃∗
22], (74b)

and for the CHM framework

f ∗,CHM
(0,0) = ρ[CxCy + 4uxuyÃ∗

11 − CyÃ∗
20 − CxÃ∗

02 + 2uyÃ∗
21 + 2uxÃ∗

12 + Ã∗
22],

f ∗,CHM
(σ,0) = ρ

2
[CσCy − 2σ2xuyÃ∗

11 + CyÃ∗
20 − Cσ Ã∗

02 − 2uyÃ∗
21 − σ2xÃ∗

12 − Ã∗
22],

f ∗,CHM
(0,λ) = ρ

2
[CxCλ − 2uxλ2yÃ∗

11 − CλÃ∗
20 + CxÃ∗

02 − λ2yÃ∗
21 − 2uxÃ∗

12 − Ã∗
22],

f ∗,CHM
(σ,λ) = ρ

4
[CσCλ + σ2xλ2yÃ∗

11 + CλÃ∗
20 + Cσ Ã∗

02 + λ2yÃ∗
21 + σ2xÃ∗

12 + Ã∗
22], (74c)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ux = 1 − u2
x,

Uy = 1 − u2
y,

σx = σ + ux,

σ2x = σ + 2ux,

λy = λ + uy,

λ2y = λ + 2uy,

and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C = 1 − c2
s ,

Cx = 1 − c2
s − u2

x,

Cy = 1 − c2
s − u2

y,

Cσ = c2
s + ux(σ + ux ),

Cλ = c2
s + uy(λ + uy).

While formulas expressed in RM and HM frameworks are
rather simple, their counterparts in the comoving reference
frame rapidly become lengthy. It is even worse in the 3D case,
as detailed in Appendix G. Populations based on the Gauss-
Hermite quadrature do recover the very same expression as
those expressed within the HM framework. Hence, they will
only be considered in Sec. V D to further study possible links
between RR- and CHM-LBMs.

For the D2Q9 lattice, HM equilibrium moments necessary
for the collision step are defined as

Aeq
20 = u2

x, Aeq
02 = u2

y, Aeq
11 = uxuy,

Aeq
21 = u2

xuy, Aeq
12 = uxu2

y, Aeq
22 = u2

xu2
y,

while CM formulas read as

M̃eq
20 = M̃eq

02 = c2
s , M̃eq

11 = M̃eq
21 = M̃eq

12 = 0, M̃eq
22 = c4

s .

Finally, expressions for the CHM framework are

Ãeq
20 = Ãeq

02 = Ãeq
11 = Ãeq

21 = Ãeq
12 = Ãeq

22 = 0.

Now that all required formulas have been provided, let
us start with the comparison between post-collision VDFs
obtained with both the RM and the HM frameworks. Con-
sidering the population at rest in the RM framework,

f ∗,RM
(0,0) = ρ[1 − (M∗

20 + M∗
02) + M∗

22]

= ρ
[(

1 − c2
s

)2 − (
1 − c2

s

)
(A∗

20 + A∗
02) + A∗

22

]
+ ρ(ωνb − ω4)

(
Aneq

20 + Aneq
02

)
,

so that

f ∗,RM
(0,0) = f ∗,HM

(0,0) + � f ∗,HM
22 , (75a)

where � f ∗,HM
22 corresponds to the deviation encountered dur-

ing the relaxation of M∗
22, which eventually impacts the re-

laxation of both A∗
20 and A∗

02 in the HM framework. Similar
results are also obtained with other populations,

f ∗,RM
(σ,0) = f ∗,HM

(σ,0) − � f ∗,HM
22 /2, (75b)

f ∗,RM
(0,λ) = f ∗,HM

(0,λ) − � f ∗,HM
22 /2, (75c)

f ∗,RM
(σ,λ) = f ∗,HM

(σ,λ) + � f ∗,HM
22 /4. (75d)

It flows from these comparisons that it is not possible
anymore to freely switch between raw and Hermite moments.
This is explained by the fact that M∗

22 is not only linked to A∗
22

but also to A∗
20 + A∗

02, while these two kinds of moments are
relaxed using two different frequencies, namely, ω4 and ωνb .
The equivalency between these two approaches is then lost
when ω4 	= ωνb . One can further suppose that discrepancies
between these approaches will tend to zero when phenomena
linked to compressibility effects are negligible, i.e., Aneq

20 +
Aneq

02 ≈ 0. These deviations cannot be observed through the
comparison of precollision or equilibrium VDFs, hence, the
use of post-collision VDFs for the comparison of different
frameworks.

Since relationships between raw and Hermite moments
are the same as those between central and central Hermite
moments, it is known for sure that CM and CHM frameworks
only merge for the same reasons as before.

Let us continue with the comparison between RM and CM
frameworks. A similar computation shows that

f ∗,RM
(0,0) = f ∗,CM

(0,0) + � f ∗,CM
22 , (76a)

where now

� f ∗,CM
22 = ρ(ω3 − ω4)

(
2uyM̃neq

21 + 2uxM̃neq
12

)
+ ρ

(
ωνb − ω4

)(
u2

x + u2
y

)(
M̃neq

20 + M̃neq
02

)/
2

+ ρ(ων − ω4)
(
u2

y − u2
x

)(
M̃neq

20 − M̃neq
02

)/
2

+ ρ(ων − ω4)(4uxuy)M̃neq
11 ,

since M22 is linked to all central moments M̃22, M̃21, M̃12, M̃20,
M̃02, and M̃11 [see Eq. (D3)]. The relationships obtained for
other populations are

f ∗,RM
(σ,0) = f ∗,CM

(σ,0) − σ� f ∗,CM
12

/
4 − � f ∗,CM

22

/
2, (76b)

f ∗,RM
(0,λ) = f ∗,CM

(0,λ) − λ� f ∗,CM
21

/
4 − � f ∗,CM

22

/
2, (76c)
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f ∗,RM
(σ,λ) = f ∗,CM

(σ,λ) + (
σ� f ∗,CM

12 + λ� f ∗,CM
21

)/
8 + � f ∗,CM

22

/
4,

(76d)

with

� f ∗,CM
12 = ρ

[
ux
(
ω3 − ωνb

)(
M̃neq

20 + M̃neq
02

)− ux(ω3 − ων )

× (
M̃neq

20 − M̃neq
02

)+ 4uy(ω3 − ων )M̃neq
11

]
,

� f ∗,CM
21 = ρ

[
uy
(
ω3 − ωνb

)(
M̃neq

20 + M̃neq
02

)+ uy(ω3 − ων )

× (
M̃neq

20 − M̃neq
02

)+ 4ux(ω3 − ων )M̃neq
11

]
.

As expected, even more deviations are present for other
populations since they contain third order RM terms (M21

and M12) that will impact the relaxation of second order
CM terms (M̃20, M̃02, and M̃11). It is then clear that RM
and CM frameworks only share the same behavior when
ω4 = ω3 = ωνb = ων , and a fortiori, when the behavior of the
BGK collision is recovered by both models. On the contrary, if
a MRT approach is adopted, then these deviations can only be
neglected in the case of a flow at rest (ux = uy = 0), for which
both frameworks merge as already mentioned in Sec. III D.
Eventually, the case where M̃neq

20 + M̃neq
02 , M̃neq

20 − M̃neq
02 , and

M̃neq
11 are simultaneously negligible is very restrictive since it

would imply that both compressibility and shear effects are
also negligible. To the best of the authors’ knowledge, this
is very unlikely to happen. As a consequence, this possibility
will not be considered in the rest of the paper.

Once again, since relationships between Hermite and cen-
tral Hermite moments are the same as those between raw and
central moments, one can affirm that the above conclusions
can be extended to HM and CHM frameworks:

f ∗,HM
i = f ∗,CHM

i ⇐⇒
{
ω4 = ω3 = ωνb = ων,

ux = uy = 0 otherwise. (77)

In summary, the choice of the moment space used for
the D2Q9-LBM does have an impact on the resulting post-
collision VDFs, when either a MRT approach is considered,
or the flow is not at rest. More precisely, the deviation between
collision models expressed in either the reference frame at
rest or the comoving reference frame are not constant, and
they depend on the local flow velocity for MRT approaches.
These discrepancies between models naturally emerge from
the 2D representation, while they were not present with the
D1Q3 lattice.

C. Orthogonal MRT and TRT models

These two collision models are based on the expansion of
populations over a polynomial basis built through the Gram-
Schmidt orthogonalization procedure (39). The use of this
basis leads to the following formulas for VDFs:

f LL
(0,0) = 1

9 (ρ − e + ε), (78a)

f LL
(σ,0) = 1

36 (4ρ + 6σ jx − e + 9pxx − 6σqx − 2ε), (78b)

f LL
(0,λ) = 1

36

(
4ρ + 6λ jy − e − 9pxx − 6λqy − 2ε

)
, (78c)

f LL
(σ,λ) = 1

36 (4ρ + 6σ jx + 6λ jy + 2e + 9σλpxy

+ 3σqx + 3λqy + ε), (78d)

where the superscript LL stands for Lallemand’s and Luo’s
MRT model introduced in Ref. [26]. Interestingly, it is pos-
sible to show that the equilibrium form of Eq. (78) equals
f eq,4
i if one does not neglect high order velocity terms in the

equilibrium moments

ρeq = ρ, jeq
x = ρux, jeq

y = ρuy,

eeq = ρ
[
3
(
u2

x + u2
y

)− 2
]
,

peq
xx = ρ

(
u2

x − u2
y

)
, peq

xy = ρuxuy, qeq
x = ρux

(
3u2

y − 1
)
,

qeq
y = ρ

(
3u2

x − 1
)
uy, εeq = ρ

[
1 − 3

(
u2

x + u2
y

)+ 9u2
xu2

y

]
.

By fixing all relaxation frequencies to ων , the orthogonal
LL-MRT recovers the behavior of the BGK-LBM based on
f eq,4
i . By extension, the orthogonal TRT-LBM also recovers

its behavior fixing ω+ = ω− = ων . Thus, it is quite surprising
that both models usually neglect O(u3) and O(u4) terms while
the use of f eq,4

i might improve the linear stability of the
resulting LBM, as already proven for the BGK operator and
for both regularization steps in Ref. [70].

The question is now to determine if these collision models
are further related to other models based on different moment
spaces. Rewriting LL moments within the HM framework
leads to

ρ = ρA00, jx = ρA10, jy = ρA01,

pxx = ρA20 − ρA02, pxy = ρA11,

e = 3(ρA20 + ρA02) − 2ρA00, (79)

qx = 3ρA12 − ρA10, qy = 3ρA21 − ρA01,

ε = 9ρA22 − 3(ρA20 + ρA02) + ρA00.

Thus, the only issue that will be encountered with post-
collision VDFs will originates once again from the relaxation
of the fourth order term ε∗. Indeed,

ε∗ = (1 − ωε )ε + ωεε
eq

= 9ρA∗
22 − 3(ρA∗

20 + ρA∗
02) + ρ − � f ∗,HM

ε ,

with � f ∗,HM
ε = 3(ωε − ωνb )ρ(Aneq

20 + Aneq
02 ) and ωε = ω4 so

that

f ∗,LL
(0,0) = f ∗,HM

(0,0) − � f ∗,HM
ε

/
9, (80a)

f ∗,LL
(σ,0) = f ∗,HM

(σ,0) + � f ∗,HM
ε

/
18, (80b)

f ∗,LL
(0,λ) = f ∗,HM

(0,λ) + � f ∗,HM
ε

/
18, (80c)

f ∗,LL
(σ,λ) = f ∗,HM

(σ,λ) − � f ∗,HM
ε

/
36. (80d)

As for RM and HM frameworks, the LL-MRT-LBM reduces
to the HM-MRT-LBM if the collision step of the fourth order
and the bulk moments follow the very same relaxation rate,
i.e., ωε = ωνb . Once again, the same result is obtained when
compressibility effects are negligible (Aneq

20 + Aneq
02 ≈ 0). One

can derive the very same constraints for the LL-MRT-LBM
to recover the behavior of the RM-LBM. In the same spirit,
one can further come to the conclusion that LL and CM
frameworks merge if a SRT collision model is employed since
it reduces both approaches to the BGK-LBM. In the case of a
MRT collision model, the LL-LBM reduces to the CM-LBM
in the zero velocity limit, as it was also shown in the context
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of the RM collision model (75). In the particular case of the
orthogonal TRT approach, the relaxation of all odd (or even)
moments is linked together. Hence, the condition ωε = ωνb

is always satisfied for this collision model. In addition, the
behavior of the BGK collision model is also recovered when
ω+ = ω− = ων .

D. Regularized collision models

The interesting thing about the Gauss-Hermite quadrature
is that it remains valid whatever the number of dimensions or
the lattice considered [106,124,125]. Nevertheless, it was not
used (in its original form) to define which high order compo-
nents should be included in the definition of populations. In
the context of the D2Q9 lattice, the original basis used for the
polynomial expansion was

BQ9 = (Hi,00, Hi,10, Hi,01, Hi,11, Hi,20, Hi,02).

One can notice that BQ9 is not a “basis” from the mathe-
matical viewpoint since it does not contain nine elements.
In order to improve the description of populations, it was
proposed by several authors to include three more elements
[68,69,128,129]. While the last two approaches added these
elements through a Gram-Schmidt orthogonalization proce-
dure, the first two relied on Hermite polynomials that were
orthogonal with respect to those belonging to BQ9. Nonethe-
less, they all end up with the same complete (and true) basis

Bcomplete
Q9 = BQ9 ∪ (Hi,21, Hi,12, Hi,22),

that corresponds to BHTP (41), as explained in Ref. [80]. This
basis is the starting point to compare all kinds of regulariza-
tion steps against each other. Let us first consider projection
based regularized (PR) models in both the reference frame at
rest [64–66]

fi = wi

[
a00Hi,00 + 1

c2
s

(a10Hi,10 + a01Hi,01)

+ 1

2c4
s

(a20Hi,20 + a02Hi,02 + 2a11Hi,11)

+ 1

2c6
s

(a21Hi,21 + a12Hi,12) + 1

4c8
s

a22Hi,22

]
,

and in the comoving reference frame where central Hermite
coefficients are defined as [72,120,124]

ãnm =
∑

i

fiH̃i,nm, (81)

so that Hermite coefficients are now computed using re-
lationships between Hermite and central Hermite moments
(Appendix D). This leads to

a00 = ρ, a10 = ρux, a01 = ρuy,

a20 = ã20 + ρu2
x , a02 = ã02 + ρu2

y , a11 = ã11 + ρuxuy,

a21 = ã21 + uỹa20 + 2uxã11 + ρu2
xuy,

a12 = ã12 + uxã02 + 2uỹa11 + ρuxu2
y,

a22 = ã22 + 2uỹa21 + 2uxã12 + u2
y ã20 + u2

x ã02

+ 4uxuỹa11 + ρu2
xu2

y, (82)

where ã00 = ρ and ã10 = ã01 = 0 have been assumed. Re-
stricting ourselves to the isothermal case, equilibrium coef-
ficients are then computed as

aeq
00 = ρ, aeq

10 = ρux, aeq
01 = ρuy,

aeq
20 = ρu2

x, aeq
02 = ρu2

y, aeq
11 = ρuxuy,

aeq
21 = ρu2

xuy, aeq
12 = ρuxu2

y, aeq
22 = ρu2

xu2
y,

while nonequilibrium coefficients are

aneq
00 = 0, aneq

10 = 0, aneq
01 = 0,

aneq
20 = ãneq

20 , aneq
02 = ãneq

02 , aneq
11 = ãneq

11 ,

aneq
21 = ãneq

21 + uỹaneq
20 + 2uxãneq

11 ,

aneq
12 = ãneq

12 + uxãneq
02 + 2uỹaneq

11 ,

aneq
22 = ãneq

22 + 2uỹaneq
21 + 2uxãneq

12

+ u2
y ãneq

20 + u2
x ãneq

02 + 4uxuỹaneq
11 .

In Ref. [72], the authors suggested to discard part of nonequi-
librium (diffusive) terms ãneq based on the fact that these terms
should be negligible for high Reynolds number flows. Doing
so, they noticed that by imposing ãneq

22 = ãneq
21 = ãneq

12 = 0,
they were able to recover the recursive formulas of the RR
approach [68]:

a(1)
21 = uyaneq

20 + 2uxaneq
11 , a(1)

12 = uxaneq
02 + 2uyaneq

11 ,

a(1)
22 = 2

(
uya(1)

21 + uxa(1)
12

)− u2
yaneq

20 − u2
xaneq

02 − 4uxuyaneq
11

= u2
yaneq

20 + u2
xaneq

02 + 4uxuyaneq
11 , (83)

where aneq
20 , aneq

02 , and aneq
11 are computed using Eq. (42). While

this result was obtained in an ad hoc manner, it can be shown
that it originates from particular values of relaxation times in
the CHM framework. Indeed, post-collision central Hermite
coefficients are expressed as

ã∗
pq = ãeq

pq +
(

1 − 1

τ pq

)̃
aneq

pq , (84)

where τ pq = 1/2 + τpq is the discrete relaxation time, with
(p, q) ∈ {0, 1, 2}2 for the D2Q9 lattice. Considering τ 21 =
τ 12 = τ 22 = 1, corresponding coefficients are fixed to their
equilibrium values. In the CHM framework, all equilibrium
moments are zero with the exception of ãeq

00 (see Sec. II G).
Hence, RR formulas (83) are indeed recovered when Eqs. (82)
and (84) are employed to compute a∗

pq with this particular set
of relaxation times. The SRT-RR-LBM then corresponds to
a PR approach in the comoving reference frame where high
order (p + q � 3) nonequilibrium contributions are filtered
out.

Furthermore, both the MRT-RR-LBM (with τRR
νb

= 1) and
the cascaded based LBM share the same behavior when
τCM

νb
= τCM

21 = τCM
12 = τCM

22 = 1. This result is pertinent if and
only if the reader has no interest in acoustically related phe-
nomena.

Eventually, since it is mandatory to use several relaxation
times in the CHM framework to recover f ∗,RR

i , then the
RR collision model cannot recover the behavior of the BGK
collision operator. Hence, the MRT-RR procedure does belong
to another category of collision models, even though by
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discarding the recursive computation of third and fourth order
terms (83), which amount to imposing τRR

3 = 1 = τRR
4 , the PR

and RR formulations merge.

E. Cumulant space

Here, the discrepancies between collision steps occurring
in the CM and the cumulant spaces are investigated. As
demonstrated in Appendices D and E, cumulants are not
equivalent anymore to central moments when high order terms

(n � 4) have to be taken into account in the expansion of
populations. In the context of the D2Q9 lattice, it has been
shown that one should include the fourth order term M̃22. If
one follows the definition of post-collision cumulants, as they
are defined in Refs [57,60,61], one obtains

M̃∗
22 = K∗

22 + K∗
20K∗

02 + 2(K∗
11)2.

