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A simplified model is developed, which allows us to perform computer simulations of the particles transport in
an evaporating droplet with a contact line pinned to a hydrophilic substrate. The model accounts for advection in
the droplet, diffusion, and particle attraction by capillary forces. On the basis of the simulations, we analyze the
physical mechanisms of forming of individual chains of particles inside the annular sediment. The parameters
chosen correspond to the experiments of Park and Moon [Langmuir 22, 3506 (2006)], where an annular
deposition and snakelike chains of colloid particles have been identified. The annular sediment is formed by
advection and diffusion transport. We find that the close packing of the particles in the sediment is possible if the
evaporation time exceeds the characteristic time of diffusion-based ordering. We show that the chains are formed
by the end of the evaporation process due to capillary attraction of particles in the region bounded by a fixing
radius, where the local droplet height is comparable to the particle size. At the beginning of the evaporation, the
annular deposition is shown to expand faster than the fixing radius moves. However, by the end of the process,
the fixing radius rapidly outreaches the expanding inner front of the ring. The snakelike chains are formed at this
final stage when the fixing radius moves toward the symmetry axis.
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I. INTRODUCTION

The processes of heat and mass transfer occurring in
droplets and films are of interest in various applications such
as fuel droplet evaporation and combustion in engines [1,2],
interaction of droplets with surfaces of varying wettabilities
in ink-jet printing [3], obtaining stable ultrathin film surfaces
on the basis of polar liquids [4], removing nanoparticles from
a solid surface [5], and many other applications.

One of the most important and actively discussed problems
is connected to studying structures of colloidal particles,
which emerge on the surface of an evaporating sessile droplet
and remain on the substrate after drying [6–13]. One of the
examples is the effect of evaporative contact line deposition,
the so-called coffee-ring effect [14–16]. While a droplet is
drying on the substrate, capillary flows carry the colloid
particles toward the three-phase boundary. In this case, for-
mation of an annular deposition is observed if the contact line
was pinned throughout the entire process. According to the
experimental results, coffee-rings may have an inner structure
[17], and colloid particles can also merge into chains and other
geometric shapes [18] (Fig. 1). However, the existing models
which describe this phenomenon [15,19–21] do not allow
predicting the inner structure and location of the particles
relatively to each other.

Effects of this kind are studied experimentally in
[17,18,22–30]. Marín et al. primarily explained the
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mechanism of these effects by convective transfer and
diffusion [17]. Park and Moon obtained circular depositions
and stains as a result of evaporating picoliter droplets based
on water ink and different solvent mixtures [18]. Such
depositions are characterized by a well-ordered hexagonal
structure of particles. In the case of the annular deposition, the
images show the presence of independent chains of particles
within the ring.

The role of the Marangoni flow in the case of a heated
substrate is discussed in [22]. Ternary mixtures of solvent,
polymer, and semiconductor nanocrystal were investigated in
[31]. Yunker et al. studied the influence of particle shape on
the resulting structure of deposition [23,24]. Depositions of
microgel soft particles are characterized by a gradual order-
to-disorder transition [25], which is not abrupt like the hard
colloid depositions [17,25]. The transition from order to disor-
der is also observed in the structures obtained by a dip-coating
technique [32–34]. Li et al. used solvents with dendrimers
and obtained annular structures of a periodic thickness [26].
Callegari et al. studied the influence of active matter (moving
bacteria) on the dynamics of the coffee-rings growth [27]. A
series of papers is dedicated to the formation of nanoparticle
chains along the contact line of micron-size droplets [28–30].

The network deposition patterns inside the annular sedi-
ment have been obtained experimentally for a drying sessile
droplet in [35], where a tailored substrate with a circular hy-
drophilic domain is used. The evolution of a dry patch is found
to be divided into three stages: rupture initiation, dry patch
expansion, and drying of the residual liquid. The authors argue
that in their case the capillary attraction is important, while the
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Marangoni flows are considerably large only in the first phase
of evaporation, when the contact angle is relatively large.

