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Evaluating the Jones polynomial with tensor networks
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We introduce tensor network contraction algorithms for the evaluation of the Jones polynomial of arbitrary
knots. The value of the Jones polynomial of a knot is reduces to the partition function of a q-state anisotropic
Potts model with complex interactions, which is defined on a planar signed graph that corresponds to the knot.
For any integer q, we cast this partition function into tensor network form, which inherits the interaction graph
structure of the Potts model instance, and employ fast tensor network contraction protocols to obtain the exact
tensor trace and thus the value of the Jones polynomial. By sampling random knots via a grid-walk procedure and
computing the full tensor trace exactly, we demonstrate numerically that the Jones polynomial can be evaluated
in time that scales subexponentially with the number of crossings in the typical case. This allows us to evaluate
the Jones polynomial of knots that are too complex to be treated with other available methods. Our results
establish tensor network methods as a practical tool for the study of knots.
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I. INTRODUCTION

Knot theory is immensely interdisciplinary, with results
and open questions spanning many fields of science, such as
physics [1–8], quantum computation [9–12], quantum cryp-
tography [13,14], chemistry and biology [15–18], study of
everyday-life knotting of strands [19], and complexity the-
ory [20–23]. A key notion in knot theory is that of a knot
invariant—a quantity extracted from a knot K which changes
only under topology nonpreserving knot operations, such as
passing the knot through itself or cutting and recombining its
strand. The Jones polynomial VK (t ) [24]—a Laurent polyno-
mial in t ∈ C—is one such invariant that pervades knot theory.
Knots K, K ′ are distinct if VK (t ) �= VK ′ (t ). The Jones poly-
nomial is thus pertinent to questions related to knottedness,
such as the unknotting problem, a decision problem which is
known to be in NP but unknown whether it lies in P [25].
Hence, in addition to being central to the aforementioned
applications of knot theory, evaluating the Jones polynomial
is also a fundamental computational problem.

Exact evaluation of the Jones polynomial is generally a
#P-hard problem; computing VK (t ) takes time that is expected
to scale exponentially with the number of crossings in a knot.
Exceptions to this occur for t restricted to certain roots of
unity, where VK (t ) corresponds to quantum amplitudes of a
quantum field theory [2], understood as braiding of anyons
[26]. In particular, for t = ±1,±i,±e2π i/3,±(e2π i/3)2, VK (t )
can be evaluated efficiently [27]. Moreover, quantum algo-
rithms can efficiently approximate the Jones polynomial at
principal roots of unity in both the conventional quantum
circuit model [28,29] and the setting of topological quantum
computation [30]. On the other hand, exponential classical
algorithms that yield the full expression for the Jones poly-
nomial [31–36] in the general case have been implemented
and are readily usable but have a relatively small reach (up to
∼20 crossings).

Many knot invariants are intimately connected to statistical
mechanical models [37]. The Jones polynomial, in particular,
is related to a q-state classical Potts model with anisotropic
complex interactions (PACI) [38,39]. Remarkably, the parti-
tion function Z (q) of PACI, which is defined on an irregular
planar graph whose structure is defined by the topology of a
knot K , is essentially the Jones polynomial VK [t (q)] evaluated
at

t (q) = 1

2
(q + √

q
√

q − 4 − 2) , (1)

up to a normalization.
Partition functions of classical models are of great interest

in condensed matter physics and powerful algorithms have
been developed to compute them, albeit mostly on graphs
with periodic structure. Tensor network methods are an es-
pecially successful class of such techniques, which typically
employ the renormalization-group procedure to efficiently
approximate partition functions of classical lattice models
very accurately [40–46]. Recently, it was demonstrated that
tensor network contraction schemes can also be very fast in
obtaining the partition function of classical models exactly,
even on unstructured graphs with bounded degree and even
when the underlying computation is a #P-hard problem [47].

In this work, we exploit the connection with statistical
mechanics and the efficiency of tensor network methods to
evaluate the Jones polynomial in the general #P-hard case.
Specifically, we introduce tensor network contraction algo-
rithms that can evaluate VK (t ) at values of t away from the
“easy” ones yet achieve demonstrably advantageous compu-
tation times that indicate subexponential scaling as a function
of the number of crossings in K for the typical case. This
affords us access to the value of the Jones polynomial of
knots with 6 to 10 times as many crossings as what has been
previously achieved in the literature with other methods. Our
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work thus furnishes a useful numerical tool for the evaluation
of an essential knot invariant.