Post-collision populations then read as

f ∗,K
(0,0) = ρ[UxUy + 4uxuyK∗

11 − UyK∗
20 − UxK∗

02 + 2uyK∗
21 + 2uxK∗

12 + 2(K∗
11)2 + K∗

20K∗
02 + K∗

22],

f ∗,K
(σ,0) = ρ

2
[uxσxUy − 2σ2xuyK∗

11 + UyK∗
20 − uxσxK∗

02 − 2uyK∗
21 − σ2xK∗

12 − 2(K∗
11)2 − K∗

20K∗
02 − K∗

22],

f ∗,K
(0,λ) = ρ

2
[Uxuyλy − 2uxλ2yK∗

11 − uyλyK∗
20 + UxK∗

02 − λ2yK∗
21 − 2uxK∗

12 − 2(K∗
11)2 − K∗

20K∗
02 − K∗

22],

f ∗,K
(σ,λ) = ρ

4
[uxuyσxλy + σ2xλ2yK∗

11 + uyλyK∗
20 + uxσxK∗

02 + λ2yK∗
21 + σ2xK∗

12 + 2(K∗
11)2 + K∗

20K∗
02 + K∗

22], (85)

with Ux = 1 − u2
x , σx = σ + ux, σ2x = σ + 2ux, Uy = 1 − u2

y ,
λy = λ + uy, and λ2y = λ + 2uy. From this, one can see that
deviations from their CM counterparts come from the fact that

M̃∗
22 = (1 − ω4)M̃22 + ω4M̃eq

22

= (1 − ω4)
(
K22 + K20K02 + 2K2

11

)
+ ω4

[
Keq

22 + Keq
20 Keq

02 + 2
(
Keq

11

)2]
,

while

K∗
22 = (1 − ω4)K22 + ω4Keq

22 ,

(K∗
11)2 = (1 − ων )2K2

11 + ων (1 − ων )K11Keq
11 + ω2

ν

(
Keq

11

)2
,

K∗
20K∗

02 = (1 − ων )2K20K02 + ω2
νKeq

20 Keq
02

+ ων (1 − ων )
(
K20Keq

02 + Keq
20 K02

)
,

where for the sake of simplicity the relaxation frequency of
K11, K20, and K02 was taken as ων . The latter assumption
amounts to impose ωνb = ων [59].

Eventually, post-collision populations can be rewritten as

f ∗,CM
(0,0) = f ∗,K

(0,0) + � f ∗,K
22 , (86a)

f ∗,CM
(σ,0) = f ∗,K

(σ,0) − � f ∗,K
22

/
2, (86b)

f ∗,CM
(0,λ) = f ∗,K

(0,λ) − � f ∗,K
22

/
2, (86c)

f ∗,CM
(σ,λ) = f ∗,K

(σ,λ) + � f ∗,K
22

/
4, (86d)

with

� f ∗,K
22 = ρ[(1 − ω4) − (1 − ων )2]

(
K20K02 + 2K2

11

)
− ρων (1 − ων )

(
K20Keq

02 + Keq
20 K02 + 2Keq

11 K11
)

+ ρ(ω4 − ων )
[
Keq

20 Keq
02 + 2

(
Keq

11

)2]
.

From this, one needs to impose ω4 = ων = 1 to make the de-
viation � f ∗,K

22 disappear. In that particular case, the kinematic
viscosity cannot be chosen freely. Hence, it is not possible
to recover the behavior of the BGK collision operator using

cumulants, as already assumed in Refs. [57,60,61]. Conse-
quently, the K-LBM belongs to another category of LBMs,
different from those presented in Secs. V B–V D.

Before moving to the investigation of 3D models, the
interested reader may refer to the Supplemental Material [91]
for more information regarding the way to implement D2Q9-
LBMs in either their RM, HM, CM, CHM, K, or RR formu-
lation. Thanks to them, one can further derive instructions for
orthogonal models (LL and TRT) by switching from HM to
LL moments using Eq. (79).

VI. FURTHER INVESTIGATIONS

This section is dedicated to several studies. First, collision
models will be compared in the 3D case considering both
the D3Q27 and the D3Q19 lattices. Second, the impact of
collision models on the resulting macroscopic equations will
be investigated.

A. D3Q27-LBMs

The most straightforward way to build LBMs based on the
D3Q27 lattice is to consider it as a tensor product of three
D1Q3 lattices (one for each spatial direction). Doing so, it
is possible to rely on rules defined in Eqs. (68)–(70). This
approach then leads to populations that are expanded over
tensor-product-like polynomial bases. For raw moments,

BQ27
TP = (1, ξ100, ξ010, ξ001, ξ200, ξ020, ξ002, ξ110, ξ101, ξ011,

ξ210, ξ120, ξ201, ξ102, ξ021, ξ012, ξ111, ξ220, ξ202,

ξ022, ξ211, ξ121, ξ112, ξ221, ξ212, ξ122, ξ222),

using the shorthand notation ξpqr = ξ
p
i,xξ

q
i,yξ

r
i,z. For other mo-

ment spaces, one just needs to change from monomials (ξpqr)
to either Hermite polynomials (Hi,pqr), central monomials
(̃ξpqr), or central Hermite polynomials (H̃i,pqr). One can notice
that by using the tensor product rules a true basis is obtained,
i.e., it contains the same number of elements as the number
of velocities in the lattice. In addition, one can prove that
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once again populations obtained through the Gauss-Hermite
quadrature do share the same expression as those obtained via
the tensor product rules.

Knowing the basis corresponding to each framework, one
can easily derive post-collision populations for the D3Q27

lattice (Appendix G). The comparison of collision models
follow the same steps as those presented in both the 1D and
the 2D cases, with the exception that now calculations are
more complex. Taking the example of the RM framework,
post-collision populations are

f ∗,RM
(0,0,0) = ρ[1 − M∗

200 − M∗
020 − M∗

002 + M∗
220 + M∗

202 + M∗
022 − M∗

222], (87a)

f ∗,RM
(σ,0,0) = ρ

2
[σux + M∗

200 − σM∗
120 − σM∗

102 − M∗
220 − M∗

202 + σM∗
122 + M∗

222], (87b)

f ∗,RM
(0,λ,0) = ρ

2
[λuy + M∗

020 − λM∗
210 − λM∗

012 − M∗
220 − M∗

022 + λM∗
212 + M∗

222], (87c)

f ∗,RM
(0,0,δ) = ρ

2
[δuz + M∗

002 − δM∗
201 − δM∗

021 − M∗
202 − M∗

022 + δM∗
221 + M∗

222], (87d)

f ∗,RM
(σ,λ,0) = ρ

4
[σλM∗

110 + λM∗
210 + σM∗

120 − σλM∗
112 + M∗

220 − λM∗
212 − σM∗

122 − M∗
222], (87e)

f ∗,RM
(σ,0,δ) = ρ

4
[σδM∗

101 + δM∗
201 + σM∗

102 − σδM∗
121 + M∗

202 − δM∗
221 − σM∗

122 − M∗
222], (87f)

f ∗,RM
(0,λ,δ) = ρ

4
[λδM∗

011 + δM∗
021 + λM∗

012 − λδM∗
211 + M∗

022 − δM∗
221 − λM∗

212 − M∗
222], (87g)

f ∗,RM
(σ,λ,δ) = ρ

8
[σλδM∗

111 + λδM∗
211 + σδM∗

121 + σλM∗
112 + δM∗

221 + λM∗
212 + σM∗

122 + M∗
222], (87h)

with (σ, λ, δ) ∈ {−1,+1}3. Before moving to the comparison
itself, one must define the number of relaxation frequencies
required for the collision step. To do so, one simply needs
to categorize all types of moments employed in Eq. (87).
As an example, one can suppose that M210 and all its cyclic
permutations (M201, M120, M102, M021, and M012) should be
relaxed to their equilibrium value via the very same relaxation
frequency, the latter being different for the relaxation of
M111. Consequently, one possible set of relaxation frequencies
would be

M∗
200, M∗

020, M∗
002 −→ ω1,

M∗
110, M∗

101, M∗
011 −→ ω2,

M∗
210, M∗

201, M∗
120, M∗

102, M∗
021, M∗

012 −→ ω3,

M∗
111 −→ ω4,

M∗
220, M∗

202, M∗
022 −→ ω5,

M∗
211, M∗

121, M∗
112 −→ ω6,

M∗
221, M∗

212, M∗
122 −→ ω7,

M∗
222 −→ ω8,

(88)

which is a particular case of the collision matrix adopted in
Ref. [46]. Here, ωνb = ων is assumed, and this corresponds to
s+ = s2 and s− = 0 in their framework. This is done for the
sake of simplicity, and more importantly, without significantly
impacting the conclusions that are drawn below.

Hereafter, the comparative study will be simplified by start-
ing from f ∗,RM

i [Eq. (87)], and using relationships between
each kind of statistical quantities (Appendix E) to derive
deviations between each type of collision model. If one con-
siders the HM framework, deviations with the RM approach
come from fourth and higher order moments. Considering the
following moments

M220 = A220 + c2
s (A200 + A020) + c4

s , (89a)

M211 = A211 + c2
s A011, (89b)

M221 = A221 + c2
s (A201 + A021) + c4

s uz, (89c)

M222 = A222 + c2
s (A220 + A202 + A022)

+ c4
s (A200 + A020 + A002) + c6

s (89d)

is then sufficient to determine all discrepancies between both
families of moments. As previously discussed for the D2Q9
lattice, if one discards flows where compressibility and shear
phenomena are negligible, then formulas on fourth order
moments (89a) and (89b) lead to the constraints ω5 = ω1 and
ω6 = ω2 to enforce the equivalence between RM and HM
frameworks. Expressions for fifth and sixth order moments
(89c) and (89d) further imply that ω7 = ω3 and ω8 = ω5 = ω1

since it is quite difficult to derive further constraints based on
the physical meaning of these moments, at least in a straight-
forward manner. Considering that ω1 and ω2 are related to
the dissipation of acoustic and shear waves, only ω3 and ω4

are free parameters. As for the D2Q9 lattice, both RM and
HM frameworks do recover the behavior of the BGK collision
operator when only one relaxation frequency is used. The
very same conclusions can be drawn regarding CM and CHM
frameworks.

For RM and CM frameworks, the relaxation of each raw
moment Mpqr impacts the relaxation of all lower order mo-
ments M̃p′q′r′ such as p′ � p, q′ � q, and r′ � r. Hence, the
configuration for which both approaches merge corresponds
to the use of a single relaxation frequency (BGK). One can
further show that if a MRT approach is considered, then both
frameworks recover the same behavior if and only if the flow
is at rest. Once again, one comes to the same conclusions for
HM and CHM frameworks.

Orthogonal MRT and TRT collision models are based
on the Gram-Schmidt orthogonalization procedure [113,114].
The latter does not strongly impact the relationships between
families of moments since it relies on linear transformations.
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Hence, it can be shown that the above conclusions remain
valid for orthogonal MRT collision models. Once again, or-
thogonal TRT-LBMs recover the behavior of the HM-LBMs
since the relaxations of even moments are controlled by the
same relaxation frequency. If one further imposes ω+ = ω− =
ων , then the orthogonal TRT approach mimics the behavior of
the BGK operator, as it was already the case for the D2Q9
lattice.

When it comes to the PR collision model, it leads to
different results when different moment spaces are considered
since it relies on the equilibration of higher than second
order moments (ω3 = ω4 = ω5 = ω6 = ω7 = ω8 = 1). The
question is then to determine if it is still linked to the RR
approach when central Hermite moments are employed for
the relaxation process. Using relationships between central
Hermite and Hermite moments (Appendix E), one can show
that the PR collision model applied in the CHM framework
recovers the behavior of the SRT-RR-LBM. Indeed, by fol-
lowing the same steps as in Sec. V D, one obtains

a(1)
210 = uyaneq

200 + 2uxaneq
110, (90a)

a(1)
111 = uza

neq
110 + uyaneq

101 + uxaneq
011, (90b)

a(1)
220 = u2

yaneq
200 + u2

xaneq
020 + 4uxuyaneq

110, (90c)

a(1)
211 = uyuza

neq
200 + 2uxuza

neq
110 + 2uxuyaneq

101 + u2
xaneq

011, (90d)

a(1)
221 = u2

yuza
neq
200 + u2

xuza
neq
020 + 4uxuyuza

neq
110

+ 2uxu2
yaneq

101 + 2u2
xuyaneq

011, (90e)

a(1)
222 = u2

yu2
z aneq

200 + u2
xu2

z aneq
020 + u2

xu2
yaneq

002 + 4uxuyu2
z aneq

110

+ 4uxu2
yuza

neq
101 + 4u2

xuyuza
neq
011, (90f)

where other formulas are derived through cyclic permutations.
The above relationships do match recursive formulas flowing
from the Chapman-Enskog expansion at the Navier-Stokes-
Fourier level [68,69]. Nevertheless, the equivalence is once
again lost when several relaxation times are employed for the
RR collision model.

The last comparison is related to cumulants and central
moments. In the 2D case, it was shown that the deviation
was only impacting the sole fourth order term, while now
fourth, fifth, and sixth order terms are impacted. In addition,
the deviation was directly proportional to the square of the
relaxation frequency, whereas it is now proportional to up to
the cube of the relaxation frequency. Due to these nonlinear
deviations, it is not possible to link CM- and K-LBMs.

In summary, no further links can be derived between
collision models for the D3Q27 lattice as compared to the
2D case. This was to be expected from the way the D3Q27
lattice is built using tensor product rules [Eqs. (68) and (69)].
Nevertheless, these rules do not hold anymore in the case
of the D3Q19 velocity discretization. Consequently, one may
wonder if the aforementioned conclusions are still valid for
this particular LBM.

B. D3Q19-LBMs

To derive populations for the D3Q19 lattice, it is proposed
to start from the D3Q27-LBM and then to discard particular

terms that are not compliant with the velocity discretization
using a “pruning method” [92,127]. The latter is of particular
interest since it also allows us to determine which moments
should be included in the expansion of populations. Hereafter,
another way to choose the number of moments that are
necessary for the D3Q19 lattice is presented.

It has been known for a long time that the projection of
either the D3Q15 or the D3Q19 lattices, onto the 2D velocity
space, leads to the D2Q9 lattice [59]. Nonetheless, only the
D3Q19 velocity discretization contains all the discrete veloc-
ities of the D2Q9 lattice in each of its planes (x, y), (x, z),
and (y, z). Hence, all moments encountered in the definition
of populations in the 2D case should also be accounted for in
the present case. In other words, BQ19 should, at least, contain
all the 3D versions of monomials encountered in Eq. (40).
By 3D version, it is meant that, for example, ξ120 should
be included since ξ12 belongs to the 2D basis. Starting from
Eq. (40) and considering all cyclic permutations, one ends up
with the following polynomial basis

BQ19 = (1, ξ100, ξ010, ξ001, ξ200, ξ020, ξ002, ξ110, ξ101, ξ011,

ξ210, ξ120, ξ201, ξ102, ξ021, ξ012, ξ220, ξ202, ξ022),

expressed in the RM framework, and where the shorthand
notation ξpqr = ξ

p
i,xξ

q
i,yξ

r
i,z was used for the sake of clarity. This

simple yet rigorous reasoning leads to a polynomial basis
composed of 19 elements. Thus, one can simply move from
D3Q27-LBMs to their D3Q19-LBMs discarding ξ111, ξ211,
ξ121, ξ112, ξ221, ξ212, ξ122, ξ222 and then using relationships
detailed in Appendix E. Doing so, it is possible to extend
several collision models to the D3Q19-LBM even if they
were originally developed within the framework of the D3Q27
velocity discretization, such as both RR- and K-LBMs (see
Appendix G). In addition, this basis was recently used to
derive a more efficient CM-LBM based on the D3Q19 lattice
[46]. Nonetheless, it should be noted that, at the time of
writing, the accuracy of this D3Q19 formulation has not yet
been compared to its D3Q27 counterpart.

Using the above methodology, one can see that BQ19 still
contains fourth order terms. Consequently, all links that have
been drawn for the D3Q27 lattice remain valid for the D3Q19
velocity discretization. One just needs to be careful and only
compare collision models based on the same equilibrium state
(see Appendix H for both choices obtained with the D3Q19
lattice).

General instructions for the coding of 3D models, as well
as pseudocodes of the D3Q27 formulations, are provided in
the Supplemental Material [91].

C. Partial conclusions

Table I summarizes all derived links between collision
models. More precisely, it details all collision models whose
behavior can be entirely or partially recovered using another
collision model with a particular set of collision frequen-
cies. This is done considering only cases where the result-
ing physics is not impacted by the choice of the relaxation
frequencies. Taking the example of the D2Q9 lattice, if one
applies the collision step within the CM framework, then
one can entirely recover the results of the BGK collision
model using only one relaxation frequency ωCM

ν . Besides, the
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TABLE I. Can X recover the behavior of Y by using a particular
set of relaxation frequencies? Yes ( ), partially (∼), no ( ). Colli-
sion models considered in this summary are based on raw moments
(RM), Hermite moments (HM), central moments (CM), central
Hermite moments (CHM), both projection based (PR) and recursive
regularization (RR) steps, cumulants (K). MRT and TRT models
correspond to collision models expressed within an orthogonal basis
derived from the Gram-Schmidt orthogonalization procedure. RR∗

is the multirelaxation time version of the RR collision model. Only
links that do not impact the resulting physics (ων 	= 1 and ωνb 	=
1) are reported here. Furthermore, a collision model X will be
considered to partially recover the behavior of another one Y , if the
condition to enforce � f ∗ = 0 implies that at least one of ωY

n cannot
be chosen freely anymore, with the most constraining case being
the reduction to a single relaxation time approach. Eventually, all
reported results are valid for both the D2Q9 and the D3Q27 lattices.
They further remain valid for the D3Q19 lattice if and only if one
compares collision models relying on the same equilibrium state.

�
��X
Y

BGK MRT TRT RM HM CM CHM PR RR RR∗ K

BGK ∼ ∼ ∼ ∼ ∼ ∼
MRT ∼ ∼ ∼ ∼
TRT ∼ ∼ ∼ ∼ ∼
RM ∼ ∼ ∼ ∼
HM ∼ ∼ ∼ ∼
CM ∼ ∼ ∼ ∼ ∼
CHM ∼ ∼ ∼ ∼ ∼ ∼
PR ∼ ∼
RR ∼ ∼
RR∗ ∼
K

CM-LBM can partially recover the behavior of the CHM-
LBM if one imposes that ωCM

νb
= ωCM

4 = ωCHM
4 = ωCHM

νb
. In

other words, this implies that the bulk viscosity cannot be
chosen independently of the relaxation coefficient of fourth
order moments. The number of free parameters is then re-
duced, hence, the partial recovery of the CHM-LBM behavior
by the CM-LBM. The most constraining case is the reduction
to a single relaxation time approach, where the behaviors
of RM, HM, orthogonal MRT and TRT models are also
recovered. Eventually, it would be possible to get the same
results as those obtained with the (SRT) RR approach by
imposing ωCM

νb
= ωRR

νb
= 1, but this would lead to an extreme

overdissipation of acoustic waves [34,81,112]. Thus, this link
is not considered in Table I.

D. Macroscopic behavior

To conclude this comparative study, let us have a look at
macroscopic equations flowing from all the different collision
models.