The capillary attraction of the particles in liquid films was
studied in [36–41]. Based on such interaction between the
particles, a lithographic method of self-assembly of nanos-
tructures was developed [42].

There are several discrete models, which explicitly de-
scribe the dynamics of each particular particle. These models
are usually based on Monte Carlo or molecular dynamics
methods [33,41,43–47]. Some Monte Carlo based models are
lattice models [48–50], and some are not [27,51,52]. The flow
velocity is often calculated analytically for simple particular
cases [45,49–53]. The obtained velocity field is taken into
account for calculations of the particles dynamics. Callegari
et al. [27] use a constant velocity value. Mobile bacteria
are modeled by the Monte Carlo method [27]. Lebedev-
Stepanov and Vlasov took account of the adhesion of par-
ticles and roughness of the substrate [45]. The formation
of branched nanoparticle aggregates in the drying sessile
droplet is modeled in [48], where the two-dimensional kinetic
Monte Carlo Ising-like approach is used. The results pertain
to those experiments, where nanoparticles are considered,
and the coffee-ring effect is absent. The branched aggregates
begin to form when the thickness of the ultrathin film reaches
several angstroms and local ruptures appear. On such a scale,
the process can be accompanied by the formation of other
structures, such as networks, wormlike structures, and so on
[54]. The models [49,53] describe the formation of annular
depositions in the process of droplet evaporation using a cubic
lattice. Petsi et al. compared the Monte Carlo and lattice
Boltzmann equation methods for a semicylindrical geometry
of the droplet and also provided a numerical description
of the process of particles deposition on the substrate as a
result of the transfer by the compensatory fluid flow and
their Brownian motion [51]. The computational experiment
was carried out for different wetting angles and three-phase
boundary modes. Jung et al. used a model with a circular
lattice to describe the coffee-ring effect mathematically [50].
A computational method which allows one to calculate the
capillary attraction forces between particles in a thin film is
presented in [55].

The objective of the present work is to analyze physical
mechanisms of the formation of standalone particle chains
located within an annular monolayer deposition [18] (Fig. 1),
where the particle size is of the order of micrometers. Our hy-
pothesis is that this effect is caused by the particles’ capillary
attraction, which occurs at different times in those areas of the
droplet where the thickness of the liquid layer reduces to the
size of particles. To verify this mechanism, we employ a sim-
plified mathematical model, which accounts for joint consid-
eration of advection, diffusion, and capillarity and allows us
to perform computer simulations of the transport of particles.

II. METHODS

A. Problem formulation

Let us consider an evaporating sessile droplet of colloid
solution (Fig. 2). The radius of the spherical particles of
SiO2 rp ≈ 0.35 μm [18].

FIG. 1. Experimental observation of individual chains of parti-
cles within the annular deposition (reprinted with permission from
[18], copyright 2006, American Chemical Society).

We estimate the sedimentation time for a single particle by
dividing the droplet height h0 = Rθ/2 ≈ 5 μm by the Stokes
velocity U0 = 2r2

p�ρg/9η ≈ 0.5 μm/s [56], where �ρ =
1.65 g/cm3 is the density difference between the particles and
the water, g is acceleration due to gravity, and η is the fluid
viscosity. Hence, the sedimentation time is of the order of
ts ≈ 10 s. The advection further increases the sedimentation
time, which exceeds the evaporation time tmax � 10 s. For this
reason, we do not take account of sedimentation.

Although the particles of silicon dioxide may acquire a
charge during their chemical synthesis [57], we assume that
the screening is significant due to a large concentration of
ions in the aqueous solution. For this reason, we disregard the
electrostatic interactions [58,59].

The shape of a sessile droplet profile is a spherical cap due
to the predominance of capillary forces over gravity because
of the small volume of liquid (V ≈ 72 pl [18]). Such geom-
etry facilitates working with a cylindrical coordinate system
(r, ϕ, z). The direction of axis r is parallel to the substrate. The

FIG. 2. Sketch to the problem definition.
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symmetry center of the droplet corresponds to r = 0. Axis
z is perpendicular to the substrate. The surface of the solid
base corresponds to z = 0. The three-phase boundary is fixed
throughout the entire process at r = R. The contact line radius
is R ≈ 60 μm. The substrate is made from a hydrophilic
material, and the droplet is flattened. Its contact angle θ � 10◦
[18]. In such cases, one or two layers of particles are formed
[18]. In this work, we only consider the case with a monolayer
formation from particles.

We take into account radial flow of the liquid, directed
from the symmetry axis toward the droplet periphery. This
compensatory flow is known as capillary flow and is a result
of intense evaporation near the contact line (Fig. 2). We do
not take account of circulating flows of the liquid, because the
liquid layer is thin (see Sec. II B 3).

B. Description of the model

1. Capillary attraction

It is convenient to use both polar (r, ϕ) and Cartesian
coordinates (x, y). Since thickness of the liquid layer h in the
flattened droplet is much smaller than R, the particle dynamics
can be described in a horizontal plane, xy. Despite the fact
that we study the case with a fixed three-phase boundary,
the xy plane also has a movable boundary, R f . Let the fixing
radius R f define a boundary, where the particle size and the
local droplet height are comparable (dp ≈ h), provided that
R f < R. Here dp = 2rp. In a thin droplet, the particles cannot
reach the contact line, because the local droplet height is very
small in the vicinity of the contact line. The particles will
not move farther than R f , since beyond this boundary h < dp.
The surface tension forces will restrain them. Let us write the
approximate expression for the shape of the droplet surface
[60]

h(r, t ) = θ (t )
R2 − r2

2R
, (1)

where radial coordinate is r =
√

x2 + y2. From (1) we derive
the dependence of the fixing radius on time

R f (t ) =
√

R2 − 4rpR

θ (t )
. (2)

The droplet height and the contact angle reduce during
the evaporation process, and, hence, the fixing radius R f (t ) is
changed as well (Fig. 2). It should be noted that R f is changed
insignificantly for the majority of time. Only at the end of the
process, this radius starts shrinking. At t → tmax the value of
R f → 0. Contact angle θ decreases linearly over time, θ → 0
at t → tmax [61], where tmax is the time of full evaporation.
This dependence can be expressed as follows:

θ (t ) = θ0

(
1 − t

tmax

)
, (3)

where θ0 is the initial value of the contact angle [60]. The
exact value of θ0 is not determined in the experiment [18].
It is only known that it does not exceed 10◦ for the case of
the hydrophilic substrate. For the calculations, we will use
θ0 = 10◦.

FIG. 3. A schematic of particles capillary attraction.

In the region of boundary R f , the particles are subject to
the capillary attraction [36,37,40]

F ≈ 2πσQ1Q2

L
, (4)

where L is the distance between particles, and Qk is the
capillary charge of the kth particle, and σ is the surface tension
coefficient of the liquid. Expression (4) resembles Coulomb’s
law. Here, Qk characterizes the ability of a particle to deform
the free surface of the liquid, Qk = rp sin ψk . The radius of
any particle is assumed to be constant value rp. The meniscus
slope angle ψk may vary depending on the location of a
particle. To carry out assessment, let us consider the average
of ψ (Fig. 3). In this case, Q1 = Q2 = Q, where Q = rp sin ψ .
Then, expression (4) can be written as follows:

F ≈ 2πσQ2

L
. (5)

Let us study a three-particle system as an example (Fig. 3) and
assume that angle ψ = 1◦.

We assume that the left and the right particles are attached
to the substrate. Let us determine the displacement of the
central particle over a time step of δt = 10−4 s. The choice of
the time step value is discussed in Sec. II C. Let the distance
between the first and second particles be L12 = 11rp, and the
distance between the second and third particles be L23 = 12rp.
Now, let us determine the values of F12 and F23 by substituting
L12 and L23 in (5). The second particle displacement caused by
capillary forces is

δlcap = F23 − F12

mp

δt2

2
.