1. Motivations

Previous investigations suggest that the choice of moment
space has a major impact on the macroscopic behavior of
LBMs, and more specifically on their Galilean invariance
properties (e.g., Refs. [38,39,43,57,60,62,130], among oth-
ers). Knowing that these collision models naturally rely on an

extended equilibrium state, one might wonder if the improved
macroscopic behavior of these models come from either
(1) high order velocity terms of their equilibrium state, (2)
the moment space, or (3) both of them. With this idea in
mind, the hydrodynamic limit of LBMs will be studied in a
general manner, meaning that the asymptotic study will be
conducted before the (space-time) numerical discretization
of the collision model. This is explained by the fact that
one would have to properly distinguish errors resulting from
every possible discretization technique (finite difference, finite
volume, finite element, discontinuous Galerkin, etc.) in order
to objectively quantify the impact of each collision model on
the resulting macroscopic behavior, and this is out of the scope
of this work.

In the following, a brief review on the origin of errors
encountered in the context of LBMs is first proposed, whereas
the investigation of the macroscopic behavior of LBMs is
conducted in the last part of this section.

2. Velocity and space-time discretization errors

The LBM relies on two types of discretization, namely, the
velocity and the space-time discretizations. To correctly make
the distinction between errors that emerge from both of them,
let us recall the two main steps that are required for the design
of any numerical scheme, and a fortiori for the derivation of
LBMs.

The first step consists in selecting the mathematical model
corresponding to the desired level of approximation to reality
[131]. In the following, and for the sake of simplicity, let us
start from the force-free Boltzmann equation (BE)

∂t f + ∇ · ( f ξ) = C, (91)

where C is the general form of the collision term. The physics
governed by Eq. (91) goes far beyond the validity of standard
macroscopic equations of interest, namely, the compressible
Navier-Stokes-Fourier equations [132]. As a consequence,
this mathematical model is too detailed for the level of approx-
imation to reality that is required in the present framework.
To simplify it, a physical discretization is applied to the BE.
It consists in drastically reducing the number of possible
velocities ξ for the propagation of populations f . This is
done in such a way that the physics of interest is not lost
during the overall process. One then ends up with the discrete
velocity Boltzmann equation, also known as lattice Boltzmann
equation (LBE),

∀ i ∈ �1,V �, ∂t fi + ∇ · ( fiξi ) = Ci, (92)

with V being the number of discrete velocities required to
recover the macroscopic behavior of interest [106].

Once this set of partial differential equations has been
chosen, the second step consists in choosing a type of space
and time discretization in order to be able to numerically solve
it [131]. Among the wide panel of numerical discretizations
available in the literature, the most commonly used approach
is the “collide and stream” algorithm [Eqs. (37) and (38)].

To determine the hydrodynamic limit of the LBM, one can
either start from the LBE or from its numerical discretization,
the LBM itself. Hence, at least two types of asymptotic study
are possible. The first methodology is the most commonly
used in the lattice Boltzmann community, as it naturally flows
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from statistical physics, and it is based on the Chapman-
Enskog expansion of the LBE [132,133]. The second ap-
proach is more generally used for the evaluation of numerical
errors introduced during the space and time discretization of a
given set of equations. It is based on the Taylor expansion of
these discretized equations, and it allows the user to rigorously
evaluate the order of accuracy of the numerical scheme of
interest [131]. In the lattice Boltzmann framework, the Taylor
expansion is applied to the LBM itself by considering either a
diffusive [58] or an acoustic [134] scaling. While the former
leads to the derivation of error terms with respect to the in-
compressible Navier-Stokes equations, the latter derives them
in the context of their weakly compressible formulation.

Since the Chapman-Enskog expansion is conducted before
the space-time discretization of the LBE, results obtained
from this asymptotic study remain valid whatever the numer-
ical discretization considered (finite difference, finite volume,
finite element, discontinuous Galerkin, etc.). On the contrary,
the Taylor expansion leads to the derivation of error terms
that flow from both velocity and space-time discretizations.
Hence, it is not possible to determine in a straightforward
manner which discretization is related to error terms obtained
with this expansion. For all of these reasons, the Chapman-
Enskog expansion of the LBE seems to be the best approach
to draw general conclusions about the hydrodynamic limit of
LBMs. Results obtained hereafter will then flow from this
asymptotic study. For the sake of completeness, it is also
worth noting that the Chapman-Enskog could also be applied
to the LBM itself, in order to further derive numerical errors
introduced by the space-time discretization [112,135].

3. Macroscopic equations

In the present context, only second order velocity dis-
cretizations (D1Q3, D2Q9, D3Q19, and D3Q27) are consid-
ered. Let us start with their second order equilibrium state
[105,106]

f eq,2
i = ρwi

[
1 + ξi · u

c2
s

+ (ξi · u)2

2c4
s

− u2

2c2
s

]
.

The corresponding (isothermal) macroscopic equations recov-
ered through the Chapman-Enskog expansion [133] are

∂t (ρ) + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu2) = −∇p + ∇ · (�′), (93)

where �′ = μ[∇u + (∇u)T ] + O(Ma3) is the viscous stress
tensor with the isothermal and weakly compressible limita-
tion. The superscript T stands for the transpose operator and
μ = τρc2

s is the dynamic viscosity. For the D1Q3 lattice, the
compressibility error reads as

��xx = �xx − �′
xx = τ∂x

(
ρu3

x

)
.

In the case of the D2Q9 lattice, each component of � is
affected as follows:

��xx = τ
[
∂x
(
ρu3

x

)+ ∂y
(
ρuxu2

y

)]
,

��xy = ��yx = τ
[
∂x
(
ρu2

xuy
)+ ∂y

(
ρuxu2

y

)]
,

��yy = τ
[
∂y
(
ρu3

y

)+ ∂x
(
ρu2

xuy
)]

.

When it comes to both the D3Q19 and D3Q27 lattices, even
more error terms are obtained:

��xx = τ
[
∂x
(
ρu3

x

)+ ∂y
(
ρuxu2

y

)+ ∂z
(
ρuxu2

z

)]
,

��xy = ��yx = τ
[
∂x
(
ρu2

xuy
)+ ∂y

(
ρuxu2

y

)+ ∂z(ρuxuyuz )
]
,

��xz = ��zx = τ
[
∂x
(
ρu2

xuz
)+ ∂y(ρuxuyuz ) + ∂z

(
ρuxu2

z

)]
,

��yy = τ
[
∂y
(
ρu3

y

)+ ∂x
(
ρu2

xuy
)+ ∂z

(
ρuyu2

z

)]
,

��yz = ��zy = τ
[
∂x(ρuxuyuz ) + ∂y

(
ρu2

yuz
)+ ∂z

(
ρuyu2

z

)]
,

��zz = τ
[
∂z
(
ρu3

z

)+ ∂x
(
ρu2

xuz
)+ ∂y

(
ρu2

yuz
)]

.

It is important to note that the general form of the above error
terms is independent of the collision model framework. Only
the truncation order of the equilibrium state f eq

i does have an
impact on the compressibility error terms since [59,70]

�αβ

τ
= ∂t

(∑
i

ξi,αξi,β f eq
i

)
+ ∂γ

(∑
i

ξi,αξi,βξγ f eq
i

)
.

It is not possible to get rid of third order terms proportional
to u3

α (α = x, y, z), due to the aliasing defect ξ 3
i,α = ξi,α that is

specific to second order velocity discretizations. Nonetheless,
by taking into account third order moments compliant with
these velocity discretizations, one can discard the influence of
all nondiagonal error terms as already pointed out in several
studies [47,48,68,69,117,128,129,136]. This result is valid for
both D2Q9 and D3Q27 lattices, as long as third order velocity
dependent terms are not discarded in the definition of their
equilibrium state. For the D3Q19 lattice, error terms propor-
tional to ∂z(uxuyuz ) are still present since ξi,111 is not taken
into account in BQ19. The interested reader may refer to Ap-
pendix H where full forms of equilibrium states are compiled.

Regarding the impact of the moment space used for the
collision process, it is important to understand that all mo-
ment spaces, even the cumulant one when fourth and higher
order cumulants are discarded, can be related to each other
through linear transformation matrices (see Appendix F). In
this context, the only difference between the macroscopic
behavior of LBMs comes from their original equilibrium
state. As compared to standard collision models (BGK, MRT,
PR, etc.) which originally relied on a second order equilibrium
state, the CM-, CHM-, K-, and RR-LBMs were derived using
extended ones that include high order velocity terms. It is
then only natural that the latter models reduce the number of
velocity dependent error terms present in the viscous stress
tensor. Nonetheless, the present reasoning also suggests that
by keeping high order velocity terms, even for standard col-
lision models, then one would also improve the macroscopic
behavior of the resulting LBM. This was discussed by several
authors [47,48,68,69,117,128,129,136], and further confirmed
through the linear stability analysis of several LBMs [70,85].

Consequently, only the equilibrium state, which depends
on the lattice (and not on the collision model), does impact the
resulting macroscopic equations recovered by the isothermal
and weakly compressible LBMs. For the sake of fairness,
however, it is also important to understand that by changing
the collision model then one also modifies the numerical
properties of the LBM. This is explained by the fact that the
only error introduced by the numerical discretization comes
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from the collision term [59,137]. Hence, one can show that
the numerical behavior of LBMs is drastically impacted by
the choice of both the moment space and the relaxation pa-
rameters [30,57,60,62]. Nevertheless, these errors should not
be attributed to a physical problem, such as the Galilean in-
variance issue, but rather to a purely numerical defect, in order
not to mislead the reader on this particularly complex topic.

VII. CONCLUSION

The BGK-LBM has been really successful during the last
decades due to both its efficiency and accuracy. Nevertheless,
this single relaxation time (SRT) collision model is known to
suffer from severe stability issues during the simulation of
high Reynolds number flows. To circumvent this deficiency,
numerous collision models have been developed. They can be
classified according to the number of relaxation times they
rely on, and via the moment space used for the derivation of
populations. Most of the time, all these collision models are
presented in their own framework with only very few sugges-
tions regarding their possible link with already known models.
While authors mainly concentrate on the comparison of colli-
sion models through a list of numerical test cases, they seldom
explain observed discrepancies from a theoretical viewpoint.

In this context, this work focused on the understanding of
fundamental differences between the most common collision
models. To do so, an extensive search of links between these
collision operators was performed in the case of standard
LBMs of increasing complexity (D1Q3, D2Q9, D3Q19, and
D3Q27 lattices). After drawing relationships between all
moment spaces [raw (RM), central (CM), Hermite (HM),
central Hermite (CHM), cumulants (K)] through the use of
their corresponding moment generating function, a thorough
review of collision models was conducted. The latter drew
a first picture of known links between collision models and
further showed that all these collision models can be rewritten
in a linear matrix form with the exception of the K-LBM.

In a general way, it was also demonstrated that all collision
models recover the very same second, fourth, and sixth order
equilibrium states when the D1Q3, the D2Q9, and the D3Q27
lattices are, respectively, employed for the velocity discretiza-
tion of the Boltzmann equation. Nonetheless, the use of the
D3Q19 lattice led to two different equilibrium states because
of its noncompliance with tensor product rules. Interestingly,
the use of these extended equilibrium states might improve
the linear stability of the corresponding LBMs, as recently
demonstrated for both BGK and regularized D2Q9-LBMs
[70].

Regarding the mathematical comparison of collision mod-
els, while it was not possible to find discrepancies between
them in the one-dimensional case, deviations started appear-
ing in the two-dimensional case. Using the D2Q9 lattice and
with the assumption of a SRT operator, all models recov-
ered the behavior of the BGK-LBM but both RR- and K-
LBMs. Using several relaxation times, a partial equivalency
between raw and Hermite frameworks was obtained in both
the reference frame at rest (RM and HM) and in the co-
moving reference frame (CM and CHM), when the collision
of bulk and fourth order moments were sharing the same
relaxation frequency (ωνb = ω4). Still using a multirelaxation

time (MRT) approach, it was confirmed that raw and central
frameworks can only share the same behavior if the simulated
flow is at rest, i.e., imposing ux = uy = 0.

In addition, the projection based regularization (PR) step
was recasted in a collision step occurring in the HM frame-
work, where nonhydrodynamic contributions are actually fil-
tered out imposing ωHM

3 = ωHM
4 = 1. Most importantly, the

SRT-RR-LBM was reinterpreted as an extension of the PR
approach to the comoving reference frame (CHM space)
where third and fourth order contributions were also discarded
(ωCHM

3 = ωCHM
4 = 1). Imposing ωCM

νb
= ωCM

3 = ωCM
4 = 1, the

cascaded-LBM was further demonstrated to correspond to
the MRT-RR-LBM where ωRR

νb
= 1. The latter condition is

viable if and only if one is not interested in the simulation
of acoustically related phenomena. This might explain why
the cascaded collision model was usually employed with
these collision frequencies in order to simulate incompressible
flows. In conclusion, the most general formulation of the
MRT-RR-LBM was shown to belong to a completely different
kind of collision models.

Discrepancies between orthogonal (MRT and TRT) and
nonorthogonal approaches (RM and HM frameworks) were
also highlighted. For the orthogonal MRT, they were shown
to originate from the orthogonalization procedure, which is
based on the construction of an orthogonal basis through
linear combinations of monomials, eventually leading to
spurious entanglements between moments of different or-
ders. From this perspective, the orthogonalization procedure
seemed to induce more issues than it solved. The orthogonal
version of the TRT-LBM was shown to be able to cancel out
these spurious entanglements.

A deviation between the CM- and the K-LBMs appeared
due to the inclusion of the fourth order central moment in
the expansion of post-collision populations. This discrepancy
originates from the nonlinear relaxation of cumulants related
to this central moment, eventually leading to a radically
different behavior as compared to all aforementioned collision
models.

The above results were further confirmed for the D3Q27
lattice where the number of deviations increased due to the
presence of more high order moments. Guidelines concerning
the extension of all collision models to the D3Q19 lattice were
also provided. In particular, these explanations made possible
the derivation of both RR- and K-LBMs in a straightforward
manner for the latter lattice (Appendix G). The comparative
study then led to the very same conclusions as before due
to the presence of fourth order contributions in the expan-
sion of populations. Nevertheless, equilibrium states obtained
through Gauss-Hermite quadrature and tensor product rules
were shown to not be equivalent anymore, meaning that only
collision models based on the same equilibrium state should
be compared to each other.

It was finally shown that the reduction of error terms in
the macroscopic equations recovered by the LBM – those
originating from the limited accuracy of standard lattices
and not from the numerical discretization – was only due to
the form of the equilibrium state and not to moment space
employed for the collision process.

For the sake of completeness, Supplemental Materials were
also provided to help the reader with the coding of collision
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models considered in this work. They include a discussion on
the methodology adopted, as well as, pseudocodes dedicated
to the implementation of the D2Q9 and D3Q27 formulations
[91].

Regarding future works, it is planned to further compare
collision models through the evaluation of their linear stability
domain. This study will include both results on eigenvalues
[70] and eigenvectors [84] of corresponding linearized LBMs.
Not only will it allow the proper classification of collision
models based on their stability domain, but it will also lead to
a better understanding of the stabilization mechanism specific
to each model. These linear stability analyses should also
help to (1) better quantify errors introduced by the numerical
discretization of the collision term, and (2) find optimal values
of collision frequencies to further improve the stability of
LBMs in the low-viscosity regime. Collision models offering
the best tradeoff between stability and accuracy will then
be compared to dynamic models through both academic and
realistic configurations.

In parallel to this, it is also planned to continue the work
initiated in Ref. [70]. This should lead to further extensions
of all aforementioned collision models to high order LBMs,
for which the simulation of compressible flows induces even
more severe stability issues. Eventually, it would be interest-
ing to see if it is possible to further translate all the collision
models in the quasiequilibrium formalism [116]. While it
seems very likely to find analogies with moment approaches
(RM, HM, CM, and CHM), it is still unclear if it will be
possible for RR- and K-LBMs. Corresponding results will be
presented in a future work.
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APPENDIX A: LATTICES

Henceforth, the main characteristics of standard velocity
discretizations of interest are compiled. Figure 1 contains
the representation of each velocity discretization, whereas
Table II gives further information regarding their velocity sets
ξi, their associated Gauss-Hermite weights wi, and their lattice
constant cs.

APPENDIX B: BELL POLYNOMIALS

These polynomials are used in combinatorial mathematics
to study set partitioning [94,95]. The Bell polynomial of
degree n is defined as

Bn(x1, . . . , xn) =
n∑

k=1

Bn,k (x1, . . . , xn−k+1), (B1)

FIG. 1. Illustration of the D3Q27, D3Q19, D2Q9, and D1Q3
lattices (from top left to bottom right). Relationships between lattices
are highlighted in red. From them, it flows that the structure of the
D1Q3 lattice is contained in the D2Q9 lattice, while both the D3Q27
and the D3Q19 lattices rely on the fundamental structure of the D2Q9
lattice.

where Bn,k are partial Bell polynomials, and x1, . . . , xn are n
variables. Each Bn,k corresponds to the partitioning of a set
composed of n elements into k nonempty subsets.

As an example, let us consider the set S = {a, b, c}, and let
us find all its possible partitionings (described via B3). There
are three ways to partition S:

(1) One subset composed of three elements

S1 = {{a, b, c}}.
(2) Two subsets composed of one and two elements

S2 = {{a}, {b, c}} ∪ {{b}, {a, c}} ∪ {{c}, {a, b}}.
(3) Three subsets composed of one element

S3 = {{a}, {b}, {c}}.
Through x1, x2, and x3, partial Bell polynomials B3,1, B3,2,

and B3,3 allow the mathematical description of partitionings
S1, S2, and S3, respectively. Assuming xp indicates the pres-
ence of a subset composed of p elements, then

B3,1(x1, x2, x3) = x3

TABLE II. Description of standard lattice structures of interest.
Weights wi related to velocity groups compose the right part of the ta-
ble. Here, the cyclic permutation is implied, which means, for exam-
ple, that (1, 0, 0) stands for all six possibilities (±1, 0, 0), (0, ±1, 0),
and (0, 0, ±1) in the 3D case, while only (±1, 0), (0, ±1), and
(±1) are implied in the 2D and 1D cases, respectively. All velocity
discretizations share the same lattice constant cs = 1/

√
3.

Group ξi D1Q3 D2Q9 D3Q19 D3Q27

1 (0, 0, 0) 2/3 4/9 1/3 8/27
2 (1, 0, 0) 1/6 1/9 1/18 2/27
3 (1, 1, 0) 1/36 1/36 1/54
4 (1, 1, 1) 1/216
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since only one subset, composed of three elements, is included
in S1. In addition,

B3,2(x1, x2) = 3x1x2

because S2 is composed of (three) subsets divided into two
blocks of length two and one, respectively. Eventually,

B3,3(x1) = x3
1

since S3 contains three singletons. Hence, the corresponding
Bell polynomial is

B3(x1, x2, x3) = x3 + 3x1x2 + x3
1 .