Mass of a particle mp = Vpρp ≈ 0.5 pg, where Vp is the
volume of a spherical particle, and ρp is the density of silicon
dioxide. We obtain the value of relation δlcap/L12 ≈ −1. This
means that the second particle shifts tightly to the first particle,
since the distance between them is smaller and the capillary
effect is stronger. It will occur more rapidly at a larger
angle ψ .

2. Advection

Based on the mass conservation law [15] and
taking into consideration the lubrication approximation√

1 + (∂h/∂r)2 ≈ 1 we express the height-averaged velocity
of radial flow of the liquid v̄r (r, t ),

v̄r ≈ − 1

rh

∫ r

0

(
J

ρl
+ ∂h

∂t

)
r dr, (6)

where density of the liquid ρl ≈ 103 kg/m3, and J = J (r, t )
is the local evaporation flux with a dimension of kg/(m2 s).
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If we consider the evaporation as only a diffusion of vapor
into air and assume the process is quasistationary, then, by
solving the Laplace equation for the distribution of vapor
concentration �c = 0, we find J . In this approximation, J
only depends on r. The boundary condition at the liquid-vapor
interface is J (r) = Dv (n · ∇c)|z=h, where n is the normal
vector to the droplet surface, and Dv is the coefficient of vapor
diffusion. Analytical solution

J (r) ≈ 2

π

Dv (cs − c∞)√
R2 − r2

(7)

had been obtained earlier for θ → 0 [15,60,62]. Here cs is the
concentration of saturated vapor, and c∞ is the concentration
of vapor in the surrounding air far from the droplet surface.

Let us substitute (1), (3), and (7) in (6) and then integrate.
Considering the fact that the mass of the droplet m is equal to
the mass of the entire evaporated liquid [60],

m = πρlR3θ0

4
= 2π

∫ R

0

∫ tmax

0
Jr dr dt

= 4Dv (cs − c∞)Rtmax,

we find

v̄r = R

4r̃(tmax − t )

[
1√

1 − r̃2
− (1 − r̃2)

]
, (8)

where r̃ = r/R [60,62]. Displacement of the particle by the
radial fluid flow over one time step is δladv = v̄rδt .

Equation (8) is a rough approximation for an actual fluid
velocity, so the suggested model is only of a phenomenolog-
ical nature. The process can be considered as quasistationary
when R2/Dv � tmax [60]. In order to further refine the sug-
gested model, one has to consider J , which depends on time
t , as well. For example, dependencies J (r, t ) are suggested in
[63–66].

3. Marangoni flows

It can be shown that the capillary flow dominates the
Marangoni effect in the fixing radius region. As seen in
Eq. (8), the velocity of capillary flow substantially increases
both on approaching the contact line and during the final phase
of the evaporation process. Since for large contact angles the
fixing radius (2) is close to the contact line, the capillary
flow dominates the Marangoni flow there. The velocities of
Marangoni flow are proportional to θ2, and decrease rapidly
during the final phase of the evaporation process. Hence,
at small contact angles, the capillary flow dominates the
circulatory one as well.

It should be noted that the thermocapillary instability is
known to occur only when the Marangoni number Ma =
−σ ′�T h0/(ηκ ) exceeds a certain critical value. Here �T is
the temperature difference between the apex and the substrate,
σ ′ = dσ/dT , and κ is the thermal diffusivity. The threshold
value for a flat fluid film is about 80 [67]. The onset of the
Marangoni convection has been also confirmed in [68] for
the particular case of droplets with contact angle θ = 90◦.
Using the known estimates of the evaporation flux [69], we
obtain the value Ma ≈ 0.4 for θ = 10◦ and Ma ≈ 0.03 for
θ = 3◦. Although the onset is not known for droplets with
small contact angles, it is possible that for such small values
of Ma the thermocapillary flow does not occur at all.

FIG. 4. Particle states and transition rules.

For this reason, we do not take into account Marangoni
flows in the simulations.

4. Diffusion

Using the generalized Stokes-Einstein equation [56,70],
we estimate the diffusion coefficient of the particles D ≈ 2 ×
10−13 m2/s. The diffusion displacement distance is δldif =√

2Dδt ≈ 6 nm. We obtain the relation δlcap/δldif ≈ 615.
Hence, capillary attraction of the particles prevails over diffu-
sion, which can be neglected on achievement of fixing radius
R f by the particle. The characteristic time of diffusion-based
ordering of particles is td = d2

p/D ≈ 2.45 s. The evaporation
time of the droplet depends on the temperature, humidity,
air pressure, concentration of colloidal particles, and other
parameters. The precise value of evaporation time tmax is not
given in [18]. For a pure liquid, there is an approximation

tmax ≈ ρl h0R

πDvcs(1 − H )(0.27θ + 1.3)
≈ 0.3 s,

where the coefficient of diffusion is Dv ≈ 2.4 × 10−5 m2/s
and the concentration of saturated vapor is cs ≈ 17.3 ×
10−3kg/m3 [6]. The value of the contact wetting angle is θ =
π/18 and height of the flattened droplet h0 ≈ R tan(0.5θ ) ≈
5 μm. In the experiment [18], the relative humidity of the
surrounding air is H ≈ 0.4. A number of experiments [71,72]
demonstrate that the evaporation rate can decrease with in-
creasing concentration of colloidal particles. For this reason,
we consider tmax as a parameter. In calculations, we will use
tmax = 1 s < td and tmax = 10 s > td .

Brownian motion of the particles is simulated using a
Monte Carlo method. We denote a random angle between
a particle displacement and the x axis as α, α ∈ [−π ; π ).
Then the displacement of a particle is described by the vector
(δx, δy)T = (δldif cos α, δldif sin α)T .

C. The algorithm

The pseudocode of the algorithm is given in the Appendix.
We use the Mersenne Twister generator in order to generate
pseudorandom numbers [73]. Efficient implementations for
the current computer architectures are contained in modern
software libraries for random number generation [74–76].

The particles can be in different states during the calcula-
tion. This approach resembles a finite state machine (Fig. 4).

033304-4



JOINT EFFECT OF ADVECTION, DIFFUSION, AND … PHYSICAL REVIEW E 100, 033304 (2019)

The Supplemental Material video [77] shows results of the
simulations and displays the states by different colors. The
particles subject to advection and diffusion are marked in
green. Yellow particles are only subject to diffusion. Black
particles are affected by capillarity. Red particles are the ones
that stopped their motion and are attached to the substrate.
Conventionally, below we use this color notation of the states,
because it is identical to the color notation in the Supplemental
Material video.

Initially, according to the color designation, the particles
are green by default. A particle becomes black on reaching
fixing radius |R f − r| � rp. If the particle offsets beyond
boundary R f toward R when r > R f + rp, it becomes red.

The particles within the forming ring are more affected by
diffusion than by fluid flow. This can be seen, e.g., in the
supplemental video in [23]. We assume that a green particle
becomes yellow if its attempt to move was failed due to a
collision with a red or black particle. In this context, collision
is an overlap of the particles, i.e., in the two-dimensional
model representation, an overlap of the circles of radius rp.
The particles are of a solid material and are not deformed.
The regions of space occupied by the particles cannot cross
even partially.

If the yellow particle has moved away by a small distance
from R f due to the Brownian motion toward the symmetry
axis (e.g., r < R f − 5dp), it becomes green again. In other
words, the liquid flow starts moving it toward the periphery
again.