Applying the very same reasoning for 1 � n � 6, Bell
polynomials read as

B1(x1) = x1,

B2(x1, x2) = x2 + x2
1,

B3(x1, x2, x3) = x3 + 3x2x1 + x3
1,

B4(x1, . . . , x4) = x4 + 4x1x3 + 3x2
2 + 6x2

1x2 + x4
1,

B5(x1, . . . , x5) = x5 + 5x1x4 + 10x2x3 + 10x2
1x3

+ 15x1x2
2 + 10x3

1x2 + x5
1,

B6(x1, . . . , x6) = x6 + 6x1x5 + 15x2x4 + 15x2
1x5

+ 10x2
3 + 60x1x2x3 + 20x3

1x3 + 15x3
2

+ 45x2
1x2

2 + 15x4
1x2 + x6

1 . (B2)

Defining yn = ∑n
k=1 Bn,k (x1, . . . , xn−k+1), the inversion for-

mula, allowing to express xn with respect to y1, . . . , yn, is
[94,95]

xn =
n∑

k=1

(−1)k−1(k − 1)!Bn,k (y1, . . . , yn−k+1). (B3)

Finally, one obtains relationships between raw moments and
cumulants [Eqs. (C5) and (C6)] replacing (xn, yn) by (Mn, Kn)
in the above formulas.

APPENDIX C: UNIVARIATE FORMULAS

In this Appendix, formulas used to link all statistical
quantities of interest between each other are compiled in the
univariate case.

Relationships between raw and Hermite moments flow
from formulas expressing Hermite polynomials with respect
to monomials (5). Up to n = 6, they read as

M0 = A0 = 1,

M1 = A1 = ux,

M2 = A2 + c2
s ,

M3 = A3 + 3c2
s ux,

M4 = A4 + 6c2
s A2 + 3c4

s ,

M5 = A5 + 10c2
s A3 + 15uxc4

s ,

M6 = A6 + 15c2
s A4 + 45c4

s A2 + 15c6
s , (C1)

and
A0 = M0 = 1,

A1 = M1 = ux,

A2 = M2 − c2
s ,

A3 = M3 − 3c2
s ux,

A4 = M4 − 6c2
s M2 + 3c4

s ,

A5 = M5 − 10c2
s M3 + 15uxc4

s ,

A6 = M6 − 15c2
s M4 + 45c4

s M2 − 15c6
s . (C2)

Continuing with relationships between raw and central
moments, they are simply obtained using recursive formulas
introduced in Eq. (12),

M0 = M̃0 = 1,

M1 = M̃1 + ux = ux,

M2 = M̃2 + u2
x,

M3 = M̃3 + 3uxM̃2 + u3
x,

M4 = M̃4 + 4uxM̃3 + 6u2
xM̃2 + u4

x,

M5 = M̃5 + 5uxM̃4 + 10u2
xM̃3 + 10u3

xM̃2 + u5
x,

M6 = M̃6 + 6uxM̃5 + 15u2
xM̃4 + 20u3

xM̃3 + 15u4
xM̃2 + u6

x,

(C3)

and Eq. (11),

M̃0 = M0 = 1,

M̃1 = M1 − ux = 0,

M̃2 = M2 − u2
x,

M̃3 = M3 − 3uxM2 + 2u3
x,

M̃4 = M4 − 4uxM3 + 6u2
xM2 − 3u4

x,

M̃5 = M5 − 5uxM4 + 10u2
xM3 − 10u3

xM2 + 4u5
x,

M̃6 = M6 − 6uxM5 + 15u2
xM4 − 20u3

xM3 + 15u4
xM2 − 5u6

x .

(C4)

It is important to note that replacing M and M̃ by their
counterparts in the Hermite framework (A and Ã) the above
formulas remain valid. This is explained by the fact that when
the change from the reference frame at rest to the comoving
one is done then a simple shift of exp(−M1t ) is applied to the
raw (or Hermite) moment generating function.

Considering now relationships between raw moments and
cumulants, formulas derived thanks to Bell polynomials
(Appendix B) lead to

M0 = exp(K0) = 1,

M1 = K1 = ux,

M2 = K2 + u2
x,

M3 = K3 + 3uxK2 + u3
x,

M4 = K4 + 4uxK3 + 3K2
2 + 6u2

xK2 + u4
x,

M5 = K5 + 5uxK4 + 10K3K2 + 10u2
xK3

+15uxK2
2 + 10u3

xK2 + u5
x,

M6 = K6 + 6K5ux + 15K4K2 + 15u2
xK4

+ 10K2
3 + 60uxK3K2 + 20u3

xK3 + 15K3
2

+ 45u2
xK2

2 + 15u4
xK2 + u6

x, (C5)
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and

K0 = ln(M0) = 0,

K1 = M1 = ux,

K2 = M2 − u2
x,

K3 = M3 − 3uxM2 + 2u3
x,

K4 = M4 − 4uxM3 − 3M2
2 + 12u2

xM2 − 6u4
x,

K5 = M5 − 5uxM4 − 10M3M2 + 20u2
xM3

+ 30uxM2
2 − 60u3

xM2 + 24u5
x,

K6 = M6 − 6uxM5 − 15M4M2 + 30u2
xM4 − 10M2

3

+ 120uxM3M2 − 120u3
xM3 + 30M3

2

− 270u2
xM2

2 + 360u4
xM2 − 120u6

x . (C6)

Regarding formulas between central moments and cumu-
lants, one just needs to move to the comoving reference frame.
In fact, this amounts to neglecting terms proportional to ux in
the above formulas [53,93]. Hence,

M̃0 = exp(K0) = 1,

M̃1 = K1 − ux = 0,

M̃2 = K2,

M̃3 = K3,

M̃4 = K4 + 3K2
2 ,

M̃5 = K5 + 10K3K2,

M̃6 = K6 + 15K4K2 + 10K2
3 + 15K3

2 , (C7)

and

K0 = ln(M̃0) = 0,

K1 = M̃1 + ux = ux,

K2 = M̃2,

K3 = M̃3,

K4 = M̃4 − 3M̃2
2 ,

K5 = M̃5 − 10M̃3M̃2,

K6 = M̃6 − 15M̃4M̃2 − 10M̃2
3 + 30M̃3

2 . (C8)

APPENDIX D: BIVARIATE FORMULAS

Henceforth, bivariate formulations of relationships be-
tween statistical quantities of interest are presented. Starting
with raw and Hermite moments, the most straightforward way
to compute their bivariate relationships is to take advantage of
the orthogonality properties of Hermite tensors. Hence, they
are simply computed as [70]

M00 = A00 = 1,

M10 = A10 = ux,

M01 = A01 = uy,

M11 = M10M01 = A10A01 = A11,

M20 = A20 + c2
s ,

M02 = A02 + c2
s , (D1)

M21 = M20M01 = (
A20 + c2

s

)
A01 = A21 + c2

s uy,

M12 = M10M02 = A10
(
A02 + c2

s

) = A12 + c2
s ux,

M22 = M20M02 = (
A20 + c2

s

)(
A02 + c2

s

)
= A22 + c2

s (A20 + A02) + c4
s ,

and

A00 = M00 = 1,

A10 = M10 = ux,

A01 = M01 = uy,

A11 = A10A01 = M10M01 = M11,

A20 = M20 − c2
s ,

A02 = M02 − c2
s ,

A21 = A20A01 = (
M20 − c2

s

)
M01 = M21 − c2

s uy,

A12 = A10A02 = M10
(
M02 − c2

s

) = M12 − c2
s ux,

A22 = A20A02 = (
M20 − c2

s

)(
M02 − c2

s

)
= M22 − c2

s (M20 + M02) + c4
s . (D2)

One must be careful regarding the above method. Indeed,
one must wait until the very end before replacing zeroth and
first order moments by their values. As an example, M11 	=
uxuy(=M10M01) since Mneq

11 = M11 − Meq
11 is related to viscous

phenomena and is usually nonzero.
The simplest way to extend relationships between raw

and central moments to the bivariate case is to rely on the
corresponding binomial formula

M̃pq =
p∑

kx=0

q∑
ky=0

(
p

kx

)(
q

ky

)
(−ux )p−kx (−uy)q−ky Mpq.

Inversion formulas are then obtained discarding the minus
sign

Mpq =
p∑

kx=0

q∑
ky=0

(
p

kx

)(
q

ky

)
up−kx

x u
q−ky
y M̃pq.

In the case of the D2Q9 lattice (p � 2 and q � 2), this leads
to

M00 = M̃00 = 1,

M10 = M̃10 + ux,

M01 = M̃01 + uy,

M20 = M̃20 + u2
x,

M02 = M̃02 + u2
y,

M11 = M̃11 + uxuy,

M21 = M̃21 + uyM̃20 + 2uxM̃11 + u2
xuy,

M12 = M̃12 + uxM̃02 + 2uyM̃11 + uxu2
y,

M22 = M̃22 + 2uyM̃21 + 2uxM̃12

+ u2
yM̃20 + u2

xM̃02 + 4uxuyM̃11 + u2
xu2

y, (D3)
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and

M̃00 = M00 = 1,

M̃10 = M10 − ux,

M̃01 = M01 − uy,

M̃20 = M20 − u2
x,

M̃02 = M02 − u2
y,

M̃11 = M11 − uxuy,

M̃21 = M21 − uyM20 − 2uxM11 + 2u2
xuy,

M̃12 = M12 − uxM02 − 2uyM11 + 2uxu2
y,

M̃22 = M22 − 2uyM21 − 2uxM12 + u2
yM20

+ u2
xM02 + 4uxuyM11 − 3u2

xu2
y . (D4)

Due to the fact that there is a linear transformation allowing
us to move from monomials to Hermite polynomials, these
relationships remain valid for Hermite and central Hermite
moments. Hence, one simply needs to replace M and M̃ by A
and Ã in the above formulas to recover relationships between
Hermite and central Hermite moments.

To link raw moments and cumulants in the bivariate case,
differential operators introduced in Sec. II F, and proposed by
Kendall [53,93], are employed. Corresponding relationships
are then

M00 = exp(K00) = 1,

M10 = K10 = ux,

M01 = K01 = uy,

M11 = K11 + uxuy,

M20 = K20 + u2
x,

M02 = K02 + u2
y,

M21 = K21 + uyK20 + 2uxK11 + u2
xuy,

M12 = K12 + uxK02 + 2uyK11 + uxu2
y,

M22 = K22 + 2uyK21 + 2uxK12 + K20K02

+ u2
yK20 + u2

xK02 + 2K2
11

+ 4uxuyK11 + u2
xu2

y (D5)

and

K00 = ln(M00) = 0,

K10 = M10 = ux,

K01 = M01 = uy,

K11 = M11 − uxuy,

K20 = M20 − u2
x,

K02 = M02 − u2
y,

K21 = M21 − uyM20 − 2uxM11 + 2u2
xuy, (D6)

K12 = M12 − uxM02 − 2uyM11 + 2uxu2
y,

K22 = M22 − 2uyM21 − 2uxM12 − M20M02

+ 2u2
xM02 + 2u2

yM20 − 2M2
11

+ 8uxuyM11 − 6u2
xu2

y .

For central moments, one can again discard terms propor-
tional to ux and uy. Doing so, one obtains

M̃00 = exp(K00) = 1,

M̃10 = K10 − M10 = 0,

M̃01 = K01 + M01 = 0,

M̃11 = K11,

M̃20 = K20,

M̃02 = K02,

M̃21 = K21,

M̃12 = K12,

M̃22 = K22 + (
K20K02 + 2K2

11

)
, (D7)

and

K00 = ln(M̃00) = 0

K10 = M̃10 + M10 = ux,

K01 = M̃01 + M01 = uy,

K11 = M̃11,

K20 = M̃20,

K02 = M̃02,

K21 = M̃21,

K12 = M̃12,

K22 = M̃22 − (
M̃20M̃02 + 2M̃2

11

)
, (D8)

where it is clear that deviations from central moments start
appearing in fourth order cumulants.

From the implementation point of view, the conversion
from central moments to cumulants is clearly simpler than the
one using raw moments. Apart from that, there is no funda-
mental reason for the use of central moments instead of raw
ones. Furthermore, formulas for post-collision populations are
more complex in the CM framework (74b) than in the RM one
(72). In the 2D case, it is then not clear if the use of central
moments should be preferred or not.

APPENDIX E: TRIVARIATE FORMULAS

Hereafter, the methodology introduced in Appendix D
is further extended to the trivariate case. Starting with raw
and Hermite moments, orthogonality properties of Hermite
polynomials are, once again, used to relate these two families
of moments. For the D3Q27 lattice, corresponding formulas
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are

M000 = A000 = 1, A000 = M000 = 1,

M100 = A100 = ux, A100 = M100 = ux,

M010 = A010 = uy, A010 = M010 = uy,

M001 = A001 = uz, A001 = M001 = uz,

M110 = A110, A110 = M110,

M101 = A101, A101 = M101,

M011 = A011, A011 = M011,

M200 = A200 + c2
s , A200 = M200 − c2

s ,

M020 = A020 + c2
s , A020 = M020 − c2

s ,

M002 = A002 + c2
s , A002 = M002 − c2

s ,

M210 = A210 + c2
s uy, A210 = M210 − c2

s uy,

M201 = A201 + c2
s uz, A201 = M201 − c2

s uz,

M021 = A021 + c2
s uz, A021 = M021 − c2

s uz,

M120 = A120 + c2
s ux, A120 = M120 − c2

s ux,

M102 = A102 + c2
s ux, A102 = M102 − c2

s ux,

M012 = A012 + c2
s uy, A012 = M012 − c2

s uy,

M111 = A111, A111 = M111,

M220 = A220 + c2
s (A200 + A020) + c4

s , A220 = M220 − c2
s (M200 + M020) + c4

s ,

M202 = A202 + c2
s (A200 + A002) + c4

s , A202 = M202 − c2
s (M200 + M002) + c4

s ,

M022 = A022 + c2
s (A020 + A002) + c4

s , A022 = M022 − c2
s (M020 + M002) + c4

s ,

M211 = A211 + c2
s A011, A211 = M211 − c2

s M011,

M121 = A121 + c2
s A101, A121 = M121 − c2

s M101,

M112 = A112 + c2
s A110, A112 = M112 − c2

s M110,

M221 = A221 + c2
s (A201 + A021) + c4

s uz, A221 = M221 − c2
s (M201 + M021) + c4

s uz,

M212 = A212 + c2
s (A210 + A012) + c4

s uy, A212 = M212 − c2
s (M210 + M012) + c4

s uy,

M122 = A122 + c2
s (A120 + A102) + c4

s ux, A122 = M122 − c2
s (M120 + M102) + c4

s ux,

M222 = A222 + c2
s (A220 + A202 + A022) A222 = M222 − c2

s (M220 + M202 + M022)
+c4

s (A200 + A020 + A002) + c6
s , +c4

s (M200 + M020 + M002) − c6
s . (E1)

For raw and central moments,

M̃pqr =
p∑

kx=0

q∑
ky=0

r∑
kz=0

(
p

kx

)(
q

ky

)(
r

kz

)
(−ux )p−kx (−uy)q−ky (−uz )r−kz Mpqr .

Inversion formulas are once again obtained discarding the minus sign

Mpqr =
p∑

kx=0

q∑
ky=0

r∑
kz=0

(
p

kx

)(
q

ky

)(
r

kz

)
up−kx

x u
q−ky
y ur−kz

z M̃pqr .

Thus, relationships obtained for the D3Q27 lattice are

M000 = M̃000 = 1,

M100 = M̃100 + ux = ux,

M010 = M̃010 + uy = uy,

M001 = M̃001 + uz = uz,

M200 = M̃200 + u2
x,

M020 = M̃020 + u2
y,

M002 = M̃002 + u2
z ,

M110 = M̃110 + uxuy,

M101 = M̃101 + uxuz,

M011 = M̃011 + uyuz,
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M210 = M̃210 + uyM̃200 + 2uxM̃110 + u2
xuy,

M201 = M̃201 + uzM̃200 + 2uxM̃101 + u2
xuz,

M120 = M̃120 + uxM̃020 + 2uyM̃110 + uxu2
y,

M021 = M̃021 + uzM̃020 + 2uyM̃011 + u2
yuz,

M102 = M̃102 + uxM̃002 + 2uzM̃101 + uxu2
z ,

M012 = M̃012 + uyM̃002 + 2uzM̃011 + uyu2
z ,

M111 = M̃111 + uzM̃110 + uyM̃101 + uxM̃011 + uxuyuz,

M220 = M̃220 + 2uyM̃210 + 2uxM̃120 + u2
yM̃200 + u2

xM̃020 + 4uxuyM̃110 + u2
xu2

y,

M202 = M̃202 + 2uzM̃201 + 2uxM̃102 + u2
z M̃200 + u2

xM̃002 + 4uxuzM̃101 + u2
xu2

z ,

M022 = M̃022 + 2uzM̃021 + 2uyM̃012 + u2
z M̃020 + u2

yM̃002 + 4uyuzM̃011 + u2
yu2

z ,

M211 = M̃211 + uzM̃210 + uyM̃201 + 2uxM̃111 + uyuzM̃200 + 2uxuzM̃110 + 2uxuyM̃101 + u2
xM̃011 + u2

xuyuz,

M121 = M̃121 + uzM̃120 + uxM̃021 + 2uyM̃111 + uxuzM̃020 + 2uyuzM̃110 + 2uxuyM̃011 + u2
yM̃101 + uxu2

yuz,

M112 = M̃112 + uyM̃102 + uxM̃012 + 2uzM̃111 + uxuyM̃002 + 2uyuzM̃101 + 2uxuzM̃011 + u2
z M̃110 + uxuyu2

z ,

M221 = M̃221 + uzM̃220 + 2uyM̃211 + 2uxM̃121 + 2uyuzM̃210 + u2
yM̃201 + u2

xM̃021 + 2uxuzM̃120 + 4uxuyM̃111

+ u2
yuzM̃200 + u2

xuzM̃020 + 4uxuyuzM̃110 + 2uxu2
yM̃101 + 2u2

xuyM̃011 + u2
xu2

yuz,

M212 = M̃212 + uyM̃202 + 2uzM̃211 + 2uxM̃112 + u2
z M̃210 + 2uyuzM̃201 + 2uxuyM̃102 + u2

xM̃012 + 4uxuzM̃111

+ uyu2
z M̃200 + u2

xuyM̃002 + 2uxu2
z M̃110 + 2u2

xuzM̃011 + 4uxuyuzM̃101 + u2
xuyu2

z ,

M122 = M̃122 + uxM̃022 + 2uzM̃121 + 2uyM̃112 + u2
z M̃120 + u2

yM̃102 + 2uxuzM̃021 + 2uxuyM̃012 + 4uyuzM̃111

+ uxu2
z M̃020 + uxu2

yM̃002 + 2uyu2
z M̃110 + 2u2

yuzM̃101 + 4uxuyuzM̃011 + uxu2
yu2

z ,

M222 = M̃222 + 2uzM̃221 + 2uyM̃212 + 2uxM̃122 + u2
z M̃220 + u2

yM̃202 + u2
xM̃022 + 4uyuzM̃211 + 4uxuzM̃121

+ 4uxuyM̃112 + 2uyu2
z M̃210 + 2u2

yuzM̃201 + 2uxu2
z M̃120 + 2u2

yuxM̃102 + 2u2
xuzM̃021 + 2u2

xuyM̃012

+ 8uxuyuzM̃111 + u2
yu2

z M̃200 + u2
xu2

z M̃020 + u2
xu2

yM̃002 + 4uxuyu2
z M̃110 + 4uxu2

yuzM̃101 + 4u2
xuyuzM̃011 + u2

xu2
yu2

z , (E2)

and

M̃000 = M000 = 1,

M̃100 = M100 − ux = 0,

M̃010 = M010 − uy = 0,

M̃001 = M001 − uz = 0,

M̃200 = M200 − u2
x,

M̃020 = M020 − u2
y,

M̃002 = M002 − u2
z ,

M̃110 = M110 − uxuy,

M̃101 = M101 − uxuz,

M̃011 = M011 − uyuz,

M̃210 = M210 − uyM200 − 2uxM110 + 2u2
xuy,

M̃201 = M201 − uzM200 − 2uxM101 + 2u2
xuz,

M̃120 = M120 − uxM020 − 2uyM110 + 2uxu2
y,

M̃021 = M021 − uzM020 − 2uyM011 + 2u2
yuz,
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M̃102 = M102 − uxM002 − 2uzM101 + 2uxu2
z ,