The capillarity of particles on the basis of assessments
using formula (5) in Sec. II B 1 will be simulated as follows.
Over one time step, a black particle is attracted and moves
closely to the nearest black or red particle in the neighbor-
hood (within the surrounding region of a radius Rn). For a
calculation, we take Rn = 20rp [39]. The value of time step
δt = 10−4 s was chosen on the basis of a series of computa-
tion experiments to satisfy the Einstein relation for the mean
square displacement 〈δL2

dif〉 = 2Dtmax, where δLdif is the total
displacement during the period tmax, and the averaging is
performed over all particles.

We do not consider collisions of the particles. Since the
Monte Carlo method updates the particle motion at each time
step, its stochastic character excludes a possibility to describe
collisions of particles given such a small time step δt . The dif-
fusion displacement δldif during a time step is about 1% of the
particle size. Particle displacement by advection δladv usually
does not exceed 1.5% of the particle size. This results in a
negligibly small portion of colliding particles during one step.

III. RESULTS AND DISCUSSION

We chose the number of particles Np = 9000 such that the
width of the formed annular deposition corresponded to the
value from the experiment [18]. The time tmax was consid-
ered as a parameter of the simulations. Figure 5 represents
the obtained structures of depositions at the drying time of
tmax = 1 s (left) and 10 s (right). Figure 6 represents the radial
profile of the particle density distribution ρ, which is one of
the key physical quantities studied. Here, ρ is the number
of particles per unit area (ρ is normalized to Np/R2). The
profile is demonstrated in two columns of panels for droplets

with two substantially different characteristic values of tmax,
respectively. Five rows of panels in each of the two columns
show the radial profile calculated for five combinations of the
main effects considered, namely, calculated by taking into
account solely the advection [Figs. 6(a) and 6(b)], or the
effects of diffusion and capillary attraction [Figs. 6(c) and
6(d)], or the advection and capillary attraction [Figs. 6(e) and
6(f)], or the advection and diffusion [Figs. 6(g) and 6(h)],
or the advection, diffusion, and capillary attraction jointly
[Figs. 6(i) and 6(j)]. In parallel with these ten panels, the
panels of Fig. 5 show the corresponding final spatial particle
structures formed in each case. Such a representation allows
one to see the relative role of each of the effects in forming the
spatial particle structure on the substrate at four characteristic
times chosen, that correspond to four curves in each of the
panels in Fig. 6. The calculation error does not exceed the
size of the marker. Each calculation was repeated ten times.
The lines connecting the markers are shown for convenience
only and do not have a physical meaning.

Based on the simulation results, time tmax influences the
forming structure only in the cases when both diffusion and
advection are taken into account [Figs. 5(g)–5(j)]. The fluid
flow carries the particles toward the periphery. A ring with
unordered particles is formed near the contact line over time
tmax = 1 s. Thus, if tmax < td , the particles do not have enough
time to pack densely due to the Brownian motion. We have
calculated the packing fraction p ≈ 0.79. The coffee rings
formed during tmax = 10 s, are characterized by almost hexag-
onal package of particles. In this case, the ratio of sediment
area in the ring to ring area is approximately 0.84. This
ratio is about 0.91 in hexagonal packaging. The difference is
due to visible defects and local subdomains in the obtained
structure. In particular, the defects are induced by the annular
geometry of the region. Over tmax > td , the particles have
enough time to densely pack due to diffusive mixing. Thus,
as a result of transfer of the particles by the advective flow
alone, the total density of the particles near the periphery is
not so high [ρ ≈ 0.56 in Figs. 6(a) and 6(b)], while under
the additional influence of diffusion ρ ≈ 0.81 for tmax = 1 s
[Figs. 6(g) and 6(i)] and ρ ≈ 0.86 for tmax = 10 s [Figs. 6(h)
and 6(j)]. The influence capillarity produces is that, instead
of a uniform value of ρ in the central part of the deposition
[Figs. 6(g) and 6(h)], the final density distribution of the par-
ticles grows linearly from the symmetry axis (r̃ = 0) toward
the ring boundary (r̃ ≈ 0.7) in Figs. 6(i) and 6(j). We find that
ρ(r̃ = 1) = 0, since the particles do not move beyond bound-
ary R f (0) toward R (Fig. 6).

In the case of studying only advection or its combination
with capillarity, treelike structures of particles are observed
within the ring [Figs. 5(a), 5(b), 5(e), and 5(f)]. Such dendritic
shapes are not characteristic to diffusing particles. In the
absence of the Brownian motion, the particles do not mix
within the ring. A particle driven by the fluid flow stops
moving when it encounters an obstacle. Then, this particle can
represent an obstacle for another particle. This is the essence
of the dendritic shape formation mechanism.

If the system is only affected by diffusion and capillarity,
the depositions also have dendritic structures [Figs. 5(c) and
5(d)]. The difference is that such structure occupies the en-
tire surface area, which was previously in contact with the
liquid layer. Particle density distribution is almost uniform
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FIG. 5. Final structures obtained at different combinations of effects taken into account and values of tmax.

(ρ ≈ 0.35) in this case [Figs. 6(c) and 6(d)]. Besides, the
“tree branches” turn out sparse, since they are not formed
due to advection. The particles are uniformly distributed in the
entire volume and fluctuate chaotically at the beginning of the
process. As the fixing radius decreases, the particles occurring
at the fixing boundary (|R f − r| � rp), are drawn to each other

and stop their movement. They are in the state of rest for
several reasons. Firstly, the local droplet height is smaller than
the particle size, therefore the particles lie on the substrate.
Secondly, the capillary forces press them to the substrate,
because a thin film wets these particles. At the beginning
of the process, the motion of the boundary R f is slow, and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 6. Density of the particles distribution for the obtained
structures (ρ is normalized to Np/R2).

separate strips of particles are formed. These strips are located
near the periphery perpendicular to the radial direction. There
is a small dip in the particle density distribution [Figs. 6(c)
and 6(d)] right before the deposit, e.g., for t = 0.6tmax. The
dip is located exactly at the fixing radius area, where the local
droplet height is comparable to the particle size at each time,
as can be seen in the Supplemental Material video [77]. The
dip can be explained by the capillary attraction acting in this
small region, while the treelike structure of particles is still not
finalized and the density is still increasing.

It should be noted that in cases when advection is taken
into account but capillary attraction is not, uniform dis-
tribution of the particles is observed in the central region
[Figs. 5(a), 5(b), 5(g), and 5(h)]. These are the particles not yet
carried by the flow toward the annular deposition at the droplet

FIG. 7. Time evolution of the particle distribution for the case
when advection, diffusion, and capillary attraction are taken into
account.

periphery. When capillarity is added to the model, we see how
these particles form chains [Figs. 5(e), 5(f), 5(i), and 5(j)].
Capillarity does not affect the structure inside the forming
ring except drawing the particles, which were in the proximity
R f , toward each other. Most of the time, the change of R f (t )
occurs slower than the growth of ring width w(t ). By the
end of the process, the situation becomes opposite, R f (t ) <

R f (0) − w(t ) at t > tcri. Then the chains start forming from
the particles as they appear at fixing boundary R f (Fig. 7).

According to the numerical results, critical time tcri ≈
(0.74 ± 0.06)tmax. It is possible to obtain the time tcri from the
following equality R f (tcri ) = R f (0) − w(tcri ). An analytical
formula for w(t ) was obtained in [78],

w = R

√
φ

4p

[
1 −

(
1 − t

tmax

)3/4
]2/3

, (9)

where φ is the volume fraction of colloidal particles. Let us
consider the critical time for a particular example, when three
effects affecting mass transfer are taken into account (tmax =
1 s). As shown in Fig. 8, the functions R f (t ) and R f (0) − w(t )
overlap at tcri ≈ 0.74tmax: R f (tcri ) = R f (0) − w(tcri ) = rcri ≈
0.7R. It is seen that the value tcri corresponding to the intersec-
tion of the R f (t ) and the numerically obtained R f (0) − w(t )
is only slightly smaller than 0.74tmax (Fig. 8).