M̃012 = M012 − uyM002 − 2uzM011 + 2uyu2
z ,

M̃111 = M111 − uzM110 − uyM101 − uxM011 + 2uxuyuz,

M̃220 = M220 − 2uyM210 − 2uxM120 + u2
yM200 + u2

xM020 + 4uxuyM110 − 3u2
xu2

y,

M̃202 = M202 − 2uzM201 − 2uxM102 + u2
z M200 + u2

xM002 + 4uxuzM101 − 3u2
xu2

z ,

M̃022 = M022 − 2uzM021 − 2uyM012 + u2
z M020 + u2

yM002 + 4uyuzM011 − 3u2
yu2

z ,

M̃211 = M211 − uzM210 − uyM201 − 2uxM111 + uyuzM200 + 2uxuzM110 + 2uxuyM101 + u2
xM011 − 3u2

xuyuz,

M̃121 = M121 − uzM120 − uxM021 − 2uyM111 + uxuzM020 + 2uyuzM110 + 2uxuyM011 + u2
yM101 − 3uxu2

yuz,

M̃112 = M112 − uyM102 − uxM012 − 2uzM111 + uxuyM002 + 2uyuzM101 + 2uxuzM011 + u2
z M110 − 3uxuyu2

z ,

M̃221 = M221 − uzM220 − 2uyM211 − 2uxM121 + 2uyuzM210 + u2
yM201 + u2

xM021 + 2uxuzM120 + 4uxuyM111

− u2
yuzM200 − u2

xuzM020 − 4uxuyuzM110 − 2uxu2
yM101 − 2u2

xuyM011 + 4u2
xu2

yuz,

M̃212 = M212 − uyM202 − 2uzM211 − 2uxM112 + u2
z M210 + 2uyuzM201 + 2uxuyM102 + u2

xM012 + 4uxuzM111

− uyu2
z M200 − u2

xuyM002 − 2uxu2
z M110 − 2u2

xuzM011 − 4uxuyuzM101 + 4u2
xuyu2

z ,

M̃122 = M122 − uxM022 − 2uzM121 − 2uyM112 + u2
z M120 + u2

yM102 + 2uxuzM021 + 2uxuyM012 + 4uyuzM111

− uxu2
z M020 − uxu2

yM002 − 2uyu2
z M110 − 2u2

yuzM101 − 4uxuyuzM011 + 4uxu2
yu2

z ,

M̃222 = M222 − 2uzM221 − 2uyM212 − 2uxM122 + u2
z M220 + u2

yM202 + u2
xM022 + 4uyuzM211 + 4uxuzM121

+ 4uxuyM112 − 2uyu2
z M210 − 2u2

yuzM201 − 2uxu2
z M120 − 2u2

yuxM102 − 2u2
xuzM021 − 2u2

xuyM012

− 8uxuyuzM111 + u2
yu2

z M200 + u2
xu2

z M020 + u2
xu2

yM002 + 4uxuyu2
z M110

+ 4uxu2
yuzM101 + 4u2

xuyuzM011 − 5u2
xu2

yu2
z . (E3)

When it comes to raw moments and cumulants, Kendall’s differential operators are used to derive trivariate formulas from
the univariate case [53,93]. Up to K222 and M222, this leads to

M000 = exp(K000) = 1,

M100 = K100 = ux, M010 = K010 = uy, M001 = K001 = uz,

M200 = K200 + u2
x, M020 = K020 + u2

y, M002 = K002 + u2
z ,

M110 = K110 + uxuy, M101 = K101 + uxuz, M011 = K011 + uyuz,

M210 = K210 + uyK200 + 2uxK110 + u2
xuy,

M201 = K201 + uzK200 + 2uxK101 + u2
xuz,

M021 = K021 + uzK020 + 2uyK011 + u2
yuz,

M120 = K120 + uxK020 + 2uyK110 + uxu2
y,

M102 = K102 + uxK002 + 2uzK101 + uxu2
z ,

M012 = K012 + uyK002 + 2uzK011 + uyu2
z ,

M111 = K111 + uzK110 + uyK101 + uxK011 + uxuyuz,

M220 = K220 + 2(uyK210 + uxK120) + u2
xK020 + K020K200 + u2

yK200 + 2K2
110 + 4uxuyK110 + u2

xu2
y,

M202 = K202 + 2(uzK201 + uxK102) + u2
xK002 + K002K200 + u2

z K200 + 2K2
101 + 4uxuzK101 + u2

xu2
z ,

M022 = K022 + 2(uzK021 + uyK012) + u2
yK002 + K002K020 + u2

z K020 + 2K2
011 + 4uyuzK011 + u2

yu2
z ,

M211 = K211 + uzK210 + uyK201 + 2uxK111 + K011K200 + 2K101K110 + uyuzK200

+ 2(uxuzK110 + uxuyK101) + u2
xK011 + u2

xuyuz,
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M121 = K121 + uzK120 + uxK021 + 2uyK111 + K101K020 + 2K011K110 + uxuzK020

+ 2(uyuzK110 + uxuyK011) + u2
yK101 + uxu2

yuz,

M112 = K112 + uyK102 + uxK012 + 2uzK111 + K110K002 + 2K011K101 + uxuyK002

+ 2(uyuzK101 + uxuzK011) + u2
z K110 + uxuyu2

z ,

M221 = K221 + uzK220 + 2(uxK121 + uyK211) + K020K201 + K200K021 + 2(K101K120 + K011K210)

+ 4K110K111 + 2(uyuzK210 + uxuzK120) + u2
yK201 + u2

xK021 + 4uxuyK111 + uzK020K200

+ 2
(
uyK011K200 + uxK101K020 + uzK

2
110

)+ 4(uyK101K110 + uxK011K110) + u2
yuzK200

+ u2
xuzK020 + 2

(
uxu2

yK101 + u2
xuyK011

)+ 4uxuyuzK110 + u2
xu2

yuz,

M212 = K212 + uyK202 + 2(uzK211 + uxK112) + K002K210 + K200K012 + 2(K011K201 + K110K102)

+ 4K101K111 + 2(uyuzK201 + uxuyK102) + u2
z K210 + u2

xK012 + 4uxuzK111 + uyK002K200

+ 2
(
uzK011K200 + uxK110K002 + uyK2

101

)+ 4(uzK110K101 + uxK011K101) + uyu2
z K200

+ u2
xuyK002 + 2

(
uxu2

z K110 + u2
xuzK011

)+ 4uxuyuzK101 + u2
xuyu2

z ,

M122 = K122 + uxK022 + 2(uzK121 + uyK112) + K002K120 + K020K102 + 2(K101K021 + K110K012)

+ 4K011K111 + 2(uxuzK021 + uxuyK012) + u2
z K120 + u2

yK102 + 4uyuzK111 + uxK002K020

+ 2
(
uzK101K020 + uyK110K002 + uxK2

011

)+ 4(uzK110K011 + uyK011K101) + uxu2
z K020

+ uxu2
yK002 + 2

(
uyu2

z K110 + u2
yuzK101

)+ 4uxuyuzK011 + uxu2
yu2

z ,

M222 = K222 + 2(uzK221 + uyK212 + uxK122) + K002K220 + K020K202 + K200K022

+ 4(K011K211 + K101K121 + K110K112) + u2
z K220 + u2

yK202 + u2
xK022 + 4(uyuzK211 + uxuzK121 + uxuyK112)

+ 2(K012K210 + K021K201 + K102K120) + 4K2
111 + 2(uyK002K210 + uzK020K201 + uxK002K120

+ uyK200K012 + uzK200K021 + uxK020K102) + 4(uzK011K210 + uyK011K201 + uxK101K021

+ uzK101K120 + uyK110K102 + uxK110K012) + 8(uzK110K111 + uyK101K111 + uxK011K111)

+ 2
(
uyu2

z K210 + u2
yuzK201 + u2

xuzK021 + uxu2
z K120 + uxu2

yK102 + u2
xuyK012

)+ 8uxuyuzK111

+ K200K020K002 + 2
(
K2

110K002 + K2
011K200 + K2

101K020
)+ 8K011K101K110 + u2

z K200K020

+ u2
yK200K002 + u2

xK020K002 + 4(uyuzK011K200 + uxuzK101K020 + uxuyK110K002)

+ 2
(
u2

z K2
110 + u2

yK2
101 + u2

xK2
011

)+ 8(uxuzK011K110 + uyuzK101K110 + uxuyK011K101)

+ u2
yu2

z K200 + u2
xu2

z K020 + u2
xu2

yK002 + 4
(
uxuyu2

z K110 + uxu2
yuzK101 + u2

xuyuzK011
)+ u2

yu2
z u2

x, (E4)

and

K000 = ln(M000) = 0,

K100 = M100 = ux, K010 = M010 = uy, K001 = M001 = uz,

K200 = M200 − u2
x, K020 = M020 − u2

y, K002 = M002 − u2
z ,

K110 = M110 − uxuy, K101 = M101 − uxuz, K011 = M011 − uyuz,

K210 = M210 − uyM200 − 2uxM110 + 2u2
xuy,

K201 = M201 − uzM200 − 2uxM101 + 2u2
xuz,

K021 = M021 − uzM020 − 2uyM011 + 2u2
yuz,

K120 = M120 − uxM020 − 2uyM110 + 2uxu2
y,
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K102 = M102 − uxM002 − 2uzM101 + 2uxu2
z ,

K012 = M012 − uyM002 − 2uzM011 + 2uyu2
z ,

K111 = M111 − uzM110 − uyM101 − uxM011 + 2uxuyuz,

K220 = M220 − 2(uyM210 + uxM120) − M200M020 + 2u2
xM020 + 2u2

yM200 − 2M2
110 + 8uxuyM110 − 6u2

xu2
y,

K202 = M202 − 2(uzM201 + uxM102) − M200M002 + 2u2
xM002 + 2u2

z M200 − 2M2
101 + 8uxuzM101 − 6u2

xu2
z ,

K022 = M022 − 2(uzM021 + uyM012) − M020M002 + 2u2
yM002 + 2u2

z M020 − 2M2
011 + 8uyuzM011 − 6u2

yu2
z ,

K211 = M211 − (uzM210 + uyM201) − 2uxM111 − M011M200 − 2M101M110 + 2uyuzM200

+ 4(uxuzM110 + uxuyM101) + 2u2
xM011 − 6u2

xuyuz,

K121 = M121 − (uzM120 + uxM021) − 2uyM111 − M101M020 − 2M011M110 + 2uxuzM020

+ 4(uyuzM110 + uxuyM011) + 2u2
yM101 − 6uxu2

yuz,

K112 = M112 − (uyM102 + uxM012) − 2uzM111 − M110M002 − 2M011M101 + 2uxuyM002

+ 4(uyuzM101 + uxuzM011) + 2u2
z M110 − 6uxuyu2

z ,

K221 = M221 − uzM220 − 2(uxM121 + uyM211) − (M020M201 + M200M021) − 2(M101M120 + M011M210)

− 4M110M111 + 4(uyuzM210 + uxuzM120) + 2
(
u2

yM201 + u2
xM021

)+ 8uxuyM111

+ 2uzM020M200 + 4
(
uyM011M200 + uxM101M020 + uzM

2
110

)+ 8(uyM101M110 + uxM011M110)

− 6
(
u2

yuzM200 + u2
xuzM020

)− 12
(
uxu2

yM101 + u2
xuyM011

)− 24uxuyuzM110 + 24u2
xu2

yuz,

K212 = M212 − uyM202 − 2(uzM211 + uxM112) − (M002M210 + M200M012) − 2(M011M201 + M110M102)

− 4M101M111 + 4(uyuzM201 + uxuyM102) + 2
(
u2

z M210 + u2
xM012

)+ 8uxuzM111

+ 2uyM002M200 + 4
(
uzM011M200 + uxM110M002 + uyM2

101

)+ 8(uzM110M101 + uxM011M101)

− 6
(
uyu2

z M200 + u2
xuyM002

)− 12
(
uxu2

z M110 + u2
xuzM011

)− 24uxuyuzM101 + 24u2
xuyu2

z ,

K122 = M122 − uxM022 − 2(uzM121 + uyM112) − (M002M120 + M020M102) − 2(M101M021 + M110M012)

− 4M011M111 + 4(uxuzM021 + uxuyM012) + 2
(
u2

z M120 + u2
yM102

)+ 8uyuzM111

+ 2uxM002M020 + 4
(
uzM101M020 + uyM110M002 + uxM2

011

)+ 8(uzM110M011 + uyM011M101)

− 6
(
uxu2

z M020 + uxu2
yM002

)− 12
(
uyu2

z M110 + u2
yuzM101

)− 24uxuyuzM011 + 24uxu2
yu2

z ,

K222 = M222 − 2(uzM221 + uyM212 + uxM122) − (M002M220 + M020M202 + M200M022)

−4(M011M211 + M101M121 + M110M112) + 2
(
u2

z M220 + u2
yM202 + u2

xM022
)+ 8(uyuzM211 + uxuzM121 + uxuyM112)

− 2(M012M210 + M021M201 + M102M120) − 4M2
111 + 4(uyM002M210 + uzM020M201 + uxM002M120

+ uyM200M012 + uzM200M021 + uxM020M102) + 8(uzM011M210 + uyM011M201 + uxM101M021

+ uzM101M120 + uyM110M102 + uxM110M012) + 16(uzM110M111 + uyM101M111 + uxM011M111)

− 12
(
uyu2

z M210 + u2
yuzM201 + u2

xuzM021 + uxu2
z M120 + uxu2

yM102 + u2
xuyM012

)− 48uxuyuzM111

+ 2M200M020M002 + 4
(
M2

110M002 + M2
011M200 + M2

101M020
)+ 16M011M101M110

− 6
(
u2

z M200M020 + u2
yM200M002 + u2

xM020M002
)− 24(uyuzM011M200 + uxuzM101M020 + uxuyM110M002)

− 12
(
u2

z M2
110 + u2

yM2
101 + u2

xM2
011

)− 48(uxuzM011M110 + uyuzM101M110 + uxuyM011M101)

+ 24
(
u2

yu2
z M200 + u2

xu2
z M020 + u2

xu2
yM002

)+ 96
(
uxuyu2

z M110 + uxu2
yuzM101 + u2

xuyuzM011
)− 120u2

yu2
z u2

x . (E5)
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Relationships between central moments and cumulants are finally obtained discarding velocity dependent terms in the above
formulas:

K000 = ln(M̃000) = 0, M̃000 = exp(K̃000) = 1,

K100 = M̃100 + ux = ux, M̃100 = K100 − ux = 0,

K010 = M̃010 + uy = uy, M̃010 = K010 − uy = 0,

K001 = M̃001 + uz = uz, M̃001 = K001 − uz = 0,

K200 = M̃200, M̃200 = K200,

K020 = M̃020, M̃020 = K020,

K002 = M̃002, M̃002 = K002,

K110 = M̃110, M̃110 = K110,

K101 = M̃101, M̃101 = K101,

K011 = M̃011, M̃011 = K011,

K210 = M̃210, M̃210 = K210,

K201 = M̃201, M̃201 = K201,

K120 = M̃120, M̃120 = K120,

K021 = M̃021, M̃021 = K021,

K102 = M̃102, M̃102 = K102,

K012 = M̃012, M̃012 = K012,

K111 = M̃111, M̃111 = K111,

K220 = M̃220 − M̃200M̃020 − 2M̃2
110, M̃220 = K220 + K200K020 + 2K2

110,

K202 = M̃202 − M̃200M̃002 − 2M̃2
101, M̃202 = K202 + K200K002 + 2K2

101,

K022 = M̃022 − M̃020M̃002 − 2M̃2
011, M̃022 = K022 + K020K002 + 2K2

011,

K211 = M̃211 − M̃200M̃011 − 2M̃110M̃101, M̃211 = K211 + K200K011 + 2K110K101,

K121 = M̃121 − M̃020M̃101 − 2M̃110M̃011, M̃121 = K121 + K020K101 + 2K110K011,

K112 = M̃112 − M̃002M̃110 − 2M̃101M̃011, M̃112 = K112 + K002K110 + 2K101K011,

K221 = M̃221 − M̃201M̃020 − M̃021M̃200 − 2M̃210M̃011 M̃221 = K221 + K201K020 + K021K200 + 2K210K011

−2M̃120M̃101 − 4M̃111M̃110, +2K120K101 + 4K111K110,

K212 = M̃212 − M̃210M̃002 − M̃012M̃200 − 2M̃201M̃011 M̃212 = K212 + K210K002 + K012K200 + 2K201K011

−2M̃102M̃110 − 4M̃111M̃101, +2K102K110 + 4K111K101,

K122 = M̃122 − M̃120M̃002 − M̃102M̃020 − 2M̃021M̃101 M̃122 = K122 + K120K002 + K102K020 + 2K021K101

−2M̃012M̃110 − 4M̃111M̃011, +2K012K110 + 4K111K011,

K222 = M̃222 − (M̃220M̃002 + M̃202M̃020 + M̃022M̃200) M̃222 = K222 + K220K002 + K202K020 + K022K200

−4(M̃211M̃011 + M̃121M̃101 + M̃112M̃110) +4(K211K011 + K121K101 + K112K110)
−2(M̃210M̃012 + M̃201M̃021 + M̃120M̃102) − 4M̃2

111 +2(K210K012 + K201K021 + K120K102) + 4K2
111

+4
(
M̃200M̃2

011 + M̃020M̃2
101 + M̃002M̃2

110

) +2
(
K200K2

011 + K020K2
101 + K002K2

110

)
+16M̃110M̃101M̃011 + 2M̃002M̃020M̃200, +8K110K101K011 + K002K020K200. (E6)

APPENDIX F: LINEAR TRANSFORMATION MATRICES

This Appendix compiles all linear transformations allowing us to write the collision step in a matrix form in the context of
the D2Q9 velocity discretization, i.e.,

f ∗ = f eq + (
I − M−1SM

)
f neq,

where f ∗, f eq, and f neq are vectors composed of all nine post-collision, equilibrium, and nonequilibrium populations,
respectively. Starting with the set of orthogonal polynomials (39), it is explained how to compute M and M−1 from a general
point of view [26]. This allows a straightforward extension to any kind of lattice, in either 2D or 3D. These linear transformation
matrices (LTMs) are then given for RM, HM, CM, and CHM frameworks. For the last two, the concept of shifting matrices is
used to move from the reference frame at rest to the comoving one [44]. Eventually, these matrices are provided in the context of
the Gauss-Hermite quadrature on which regularized collision models are based. Hereafter, the single index i is used to describe
each discrete velocity ξi and its related population fi.
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1. Construction of LTMs

Let us start with the orthogonal basis proposed by Lallemand and Luo [26],(
Mρ, Mjx , Mjy , Me, Mpxx , Mpxy , Mqx , Mqy , Mε

)
,

where each of its component are defined as

Mρ = 1, Mjx = ξi,x, Mjy = ξi,y, Me = −4 + 3
(
ξ 2

i,x + ξ 2
i,y

)
, Mpxy = ξ 2

i,x − ξ 2
i,y, Mpxx = ξi,xξi,y,

Mqx = [−5 + 3
(
ξ 2

i,x + ξ 2
i,y

)]
ξi,x, Mqy = [−5 + 3

(
ξ 2

i,x + ξ 2
i,y

)]
ξi,y, Mε = 4 − 21

2

(
ξ 2

i,x + ξ 2
i,y

)+ 9
2

(
ξ 2

i,x + ξ 2
i,y

)2
.

Due to the aliasing defect of the D2Q9 lattice (ξ 3
i,x = ξi,x and ξ 3

i,y = ξi,y), Mqx , Mqy , and Mqε
can further be simplified into

Mqx = [−2 + 3ξ 2
i,y

]
ξi,x, Mqy = [−2 + 3ξ 2

i,x

]
ξi,y, Mε = 4 − 6

(
ξ 2

i,x + ξ 2
i,y

)+ 9ξ 2
i,xξ

2
i,y.

One can see that the ordering of polynomials proposed here is different from the one introduced in the original paper. The present
ordering is based on a progressive increase of the degree of each polynomial. Doing so, the comparison with other frameworks,
such as cascaded or regularized collision models, is simplified.

In addition, the standard ordering of discrete velocities is considered. In other words, velocities are gathered within several
groups depending on their norm, and they are then read “counterclockwise.” This leads to

Mjx = (0 1 0 −1 0 1 −1 −1 1),

Mjy = (0 0 1 0 −1 1 1 −1 −1). (F1)

The ordering of both sets of discrete velocities and moments is the first source of mistakes when deriving LTMs. It is then
of uttermost importance to check them before moving to the construction of M and M−1. In this work, chosen orderings are
described in Eqs. (F1) and (39). While the LTM to change from populations to moments is derived replacing each ξi by its value
in the chosen set of polynomials, its inverse is simply derived using standard linear algebra libraries. This eventually leads to

MLL =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mρ

Mjx

Mjy

Me

Mpxx

Mpxy

Mqx

Mqy

Mε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

−4 −1 −1 −1 −1 2 2 2 2

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1

4 −2 −2 −2 −2 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (F2)

and

M−1
LL = 1

36

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 −4 0 0 0 0 4

4 6 0 −1 9 0 −6 0 −2

4 0 6 −1 −9 0 0 −6 −2

4 −6 0 −1 9 0 6 0 −2

4 0 −6 −1 −9 0 0 6 −2

4 6 6 2 0 9 3 3 1

4 −6 6 2 0 −9 −3 3 1

4 −6 −6 2 0 9 −3 −3 1

4 6 −6 2 0 −9 3 −3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (F3)

where the subscript LL stands for the orthogonal basis proposed by Lallemand and Luo. The corresponding collision matrix is
diagonal, and it reads as SLL = diag(0, 0, 0, ωe, ων, ων, ωq, ωq, ωε ). The collision frequency ων controls the relaxation of shear
related phenomena, whereas ωe is related to the attenuation of acoustic waves. ωq and ωε further control the dissipation of third
and fourth order moments, respectively. The latter are usually considered as free parameters that can be tuned to increase the
stability of the LBM without impacting the resulting physics.
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2. Application to RM and HM frameworks

In the RM framework, monomials compose the polynomials basis(
1, ξi,x, ξi,y, ξ

2
i,x, ξ

2
i,y, ξi,xξi,y, ξ

2
i,xξi,y, ξi,xξ

2
i,y, ξ

2
i,xξ

2
i,y

)
,

which is now nonorthogonal. Following the same steps as before, new LTMs are obtained. They read as

MRM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and M−1

RM = 1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 −4 −4 0 0 0 4
0 2 0 2 0 0 0 −2 −2
0 0 2 0 2 0 −2 0 −2
0 −2 0 2 0 0 0 2 −2
0 0 −2 0 2 0 2 0 −2
0 0 0 0 0 1 1 1 1
0 0 0 0 0 −1 1 −1 1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 −1 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (F4)

In addition, the collision matrix can have two forms depending on the prerequisites of the reader. If one is not interested
in acoustically related phenomena, one can impose ωνb = ων which leads to SRM = diag(0, 0, 0, ων, ων, ων, ω3, ω3, ω4).
Otherwise, the collision matrix is only block diagonal [46,59]

SRM = diag(0, 0, 0,C, ων, ω3, ω3, ω4), (F5)

with

C =
[

ωνb+ων

2
ωνb−ων

2
ωνb−ων

2
ωνb+ων

2

]
.

For the HM framework, one can either use the above method to derive LTMs, or rely on relationships obtained for raw and
Hermite moments [Eqs. (D1) and (D2)]. The second method was originally used to build matrices allowing the shift from raw
to central moments, and vice versa [44]. Hereafter, it will be employed to derive matrices allowing to link raw and Hermite
moments. To do so, one simply needs to rewrite relationships between both kinds of moment in the form of a row-column
product. As an example,

A22 = M22 − c2
s (M20 + M02) + c4

s M00 = [
c4

s 0 0 − c2
s − c2

s 0 0 0 1
]
[M00 M10 M01 M11 M20 M02 M21 M12 M22]T

and

M22 = A22 + c2
s (A20 + A02) + c4

s A00 = [
c4

s 0 0 c2
s c2

s 0 0 0 1
]
[A00 A10 A01 A11 A20 A02 A21 A12 A22]T .

Eventually,

BHM
RM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

−c2
s 0 0 1 0 0 0 0 0

−c2
s 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 −c2

s 0 0 0 1 0 0
0 −c2

s 0 0 0 0 0 1 0
c4

s 0 0 −c2
s −c2

s 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and BRM

HM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

c2
s 0 0 1 0 0 0 0 0

c2
s 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 c2

s 0 0 0 1 0 0
0 c2

s 0 0 0 0 0 1 0
c4

s 0 0 c2
s c2

s 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(F6)
where BHM

RM and BRM
HM = (BHM

RM )−1 allow us to move from raw to Hermite moments, and vice versa. The lower triangular form
of these matrices translates the dependency of high order Hermite moments with respect to lower order raw moments and
conversely.

Post-collision populations are finally obtained through

f ∗ = f eq + (
I − M−1

HMSHMMHM
)

f neq

with MHM = BHM
RMMRM and M−1

HM = (BHM
RMMRM)−1 = M−1

RMBRM
HM. Once again, SHM is diagonal if one assumes ωνb = ων , and

block diagonal otherwise.

3. Change of reference frame

To derive LTMs corresponding to the CM framework, one starts from matrices relating populations to raw moments (F4).
Then, one further uses shifting matrices to move from raw to central moments. These shifting matrices are obtained thanks
to relationships compiled in Eqs. (D3) and (D4). One must be careful and use binomial formulas where zeroth and first order
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moments are not replaced by their values, i.e., M00 = M̃00 = 1, M10 = ux, M̃10 = 0, etc. As an example,

M̃22 = M22 − 2uyM21 − 2uxM12 + u2
yM20 + u2

xM02 + 4uxuyM11 − 2u2
xuyM01 − 2uxu2

yM10 + u2
xu2

yM00

= [
u2

xu2
y − 2uxu2

y − 2u2
xuy u2

y u2
x 4uxuy − 2uy − 2ux 1

]
[M00 M10 M01 M11 M20 M02 M21 M12 M22]T ,

and

M22 = M̃22 + 2uyM̃21 + 2uxM̃12 + u2
yM̃20 + u2

xM̃02 + 4uxuyM̃11 + 2u2
xuyM̃01 + 2uxu2

yM̃10 + u2
xu2

yM̃00

= [
u2

xu2
y 2uxu2

y 2u2
xuy u2

y u2
x 4uxuy 2uy 2ux 1

]
[M̃00 M̃10 M̃01 M̃11 M̃20 M̃02 M̃21 M̃12 M̃22]T .

By rewriting zeroth through third order moment in the same spirit, one ends up with the following shifting matrices:

BCM
RM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
−ux 1 0 0 0 0 0 0 0
−uy 0 1 0 0 0 0 0 0
u2

x −2ux 0 1 0 0 0 0 0
u2

y 0 −2uy 0 1 0 0 0 0
uxuy −uy −ux 0 0 1 0 0 0

−u2
xuy 2uxuy u2

x −uy 0 −2ux 1 0 0
−uxu2

y u2
y 2uxuy 0 −ux −2uy 0 1 0

u2
xu2

y −2uxu2
y −2u2

xuy u2
y u2

x 4uxuy −2uy −2ux 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (F7)

BRM
CM = (

BCM
RM

)−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
ux 1 0 0 0 0 0 0 0
uy 0 1 0 0 0 0 0 0
u2

x 2ux 0 1 0 0 0 0 0
u2

y 0 2uy 0 1 0 0 0 0
uxuy uy ux 0 0 1 0 0 0
u2

xuy 2uxuy u2
x uy 0 2ux 1 0 0

uxu2
y u2

y 2uxuy 0 ux 2uy 0 1 0
u2

xu2
y 2uxu2

y 2u2
xuy u2

y u2
x 4uxuy 2uy 2ux 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (F8)

LTMs for the CM framework then read as
MCM = BCM

RMMRM,

and
M−1

CM = M−1
RMBRM

CM.

To derive the LTMs for the CHM framework, one simply needs to start from MCM and M−1
CM and then to switch from CMs to

CHMs. The latter transformation can be done using
BCHM

CM = BHM
RM, BCM

CHM = BRM
HM,

since relationships between RMs and HMs are the same as those between their counterparts in the comoving reference frame.
Hence,

MCHM = BCHM
CM MCM,

and
M−1

CHM = M−1
CMBCM

CHM.

APPENDIX G: D3Q27 AND D3Q19 FORMULATIONS OF POPULATIONS

This Appendix is dedicated to the derivation of 3D populations for raw, Hermite, central, and central Hermite moments. They
are obtained enforcing the isotropy of fi up to the second order (in each direction),

M1D
p M1D

q M1D
r = M3D

p00M3D
0q0M3D

00r = Mpqr,

with (p, q, r) ∈ {0, 1, 2}3. This isotropy condition is valid for all kinds of moments considered hereafter, with the exception of
post-collision cumulants due to their nonlinear relationship with central moments.

Assuming that (σ, λ, δ) ∈ {±1}3, populations evolving in the raw moment space read as

f RM
(0,0,0) = ρ[1 − M200 − M020 − M002 + M220 + M202 + M022 − M222], (G1a)

f RM
(σ,0,0) = ρ

2
[σux + M200 − σM120 − σM102 − M220 − M202 + σM122 + M222], (G1b)
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f RM
(0,λ,0) = ρ

2
[λuy + M020 − λM210 − λM012 − M220 − M022 + λM212 + M222], (G1c)

f RM
(0,0,δ) = ρ

2
[δuz + M002 − δM201 − δM021 − M202 − M022 + δM221 + M222], (G1d)

f RM
(σ,λ,0) = ρ

4
[σλM110 + λM210 + σM120 + M220 − σλM112 − λM212 − σM122 − M222], (G1e)

f RM
(σ,0,δ) = ρ

4
[σδM101 + δM201 + σM102 + M202 − σδM121 − δM221 − σM122 − M222], (G1f)

f RM
(0,λ,δ) = ρ

4
[λδM011 + δM021 + λM012 + M022 − λδM211 − δM221 − λM212 − M222], (G1g)

f RM
(σ,λ,δ) = ρ

8
[σλδM111 + λδM211 + σδM121 + σλM112 + δM221 + λM212 + σM122 + M222], (G1h)

whereas in the case of Hermite moments they read as

f HM
(0,0,0) = ρ[C3 − C2A200 − C2A020 − C2A002 + CA220 + CA202 + CA022 − A222], (G2a)

f HM
(σ,0,0) = ρ

2

[
C2
(
c2

s + σux
)+ C2A200 − c2

sCA020 − c2
sCA002 − σCA120 − σCA102 − CA220 − CA202 + c2

s A022 + σA122 + A222
]
,

(G2b)

f HM
(0,λ,0) = ρ

2

[
C2
(
c2

s + λuy
)− c2

sCA200 + C2A020 − c2
sCA002 − λCA210 − λCA012 − CA220 + c2

s A202 − CA022 + λA212 + A222
]
,

(G2c)

f HM
(0,0,δ) = ρ

2

[
C2(c2

s + δuz
)− c2

sCA200 − c2
sCA020 + C2A002 − δCA201 − δCA021 + c2

s A220 − CA202 − CA022 + δA221 + A222
]
,

(G2d)

f HM
(σ,λ,0) = ρ

4

[
c2

sC
(
c2

s + σux + λuy
)+ σλCA110 + c2

sCA200 + c2
sCA020 − c4

s A002 + λCA210 + σCA120 − σc2
s A102

− λc2
s A012 − σλA112 + CA220 − c2

s A202 − c2
s A022 − λA212 − σA122 − A222

]
, (G2e)

f HM
(σ,0,δ) = ρ

4

[
c2

sC
(
c2

s + σux + δuz
)+ σδCA101 + c2

sCA200 − c4
s A020 + c2

sCA002 + δCA201 − δc2
s A021 − σc2

s A120

+ σCA102 − σδA121 − c2
s A220 + CA202 − c2

s A022 − δA221 − σA122 − A222
]
, (G2f)

f HM
(0,λ,δ) = ρ

4

[
c2

sC
(
c2

s + λuy + δuz
)+ λδCA011 − c4

s A200 + c2
sCA020 + c2

sCA002 − λc2
s A210 − δc2

s A201 + δCA021

+ λCA012 − λδA211 − c2
s A220 − c2

s A202 + CA022 − δA221 − λA212 − A222
]
, (G2g)

f HM
(σ,λ,δ) = ρ

8

[
c4

s

(
c2

s + σux + λuy + δuz
)+ c2

s (σλA110 + σδA101 + λδA011) + c4
s (A200 + A020 + A002) + σλδA111

+ c2
s (λA210 + δA201 + δA021 + σA120 + σA102 + λA012) + λδA211 + σδA121 + σλA112

+c2
s (A220 + A202 + A022) + δA221 + λA212 + σA122 + A222

]
, (G2h)

with C = 1 − c2
s . It is interesting to note that f HM

i reduce to f RM
i imposing cs = 0 in the above formulas. This is due to the fact

that Hi,pqr = ξ
p
i,xξ

q
i,yξ

r
i,z when terms proportional to cs are discarded in the definition of Hermite polynomials. In the CM space,

one obtains

f CM
(0,0,0) = ρ[UxUyUz + 4uxuyUzM̃110 + 4uxUyuzM̃101 + 4UxuyuzM̃011 − UyUzM̃200 − UxUzM̃020

−UxUyM̃002 − 8uxuyuzM̃111 + 2uyUzM̃210 + 2UyuzM̃201 + 2UxuzM̃021 + 2uxUzM̃120 + 2uxUyM̃102

+ 2UxuyM̃012 − 4uyuzM̃211 − 4uxuzM̃121 − 4uxuyM̃112 + UzM̃220 + UyM̃202 + UxM̃022 − 2uzM̃221

− 2uyM̃212 − 2uxM̃122 − M̃222], (G3a)

f CM
(σ,0,0) = ρ

2
[uxσxUyUz − 2σ2xuyUzM̃110 − 2σ2xUyuzM̃101 + 4uxσxuyuzM̃011 + UyUzM̃200 − uxσxUzM̃020

− uxσxUyM̃002 + 4σ2xuyuzM̃111 − 2uyUzM̃210 − 2UyuzM̃201 + 2uxσxuzM̃021 − σ2xUzM̃120

− σ2xUyM̃102 + 2uxσxuyM̃012 + 4uyuzM̃211 + 2σ2xuzM̃121 + 2σ2xuyM̃112 − UzM̃220 − UyM̃202

+ uxσxM̃022 + 2uzM̃221 + 2uyM̃212 + σ2xM̃122 + M̃222], (G3b)
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f CM
(0,λ,0) = ρ

2
[UxuyλyUz − 2uxλ2yUzM̃110 + 4uxuyλyuzM̃101 − 2Uxλ2yuzM̃011 − uyλyUzM̃200 + UxUzM̃020

−UxuyλyM̃002 + 4uxλ2yuzM̃111 − λ2yUzM̃210 + 2uyλyuzM̃201 − 2UxuzM̃021 − 2uxUzM̃120

+ 2uxuyλyM̃102 − Uxλ2yM̃012 + 2λ2yuzM̃211 + 4uxuzM̃121 + 2uxλ2yM̃112 − UzM̃220 + uyλyM̃202

−UxM̃022 + 2uzM̃221 + λ2yM̃212 + 2uxM̃122 + M̃222], (G3c)

f CM
(0,0,δ) = ρ

2
[UxUyuzδz + 4uxuyuzδzM̃110 − 2uxUyδ2zM̃101 − 2Uxuyδ2zM̃011 − UyuzδzM̃200 − UxuzδzM̃020

+UxUyM̃002 + 4uxuyδ2zM̃111 + 2uyuzδzM̃210 − Uyδ2zM̃201 − Uxδ2zM̃021 + 2uxuzδzM̃120

− 2uxUyM̃102 − 2UxuyM̃012 + 2uyδ2zM̃211 + 2uxδ2zM̃121 + 4uxuyM̃112 + uzδzM̃220 − UyM̃202

−UxM̃022 + δ2zM̃221 + 2uyM̃212 + 2uxM̃122 + M̃222], (G3d)

f CM
(σ,λ,0) = ρ

4
[uxσxuyλyUz + σ2xλ2yUzM̃110 − 2σ2xuyλyuzM̃101 − 2uxσxλ2yuzM̃011 + uyλyUzM̃200

+ uxσxUzM̃020 − uxσxuyλyM̃002 − 2σ2xλ2yuzM̃111 + λ2yUzM̃210 − 2uyλyuzM̃201 − 2uxσxuzM̃021

+ σ2xUzM̃120 − σ2xuyλyM̃102 − uxσxλ2yM̃012 − 2λ2yuzM̃211 − 2σ2xuzM̃121 − σ2xλ2yM̃112