The result of modeling the dynamics of the inner front
of the annular sediment is quantitatively different from the
analytical prediction of (9) at the final stage (Fig. 8). The value
of the function R f (0) − w(t ) at t > tcri remains constant. This
means that the width of the ring does not increase further in
time, as in the case of using the formula (9), because Eq. (9)
does not take into account the existence of the boundary R f .

Branching in the polar direction is mostly suppressed in
the region where radial motion of the boundary R f is faster
than the characteristic velocity of advection and diffusion
(60 μm/s), while the particle density is low (ρ < 0.2) (see
Figs. 5, 6, and 8).
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r
R

t / tmax

FIG. 8. Dynamics of the fixing radius and the inner front of the
annular sediment.

Considering jointly advection, diffusion, and capillarity for
tmax = 10 s allowed obtaining a numerical result [Fig. 5(j)],
which is qualitatively consistent with the experimental data
in Fig. 1. The structure of the deposition shows close-packed
particles in the annular part and snakelike chains of particles in
the central region. The difference is that these chains are short
in the experiment. The numerical results show long chains of
particles. It is most likely connected to the used approximation
in the simulation of the particles capillarity.

IV. CONCLUSIONS

The formation of both close-packed annular deposition
at the periphery of the droplet and the snakelike chains of
particles in the central region has been described based on
the suggested model. A major part of the colloidal particles
is transferred toward the periphery due to advection. The fluid
flow toward the contact line originates from the nonuniform
evaporation rate along the free surface of the droplet. This
results in the formation of the ring of colloid particles. The
hexagonal structure within the ring is found to be induced by
the diffusion-based ordering of the particles when the evapo-
ration time tmax exceeds the characteristic time td . Chains of
particles are formed at the final stage in the flattened droplet
as a result of the particles capillarity, when the fixing bound-
ary outreaches the inner boundary of the expanding ring,
R f (t ) < R f (0) − w(t ).

The presented model jointly takes into account the effects
of advection, diffusion, and capillarity on the particle motion.
We consider only the case when the concentration of colloidal
particles and the droplet size allow a formation of a monolayer
of particles. Our simplified model and the corresponding
numerical simulations allowed us to study some of the effects
discovered in the experiment [18]. Since the results obtained
are in a qualitative agreement with the observations, we

believe that the model in this case accounts for the major phys-
ical mechanisms of the deposition microstructure formation.
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APPENDIX

The pseudocode of the algorithm is given in the following
Algorithm 1.

Algorithm 1 Particle dynamics calculation

1: Set the parameters of the problem: rp, R, Np, and tmax.
2: Randomly generate a uniform distribution of particles and their

coordinates p[i].x and p[i].y, where i ∈ [1, 2, . . . , Np].
3: By default, all particles are marked green.
4: for j ← 1, tmax/δt do
5: Calculate Rf according to (2). To avoid dividing by zero (at

t → tmax) Rf ← rp, when Rf < rp.
6: for i ← 1, Np do
7: Override the color of the particle with regard to its

position relatively to Rf .
8: Skip the red particles.
9: if (the particle is green or yellow) then

10: calculate new coordinates of the particles resulting
from the diffusion.

11: if (no collision) then
12: move the particle.
13: end if
14: end if
15: if (the particle is green) then
16: calculate new coordinates of the particles resulting from

the advection.
17: if (no collision) then
18: move the particle.
19: end if
20: end if
21: if (the particle is black and there is a neighboring particle

that is either black or red in its surroundings Rn) then
22: calculate new coordinates of the particles resulting

from the capillarity.
23: if (no collision) then
24: place the current particle closely to the neighboring

one.
25: end if
26: end if
27: end for
28: Write the coordinates of the particles and their colors for

the current time step to a file.
29: end for
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