+UzM̃220 − uyλyM̃202 − uxσxM̃022 − 2uzM̃221 − λ2yM̃212 − σ2xM̃122 − M̃222], (G3e)

f CM
(σ,0,δ) = ρ

4
[uxσxUyuzδz − 2σ2xuyuzδzM̃110 + σ2xUyδ2zM̃101 − 2uxσxuyδ2zM̃011 + UyuzδzM̃200

− uxσxuzδzM̃020 + uxσxUyM̃002 − 2σ2xuyδ2zM̃111 − 2uyuzδzM̃210 + Uyδ2zM̃201 − uxσxδ2zM̃021

− σ2xuzδzM̃120 + σ2xUyM̃102 − 2uxσxuyM̃012 − 2uyδ2zM̃211 − σ2xδ2zM̃121 − 2σ2xuyM̃112

− uzδzM̃220 + UyM̃202 − uxσxM̃022 − δ2zM̃221 − 2uyM̃212 − σ2xM̃122 − M̃222], (G3f)

f CM
(0,λ,δ) = ρ

4
[Uxuyλyuzδz − 2uxλ2yuzδzM̃110 − 2uxuyλyδ2zM̃101 + Uxλ2yδ2zM̃011 − uyλyuzδzM̃200

+UxuzδzM̃020 + UxuyλyM̃002 − 2uxλ2yδ2zM̃111 − λ2yuzδzM̃210 − uyλyδ2zM̃201 + Uxδ2zM̃021

− 2uxuzδzM̃120 − 2uxuyλyM̃102 + Uxλ2yM̃012 − λ2yδ2zM̃211 − 2uxδ2zM̃121 − 2uxλ2yM̃112

− uzδzM̃220 − uyλyM̃202 + UxM̃022 − δ2zM̃221 − λ2yM̃212 − 2uxM̃122 − M̃222], (G3g)

f CM
(σ,λ,δ) = ρ

8
[uxσxuyλyuzδz + σ2xλ2yuzδzM̃110 + σ2xuyλyδ2zM̃101 + uxσxλ2yδ2zM̃011 + uyλyuzδzM̃200

+ uxσxuzδzM̃020 + uxσxuyλyM̃002 + σ2xλ2yδ2zM̃111 + λ2yuzδzM̃210 + uyλyδ2zM̃201

+ uxσxδ2zM̃021 + σ2xuzδzM̃120 + σ2xuyλyM̃102 + uxσxλ2yM̃012 + λ2yδ2zM̃211 + σ2xδ2zM̃121

+ σ2xλ2yM̃112 + uzδzM̃220 + uyλyM̃202 + uxσxM̃022 + δ2zM̃221 + λ2yM̃212 + σ2xM̃122 + M̃222], (G3h)

with Ux = 1 − u2
x , Uy = 1 − u2

y , Uz = 1 − u2
z , σx = σ + ux, σ2x = σ + 2ux, λy = λ + uy, λ2y = λ + 2uy, δz = δ + uz, δ2z = δ +

2uz. Discarding velocity dependent terms in f CM
i allows us to recover the definitions of f RM

i . This is another simple way that
permits to easily check the validity of the above formulas. In the CHM framework, populations read as

f CHM
(0,0,0) = ρ[CxCyCz + 4(uxuyCzÃ110 + uxCyuzÃ101 + CxuyuzÃ011) − CyCzÃ200 − CxCzÃ020 − CxCyÃ002

− 8uxuyuzÃ111 + 2(uyCzÃ210 + CyuzÃ201 + CxuzÃ021 + uxCzÃ120 + uxCyÃ102 + CxuyÃ012)

− 4(uyuzÃ211 + uxuzÃ121 + uxuyÃ112) + CzÃ220 + CyÃ202 + CxÃ022 − 2uzÃ221 − 2uyÃ212 − 2uxÃ122 − Ã222], (G4a)

f CHM
(σ,0,0) = ρ

2
[CyCzCσ − 2σ2xuyCzÃ110 − 2σ2xCyuzÃ101 + 4Cσ uyuzÃ011 + CyCzÃ200 − CσCzÃ020 − CσCyÃ002

+ 4σ2xuyuzÃ111 − 2uyCzÃ210 − 2CyuzÃ201 + 2Cσ uzÃ021 − σ2xCzÃ120 − σ2xCyÃ102 + 2Cσ uyÃ012 + 4uyuzÃ211

+ 2σ2xuzÃ121 + 2σ2xuyÃ112 − CzÃ220 − CyÃ202 + Cσ Ã022 + 2uzÃ221 + 2uyÃ212 + σ2xÃ122 + Ã222], (G4b)

f CHM
(0,λ,0) = ρ

2
[CxCzCλ − 2uxλ2yCzÃ110 + 4uxCλuzÃ101 − 2Cxλ2yuzÃ011 − CλCzÃ200 + CxCzÃ020 − CxCλÃ002

+ 4uxλ2yuzÃ111 − λ2yCzÃ210 + 2CλuzÃ201 − 2CxuzÃ021 − 2uxCzÃ120 + 2uxCλÃ102 − Cxλ2yÃ012 + 2λ2yuzÃ211

+ 4uxuzÃ121 + 2uxλ2yÃ112 − CzÃ220 + CλÃ202 − CxÃ022 + 2uzÃ221 + λ2yÃ212 + 2uxÃ122 + Ã222], (G4c)
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f CHM
(0,0,δ) = ρ

2
[CxCyCδ + 4uxuyCδÃ110 − 2uxCyδ2zÃ101 − 2Cxuyδ2zÃ011 − CyCδÃ200 − CxCδÃ020 + CxCyÃ002

+ 4uxuyδ2zÃ111 + 2uyCδÃ210 − Cyδ2zÃ201 − Cxδ2zÃ021 + 2uxCδÃ120 − 2uxCyÃ102 − 2CxuyÃ012 + 2uyδ2zÃ211

+ 2uxδ2zÃ121 + 4uxuyÃ112 + CδÃ220 − CyÃ202 − CxÃ022 + δ2zÃ221 + 2uyÃ212 + 2uxÃ122 + Ã222], (G4d)

f CHM
(σ,λ,0) = ρ

4
[CzCσCλ + σ2xλ2yCzÃ110 − 2σ2xCλuzÃ101 − 2Cσ λ2yuzÃ011 + CλCzÃ200 + CσCzÃ020 − CσCλÃ002

− 2σ2xλ2yuzÃ111 + λ2yCzÃ210 − 2CλuzÃ201 − 2Cσ uzÃ021 + σ2xCzÃ120 − σ2xCλÃ102 − Cσ λ2yÃ012 − 2λ2yuzÃ211

− 2σ2xuzÃ121 − σ2xλ2yÃ112 + CzÃ220 − CλÃ202 − Cσ Ã022 − 2uzÃ221 − λ2yÃ212 − σ2xÃ122 − Ã222], (G4e)

f CHM
(σ,0,δ) = ρ

4
[CyCσCδ − 2σ2xuyCδÃ110 + σ2xCyδ2zÃ101 − 2Cσ uyδ2zÃ011 + CyCδÃ200 − CσCδÃ020 + CσCyÃ002

− 2σ2xuyδ2zÃ111 − 2uyCδÃ210 + Cyδ2zÃ201 − Cσ δ2zÃ021 − σ2xCδÃ120 + σ2xCyÃ102 − 2Cσ uyÃ012 − 2uyδ2zÃ211

− σ2xδ2zÃ121 − 2σ2xuyÃ112 − CδÃ220 + CyÃ202 − Cσ Ã022 − δ2zÃ221 − 2uyÃ212 − σ2xÃ122 − Ã222], (G4f)

f CHM
(0,λ,δ) = ρ

4
[CxCλCδ − 2uxλ2yCδÃ110 − 2uxCλδ2zÃ101 + Cxλ2yδ2zÃ011 − CλCδÃ200 + CxCδÃ020 + CxCλÃ002

− 2uxλ2yδ2zÃ111 − λ2yCδÃ210 − Cλδ2zÃ201 + Cxδ2zÃ021 − 2uxCδÃ120 − 2uxCλÃ102 + Cxλ2yÃ012 − λ2yδ2zÃ211

− 2uxδ2zÃ121 − 2uxλ2yÃ112 − CδÃ220 − CλÃ202 + CxÃ022 − δ2zÃ221 − λ2yÃ212 − 2uxÃ122 − Ã222], (G4g)

f CHM
(σ,λ,δ) = ρ

8
[CσCλCδ + σ2xλ2yCδÃ110 + σ2xCλδ2zÃ101 + Cσ λ2yδ2zÃ011 + CλCδÃ200 + CσCδÃ020 + CσCλÃ002

+ σ2xλ2yδ2zÃ111 + λ2yCδÃ210 + Cλδ2zÃ201 + Cσ δ2zÃ021 + σ2xCδÃ120 + σ2xCλÃ102 + Cσ λ2yÃ012 + λ2yδ2zÃ211

+ σ2xδ2zÃ121 + σ2xλ2yÃ112 + CδÃ220 + CλÃ202 + Cσ Ã022 + δ2zÃ221 + λ2yÃ212 + σ2xÃ122 + Ã222], (G4h)

with

σx = σ + ux,

λy = λ + uy,

δz = δ + uz,

σ2x = σ + 2ux,

λ2y = λ + 2uy,

δ2z = δ + 2uz,

Cx = 1 − c2
s − u2

x,

Cy = 1 − c2
s − u2

y,

Cz = 1 − c2
s − u2

z ,

Cσ = c2
s + ux(σ + ux ),

Cλ = c2
s + uy(λ + uy),

Cδ = c2
s + uz(δ + uz ).

(G5)

Here, if one neglects cs dependent terms, the definition of f CM
i is recovered. On the contrary, discarding velocity dependent terms

leads to the definition of f HM
i . Eventually, neglecting both kinds of terms allows us to recover the definition of f RM

i . Regarding
regularized LBMs, their populations are exactly the same as those expressed within the HM framework, where third and higher
order nonequilibrium contributions are either discarded or computed recursively. For the K-LBM, one simply needs to replace
central moments of order n � 4 in f CM

i using corresponding formulas detailed in Eq. (E6).
In the particular case of the D3Q19 velocity discretization, the easiest way to derive populations is to start from their D3Q27

counterparts and then to neglect moments that are not compliant with this lattice. One further needs to choose to either rely
on the Gauss-Hermite formalism or not since this choice directly impacts the form of the equilibrium state [see Appendix H
and more specifically Eqs. (H14)–(H20) and (H21)–(H27)]. Once this is done, one simply needs to use relationships derived in
Appendix E to switch from one framework to another one. Taking the example of f RM

i [Eq. (G1)], one needs to discard M111,
M211, M121, M112, M221, M212, M112, M222 as explained in Sec. VI B. This leads to

f RM,Q19
(0,0,0) = ρ[1 − M200 − M020 − M002 + M220 + M202 + M022], (G6a)

f RM,Q19
(σ,0,0) = ρ

2
[σux + M200 − σM120 − σM102 − M220 − M202], (G6b)

f RM,Q19
(0,λ,0) = ρ

2
[λuy + M020 − λM210 − λM012 − M220 − M022], (G6c)

f RM,Q19
(0,0,δ) = ρ

2
[δuz + M002 − δM201 − δM021 − M202 − M022], (G6d)

f RM,Q19
(σ,λ,0) = ρ

4
[σλM110 + λM210 + σM120 + M220], (G6e)

f RM,Q19
(σ,0,δ) = ρ

4
[σδM101 + δM201 + σM102 + M202], (G6f)

f RM,Q19
(0,λ,δ) = ρ

4
[λδM011 + δM021 + λM012 + M022], (G6g)

f RM,Q19
(σ,λ,δ) = 0. (G6h)

033305-38



COMPREHENSIVE COMPARISON OF COLLISION MODELS … PHYSICAL REVIEW E 100, 033305 (2019)

One can notice that populations corresponding to discrete velocities (±1,±1,±1) are null. This confirms the validity of the
proposed choice of raw moments. Replacing raw moments by their Hermite counterpart further results in

f HM,Q19
(0,0,0) = ρ

[(
1 − c2

s

)3 + c6
s − C2(A002 + A020 + A200) + A022 + A202 + A220

]
, (G7a)

f HM,Q19
(σ,0,0) = ρ

2

[
C2
(
c2

s + σux
)+ C2A200 − c2

s A020 − c2
s A002 − σ (A120 + A102) − A202 − A220

]
, (G7b)

f HM,Q19
(0,λ,0) = ρ

2

[
C2
(
c2

s + λuy
)− c2

s A200 + C2A020 − c2
s A002 − λ(A210 + A012) − A022 − A220

]
, (G7c)

f HM,Q19
(0,0,δ) = ρ

2

[
C2
(
c2

s + δuz
)− c2

s A200 − c2
s A020 + C2A002 − δ(A201 + A021) − A022 − A202

]
, (G7d)

f HM,Q19
(σ,λ,0) = ρ

4

[
c2

s

(
c2

s + σux + λuy
)+ c2

s (A200 + A020) + λσA110 + λA210 + σA120 + A220
]
, (G7e)

f HM,Q19
(σ,0,δ) = ρ

4

[
c2

s

(
c2

s + σux + δuz
)+ c2

s (A200 + A002) + δσA101 + δA201 + σA102 + A202
]
, (G7f)

f HM,Q19
(0,λ,δ) = ρ

4

[
c2

s

(
c2

s + λuy + δuz
)+ c2

s (A020 + A002) + δλA011 + δA021 + λA012 + A022
]
, (G7g)

with C2 = 1 − 2c2
s . For the CM framework, populations read as

f CM,Q19
(0,0,0) = ρ

[
UxUyUz + u2

xu2
yu2

z − UyzM̃200 − UxzM̃020 − UxyM̃002 + 4(uxuyM̃110 + uxuzM̃101 + uyuzM̃011)

+ 2(uyM̃210 + uzM̃201 + uzM̃021 + uxM̃120 + uxM̃102 + uyM̃012) + M̃220 + M̃202 + M̃022
]
, (G8a)

f CM,Q19
(σ,0,0) = ρ

2
[uxσxUyz + UyzM̃200 − uxσxM̃020 − uxσxM̃002 − 2σ2x(uyM̃110 + uzM̃101) − 2uyM̃210

− 2uzM̃201 − σ2xM̃120 − σ2xM̃102 − M̃220 − M̃202], (G8b)

f CM,Q19
(0,λ,0) = ρ

2
[uyλyUxz − uyλyM̃200 + UxzM̃020 − uyλyM̃002 − 2λ2y(uxM̃110 + uzM̃011) − λ2yM̃210

− 2uzM̃021 − 2uxM̃120 − λ2yM̃012 − M̃220 − M̃022], (G8c)

f CM,Q19
(0,0,δ) = ρ

2
[uzδzUxy − uzδzM̃200 − uzδzM̃020 + UxyM̃002 − 2δ2z(uxM̃101 + uyM̃011) − δ2zM̃201

− δ2zM̃021 − 2uxM̃102 − 2uyM̃012 − M̃202 − M̃022], (G8d)

f CM,Q19
(σ,λ,0) = ρ

4
[uxuyσxλy + σ2xλ2yM̃110 + uyλyM̃200 + uxσxM̃020 + λ2yM̃210 + σ2xM̃120 + M̃220], (G8e)

f CM,Q19
(σ,0,δ) = ρ

4
[uxuzσxδz + σ2xδ2zM̃101 + uzδzM̃200 + uxσxM̃002 + δ2zM̃201 + σ2xM̃102 + M̃202], (G8f)

f CM,Q19
(0,λ,δ) = ρ

4
[uyuzλyδz + λ2yδ2zM̃011 + uzδzM̃020 + uyλyM̃002 + δ2zM̃021 + λ2yM̃012 + M̃022], (G8g)

where Uxy = 1 − u2
x − u2

y , Uxz = 1 − u2
x − u2

z , and Uyz = 1 − u2
y − u2

z . To derive populations corresponding to the K-LBM, one
simply needs to replace M̃220, M̃202, and M̃022 by their cumulant counterparts using Eq. (E6). Eventually, populations defined in
the CHM framework are

f CHM,Q19
(0,0,0) = ρ[CxCyCz + cxcycz − CyzÃ200 − CxzÃ020 − CxyÃ002 + 4(uxuyÃ110 + uxuzÃ101 + uyuzÃ011)

+ 2(uyÃ210 + uzÃ201 + uzÃ021 + uxÃ120 + uxÃ102 + uyÃ012) + Ã220 + Ã202 + Ã022], (G9a)

f CHM,Q19
(σ,0,0) = ρ

2
[CσCyz + CyzÃ200 − Cσ Ã020 − Cσ Ã002 − 2σ2x(uyÃ110 + uzÃ101) − 2uyÃ210 − 2uzÃ201

− σ2xÃ120 − σ2xÃ102 − Ã220 − Ã202], (G9b)

f CHM,Q19
(0,λ,0) = ρ

2
[CλCxz − CλÃ200 + CxzÃ020 − CλÃ002 − 2λ2y(uxÃ110 + uzÃ011) − λ2yÃ210 − 2uzÃ021

− 2uxÃ120 − λ2yÃ012 − Ã220 − Ã022], (G9c)

f CHM,Q19
(0,0,δ) = ρ

2
[CδCxy − CδÃ200 − CδÃ020 + CxyÃ002 − 2δ2z(uxÃ101 + uyÃ011) − δ2zÃ201 − δ2zÃ021

− 2uxÃ102 − 2uyÃ012 − Ã202 − Ã022], (G9d)
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f CHM,Q19
(σ,λ,0) = ρ

4
[CσCλ + CλÃ200 + Cσ Ã020 + σ2xλ2yÃ110 + λ2yÃ210 + σ2xÃ120 + Ã220], (G9e)

f CHM,Q19
(σ,0,δ) = ρ

4
[CσCδ + CδÃ200 + Cσ Ã002 + σ2xδ2zÃ101 + δ2zÃ201 + σ2xÃ102 + Ã202], (G9f)

f CHM,Q19
(0,λ,δ) = ρ

4
[CλCδ + CδÃ020 + CλÃ002 + λ2yδ2zÃ011 + δ2zÃ021 + λ2yÃ012 + Ã022], (G9g)

with

cx = c2
s + u2

x,

cy = c2
s + u2

y,

cz = c2
s + u2

z ,

Cx = 1 − c2
s − u2

x,

Cy = 1 − c2
s − u2

y,

Cz = 1 − c2
s − u2

z ,

Cxy = 1 − 2c2
s − u2

x − u2
y,

Cxz = 1 − 2c2
s − u2

x − u2
z ,

Cyz = 1 − 2c2
s − u2

y − u2
z ,

Cσ = c2
s + ux(σ + ux ),

Cλ = c2
s + uy(λ + uy),

Cδ = c2
s + uz(δ + uz ),

σ2x = σ + 2ux,

λ2y = λ + 2uy,

δ2z = δ + 2uz.

(G10)

If one chooses to start from the Gauss-Hermite formalism, then populations read as

f GH,Q19
(i, j,k) = w(i, j,k)

N∑
n=0

ρ

n!c2n
s

Apqr : H i,pqr, (G11)

with n = p + q + r. It is preferred here to rely on Apqr instead of apqr = ρApqr to ease the change of framework through formulas
compiled in Appendix E. From this, it is clear that the D3Q19 formulation of both regularization steps is based on the following
populations:

f GH,Q19
(0,0,0) = ρ

3

[
1 − 3

2
(A200 + A020 + A002) + 9

4
(A220 + A202 + A022)

]
, (G12a)

f GH,Q19
(σ,0,0) = ρ

18

[
1 + 3σux + 3

2
(2A200 − A020 − A002) − 9

2
σ (A120 + A102) − 9

4
(2A220 + 2A202 − A022)

]
, (G12b)

f GH,Q19
(0,λ,0) = ρ

18

[
1 + 3λuy + 3

2
(2A020 − A200 − A002) − 9

2
λ(A210 + A012) − 9

4
(2A220 + 2A022 − A202)

]
, (G12c)

f GH,Q19
(0,0,δ) = ρ

18

[
1 + 3δuz + 3

2
(2A002 − A200 − A020) − 9

2
δ(A201 + A021) − 9

4
(2A202 + 2A022 − A220)

]
, (G12d)

f GH,Q19
(σ,λ,0) = ρ

36

[
1 + 3(σux + λuy) + 3

2
(2A200 + 2A020 − A002) + 9σλA110 + 9

2
(2λA210 + 2σA120 − σA102 − λA012)

+ 9

2
(2A220 − A202 − A022)

]
, (G12e)

f GH,Q19
(σ,0,δ) = ρ

36

[
1 + 3(σux + δuz ) + 3

2
(2A200 + 2A002 − A020) + 9σδA101 + 9

2
(2δA201 + 2σA102 − σA120 − δA021)

+ 9

2
(2A202 − A220 − A022)

]
, (G12f)

f GH,Q19
(0,λ,δ) = ρ

36

[
1 + 3(λuy + δuz ) + 3

2
(2A020 + 2A002 − A200) + 9λδA011 + 9

2
(2δA021 + 2λA012 − λA210 − δA201)

+ 9

2
(2A022 − A220 − A202)

]
, (G12g)

where both the lattice constant and the weights have been replaced by their values (Table II). Depending on the way Aneq
pqr will be

computed, Eq. (G12) will either lead to the PR (Aneq
pqr = Apqr − Aeq

pqr) or to the RR [Aneq
pqr = A(1)

pqr computed via Eq. (90)] collision
models.

One can see that f HM,Q19
i and f GH,Q19

i lead to two families of LBMs that are based on two different kinds of equilibrium states
(see Appendix H). The origin of this mismatch comes from (1) the weights which differ between the D3Q19 and the D3Q27
lattices, and (2) the difference between high order contributions that are discarded. The former point is crystal clear when one
looks at the values of the weights (see Table II). Regarding the latter point, it flows from the fact that when neglecting M222 in the
unweighted formalism, then it affects, for example, A222 and all other even Hermite moments (A220, A200, A000, and their cyclic
permutations). On the contrary, only the contribution of A222 is discarded in the Gauss-Hermite formalism. The same reasoning
applies to all moments that are neglected when moving from the D3Q27 formulation to the D3Q19 one.

What is interesting about these two families of LBMs is that one can derive new collision models by simply switching
from Apqr to the statistical quantity of interest. As an example, one could derive a new D3Q19-K-LBM based on either
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f HM,Q19
i or f GH,Q19

i by first moving from Apqr to Mpqr , then to M̃pqr , and finally to Kpqr using successively Eqs. (E1), (E2),
and (E6).

In the end, one may wonder what formalism should be preferred when it comes to the D3Q19 lattice. In fact, populations
obtained in the unweighted formalism (G6)–(G9) can be shown to be solutions of the problem (44). This leads to the recovery
of the proper set of 19 moments and, as a consequence, these models have the correct macroscopic behavior. On the contrary,
the present Gauss-Hermite formulation (G12) leads to spurious coupling between hydrodynamic and high order moments and,
a fortiori, to an improper macroscopic behavior. Indeed,

∑
i

f GH,Q19
i Hi,200 = ρA200 − 3

4
ρA022 	=

∫
f H200dξ, (G13a)

∑
i

f GH,Q19
i Hi,020 = ρA020 − 3

4
ρA202 	=

∫
f H020dξ, (G13b)

∑
i

f GH,Q19
i Hi,002 = ρA002 − 3

4
ρA220 	=

∫
f H002dξ, (G13c)

meaning the viscous stress tensor will depend on fourth order nonequilibrium moments. Further couplings can be observed
among third order moments

∑
i

f GH,Q19
i Hi,210 = ρA210 − 1

2
ρA012 	=

∫
f H210dξ, (G14a)

∑
i

f GH,Q19
i Hi,201 = ρA201 − 1

2
ρA021 	=

∫
f H201dξ, (G14b)∑

i

f GH,Q19
i Hi,021 = ρA021 − 1

2
ρA201 	=

∫
f H021dξ, (G14c)

∑
i

f GH,Q19
i Hi,120 = ρA120 − 1

2
ρA102 	=

∫
f H120dξ, (G14d)

∑
i

f GH,Q19
i Hi,102 = ρA102 − 1

2
ρA120 	=

∫
f H102dξ, (G14e)

∑
i

f GH,Q19
i Hi,012 = ρA012 − 1

2
ρA210 	=

∫
f H012dξ, (G14f)

and also fourth order moments

∑
i

f GH,Q19
i Hi,220 = ρA220 − ρ

4
(ρA202 + ρA022) − ρ

6
A002 	=

∫
f H220dξ, (G15a)

∑
i

f GH,Q19
i Hi,202 = ρA202 − ρ

4
(ρA220 + ρA022) − ρ

6
A020 	=

∫
f H202dξ, (G15b)

∑
i

f GH,Q19
i Hi,022 = ρA022 − ρ

4
(ρA220 + ρA202) − ρ

6
A200 	=

∫
f H022dξ . (G15c)

These coupling defects are usually not encountered since, in most cases, the Hermite polynomial expansion is done up to the
second order for the D3Q19 lattice [59,106]. Nevertheless, a few authors have also proposed to include third order terms in its
equilibrium state to improve the macroscopic behavior of the resulting LBM [129,136,138].

There are several possibilities to deal with these spurious couplings. First, one can impose third and fourth order terms to
their equilibrium value, which leads to a PR collision model based on an extended equilibrium state. One then ends up with the
correct viscous stress tensor. The second option consists in discarding fourth order moments, and using orthogonal third order
Hermite polynomials [78,139]

(Hi,210 + Hi,012, Hi,201 + Hi,021, Hi,120 + Hi,102, Hi,210 − Hi,012, Hi,201 − Hi,021, Hi,120 − Hi,102). (G16)

Equilibrating fourth order moments also works here. The last way to obtain a stable numerical scheme is to rely on a fully
orthogonal basis. By orthogonalizing fourth order Hermite polynomials with second order ones using the weighted scalar
product, the following formulas are derived:

H4o2
i,220 = Hi,220 + (1/6)Hi,002, H4o2

i,202 = Hi,202 + (1/6)Hi,020, H4o2
i,022 = Hi,022 + (1/6)Hi,200, (G17)
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with the superscript 4o2 standing for “order 4 orthogonal with respect to order 2.” By further orthogonalizing them between each
other, one obtains

HFO
i,220 = H4o2

i,220, HFO
i,202 = H4o2

i,202 + (2/7)HFO
i,220, HFO

i,022 = H4o2
i,022 + (2/7)HFO

i,220 + (2/5)HFO
i,202, (G18)

where the superscript FO means “fully orthogonal.” Eventually, by combining Eqs. (G16) and (G18) with the second order
polynomial basis, the new D3Q19-GH formulation of the populations reads as

f GH,Q19
i = wiρ

{
2∑

n=0

1

n!c2n
s

Hi,pqr : Apqr + 1

6c6
s

[3(Hi,210 + Hi,012)(A210 + A012) + 3(Hi,201 + Hi,021)(A201 + A021)

+ 3(Hi,120 + Hi,102)(A120 + A102) + (Hi,210 − Hi,012)(A210 − A012) + (Hi,201 − Hi,021)(A201 − A021)

+ (Hi,120 − Hi,102)(A120 − A102)] + 1

4c8
s

[
(8/7)HFO

i,220AFO
220 + (56/45)HFO

i,202AFO
202 + (40/27)HFO

i,022AFO
022

]}
, (G19)

where AFO
pqr are Hermite polynomial coefficients corresponding to the fully orthogonal set of Hermite polynomials HFO

i,pqr . Among
the three above-mentionned propositions, this last model was identified as the most stable one when coupled with the BGK
collision operator (all relaxation frequencies equal to ων).

APPENDIX H: EQUILIBRIUM DISTRIBUTION FUNCTIONS

This Appendix is dedicated to the equilibrium state recovered by all LBMs considered in this work. Starting from the one-
dimensional case, it was demonstrated that all LBMs recovered the following formulas (Sec. IV):

f eq
0 = ρ

(
C − u2

x

)
, (H1)

f eq
σ = ρ

2

(
c2

s + σux + u2
x

)
, (H2)

with C = (1 − c2
s ). Since the continuous Maxwell-Boltzmann equilibrium distribution is by definition isotropic, it is further

proposed to enforce the isotropy of the discrete equilibrium state through the use of tensor product rules [92]. This D-dimensional
extension naturally leads to

f eq
(0,0) = ρ

(
C − u2

x

)(
C − u2

y

)
, (H3)

f eq
(σ,0) = ρ

2

(
c2

s + σux + u2
x

)(
C − u2

y

)
, (H4)

f eq
(0,λ) = ρ

2

(
C − u2

x

)(
c2

s + λuy + u2
y

)
, (H5)

f eq
(σ,λ) = ρ

4

(
c2

s + σux + u2
x

)(
c2

s + λuy + u2
y

)
, (H6)

for the D2Q9 lattice, and

f eq
(0,0,0) = ρ

(
C − u2

x

)(
C − u2

y

)(
C − u2

z

)
, (H7)

f eq
(σ,0,0) = ρ

2

(
c2

s + σux + u2
x

)(
C − u2

y

)(
C − u2

z

)
, (H8)

f eq
(0,λ,0) = ρ

2

(
C − u2

x

)(
c2

s + λuy + u2
y

)(
C − u2

z

)
, (H9)

f eq
(0,0,δ) = ρ

2

(
C − u2

x

)(
C − u2

y

)(
c2

s + δuz + u2
z

)
, (H10)

f eq
(σ,λ,0) = ρ

4

(
c2

s + σux + u2
x

)(
c2

s + λuy + u2
y

)(
C − u2

z

)
, (H11)

f eq
(σ,0,δ) = ρ

4

(
c2

s + σux + u2
x

)(
C − u2

y

)(
c2

s + δuz + u2
z

)
, (H12)

f eq
(0,λ,δ) = ρ

4

(
C − u2

x

)(
c2

s + λuy + u2
y

)(
c2

s + δuz + u2
z

)
, (H13)

f eq
(σ,λ,δ) = ρ

8

(
c2

s + σux + u2
x

)(
c2

s + λuy + u2
y

)(
c2

s + δuz + u2
z

)
, (H14)

for the D3Q27 velocity discretization. For all above formulas, it is considered that (σ, λ, δ) = {±1}3.
Knowing that all models recover the same equilibrium state in the one-dimensional case, the above construction then ensures

that all LBMs also share the exact same equilibrium state for both two- and three-dimensional cases. In particular, this is true
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for models based on orthogonal bases (MRT and TRT), the regularized LBMs, and the K-LBM. For regularized LBMs, it is
explained by the fact that in the one-dimensional case, either solving Eq. (74) or using the Gauss-Hermite quadrature formulation
(64) leads to the very same formalism. Tensor product rules compiled in Eqs. (68)–(70) allow us to extend the previous result
to both two- and three-dimensional cases. For cumulants, deviations with respect to the CM formalism can only come from
equilibrium cumulants of order n � 4, but they are null by definition if n � 3.

One must be careful regarding the equilibrium state derived in the case of the D3Q19 lattice. Indeed, if one starts from the
RM framework and discards equilibrium raw moments via instructions given in Sec. VI B, then one obtains the following type
of equilibrium state:

f eq,RM
(0,0,0) = ρ

3

[
1 − (

u2
x + u2

y + u2
z

)+ 3
(
u2

xu2
y + u2

xu2
z + u2

yu2
z

)]
, (H15)

f eq,RM
(σ,0,0) = ρ

18

[
1 + 3σux + 3

(
u2

x − u2
y − u2

z

)− 9σ
(
uxu2

y + uxu2
z

)− 9
(
u2

xu2
y + u2

xu2
z

)]
, (H16)

f eq,RM
(0,λ,0) = ρ

18

[
1 + 3λuy + 3

(− u2
x + u2

y − u2
z

)− 9λ
(
u2

xuy + uyu2
z

)− 9
(
u2

xu2
y + u2

yu2
z

)]
, (H17)

f eq,RM
(0,0,δ) = ρ

18

[
1 + 3δuz + 3

(− u2
x − u2

y + u2
z

)− 9δ
(
u2

xuz + u2
yuz
)− 9

(
u2

xu2
z + u2

yu2
z

)]
, (H18)

f eq,RM
(σ,λ,0) = ρ

36

[
1 + 3(σux + λuy) + 3

(
u2

x + u2
y

)+ 9σλuxuy + 9
(
λu2

xuy + σuxu2
y

)+ 9u2
xu2

y

]
, (H19)

f eq,RM
(σ,0,δ) = ρ

36

[
1 + 3(σux + δuz ) + 3

(
u2

x + u2
z

)+ 9σδuxuz + 9
(
δu2

xuz + σuxu2
z

)+ 9u2
xu2

z

]
, (H20)

f eq,RM
(0,λ,δ) = ρ

36

[
1 + 3(λuy + δuz ) + 3

(
u2

y + u2
z

)+ 9λδuyuz + 9
(
δu2

yuz + λuyu2
z

)+ 9u2
yu2

z

]
, (H21)

where the lattice constant has been replaced with its value cQ19
s = 1/

√
3. Unfortunately, these equilibrium VDFs do not match

anymore those obtained through the Gauss-Hermite quadrature

f eq,GH
(0,0,0) = ρ

3

[
1 − 3

2

(
u2

x + u2
y + u2

z

)+ 9

4

(
u2

xu2
y + u2

xu2
z + u2

yu2
z

)]
, (H22)

f eq,GH
(σ,0,0) = ρ

18

[
1 + 3σux + 3

2

(
2u2

x − u2
y − u2

z

)− 9

2
σ
(
uxu2

y + uxu2
z

)− 9

4

(
2u2

xu2
y + 2u2

xu2
z − u2

yu2
z

)]
, (H23)

f eq,GH
(0,λ,0) = ρ

18

[
1 + 3λuy + 3

2

(
2u2

y − u2
x −u2

z

)− 9

2
λ
(
u2

xuy + uyu2
z

)− 9

4

(
2u2

xu2
y + 2u2

yu2
z − u2

xu2
z

)]
, (H24)

f eq,GH
(0,0,δ) = ρ

18

[
1 + 3δuz + 3

2

(
2u2

z − u2
x − u2

y

)− 9

2
δ
(
u2

xuz + u2
yuz
)− 9

4

(
2u2

xu2
z + 2u2

yu2
z − u2

xu2
y

)]
, (H25)

f eq,GH
(σ,λ,0) = ρ

36

[
1 + 3(σux + λuy) + 3

(
u2

x + u2
y

)− 1

2
u2

z + 9σλuxuy + 9

2

(
2λu2

xuy + 2σuxu2
y − σuxu2

z − λuyu2
z

)
+ 9

2

(
2u2

xu2
y − u2

xu2
z − u2

yu2
z

)]
, (H26)

f eq,GH
(σ,0,δ) = ρ

36

[
1 + 3(σux + δuz ) + 3

(
u2

x + u2
z

)− 1

2
u2

y + 9σδuxuz + 9

2

(
2δu2

xuz + 2σuxu2
z − σuxu2

y − δu2
yuz
)

+ 9

2

(
2u2

xu2
z − u2

xu2
y − u2

yu2
z

)]
, (H27)

f eq,GH
(0,λ,δ) = ρ

36

[
1 + 3(λuy + δuz ) + 3

(
u2

y + u2
z

)− 1

2
u2

x + 9λδuyuz + 9

2

(
2δu2

yuz + 2λuyu2
z − λu2

xuy − δu2
xuz
)

+ 9

2

(
2u2

yu2
z − u2

xu2
y − u2

xu2
z

)]
, (H28)

where both the lattice constant and weights have been replaced with their value (Table II) to ease the comparison with f eq,RM
i .

From this, one obtains two different kinds of equilibrium states whose difference scales as O(u2). This means that these
equilibrium VDFs should lead to different results even for low Mach number flows. One can further expect that they will also
result in different linear stability domains for the D3Q19 lattice, as it was already confirmed for the D2Q9 lattice [70].

To conclude this study, let us briefly tackle the issue of equilibrium populations derived from the maximum entropy (ME)
principle [100]. The latter states that equilibrium populations are those which maximize (minimize) the entropy (H-function)
of the system. By solving this optimization problem under the constraint of local conservation laws (density, momentum, and
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energy in our case), one can recover the Maxwell-Boltzmann equilibrium distribution function, while further accounting for
all second order moments and the trace of the third order tensor leads to its Grad’s 13-moment version [99]. Following the
same methodology, equilibrium states derived from the ME principle were proposed in the context of LBM, in either an exact
[101,102,140] or approximated formulation [103,104]. Considering only exact formulas in the 1D case, the ME principle under
the constraint of density and momentum conservation leads to equilibrium VDFs of the form [101]

f eq,ME
i = ρwi

(
2 −

√
1 + 3u2

x

)(2ux +√
1 + 3u2

x

1 − ux

)ξi,x

, (H29)

while further including the conservation of isothermal (total) energy leads to [102,140]

f eq,ME
i = ρwi

3(1 − E )

2

(√
E + ux

E − ux

)ξi,x(
2
√

E2 − u2
x

1 − E

)ξ 2
i,x

, (H30)

with σ = ±1. Interestingly, replacing wi and ξi,x by their value, one can rewrite Eq. (H30) as

f eq,ME
0 = ρ(1 − E ), f eq,ME

σ = ρ

2
(σux + E ). (H31)

Further replacing the total energy by its isothermal definition in 1D (2E = u2
x + c2

s ), one then recovers the standard definition
(H1) and (H2), as already pointed out in previous works [92,140]. Such a result can easily be extended to both 2D and 3D
by applying the tensor product rules (68) and (69) to Eq. (H30). Hence, it is known for sure that equilibrium populations,
recovered by all collision models studied in this work, do satisfy the ME principle under the constraints of density, momentum,
and isothermal energy conservation, as far as the D1Q3, D2Q9, and D3Q27 velocity discretizations are concerned. Further
investigations are ongoing, regarding the case of the D3Q19 lattice, as well as the entropic equilibrium state [Eq. (H29)] that
leads to a new family of collision models. Corresponding results will be presented elsewhere.
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