The rest of the paper is organized as follows. In Sec. II
we review the mathematical connection between the Jones
polynomial and the partition function of the PACI model.
We follow with Sec. III where we present tensor network
contraction methods for evaluating it along with convincing
numerical evidence of favorable resource scaling. We con-
clude with Sec. IV.

II. JONES POLYNOMIAL EVALUATION AS PARTITION
FUNCTION OF PACI

We begin with a preliminary review of the relation between
the PACI partition function and the Jones polynomial, starting
with the relevant knot theory terminology. A knot K consists
of an embedding of the circle S1 in R3. A knot diagram is
the projection of the knot to R2, where the information about
which strand is over which at every crossing c is preserved.
Intuitively, a knot diagram is what one produces when one
attempts to draw a knot in two dimensions. Discarding the
information about over and under crossing we obtain the knot
shadow.

A knot can be oriented by choosing a direction along the
strand. There are two ways to do this but they are equivalent.
Each crossing obtains a twist sign εc according to the direction
of the strands exiting the crossing; if the strands cross in
a clockwise (counterclockwise) fashion, then the crossing
obtains a positive (negative) twist sign [see Fig. 1(a)]. The
sum of all the twist signs is called writhe, wK = ∑

c εc,
and characterizes the knot chirality. The Jones polynomial is
sensitive to the knot chirality as it can distinguish mirrored
knots.

For any knot diagram, a planar graph G called the Tait
graph is defined as follows. The two-dimensional regions
defined by the knot diagram can be bicolored with, say, black
and white, so that no two adjacent regions share a color. There
are two ways to do this, and so we choose the convention
that the unique unbounded region (background) is white.
In Fig. 1(c) we show an example of a knot K along with
its bicoloring [Fig. 1(d)]. Then, vertices v ∈ V , where V is
the vertex set of G, correspond to the black regions. Edges
c = (v, v′) ∈ E , where (v, v′) ∈ V × V and E is the edge set
of G, are such that they connect black regions through the
knot diagram crossings. The graph G thus obtained from K is
shown in Fig. 1(d), where vertices are represented by blue dots
and edges by green lines. The vertex degree is denoted dv and
counts the number of incident edges to that vertex. We have
used the same symbol, c, for crossings and the corresponding
edges. The edges are decorated by Tait signs εc which are
determined by the following rule. If the region to the left
(right) is black when exiting a crossing on the over strand,
then the crossing obtains a positive (negative) Tait sign [see
Fig. 1(b)]. The sum of all tait signs is called the Tait number,
τK = ∑

c εc. In Fig. 1(d), the Tait signs are represented by red
triangles decorating the edges, pointing up (down) for positive
(negative).

We now restate the relation between the q-state PACI
partition function Z (q) and the Jones polynomial VK (t ) of a
knot K [48,49]. A Potts model is placed on the Tait graph

FIG. 1. (a) Twist signs and (b) Tait signs for crossings of an
oriented grid walk. (c) Oriented random knot diagram generated by
a random grid walk for grid size L = 12. (d) Bicolored knot diagram
and its unsimplified Tait graph G composed of vertices (blue dots)
associated with black regions, and edges (green) decorated with εc =
+/− (up/down red triangles) associated with crossings. The corre-
sponding tensor network GT comprises variable tensors (blue dots)
connected through q-dimensional green lines with clause tensors
(red triangles), pointing upwards (downwards) when representing
a J+(J−) Potts interaction. This knot is the right-handed Trefoil
and for q = 3, 5 the Jones polynomial is V (t (3)) = i

√
3, V (t (5)) =

1
2 (3 + √

5) + ( 1
2 (3 + √

5))3 − ( 1
2 (3 + √

5))4, as confirmed by our
algorithm.

G by defining spins with q available states σv = 0, . . . , q − 1
to reside on the vertices v = 1, . . . , nv . The Tait signs εc = ±
that decorate the edges of G determine the interaction strength
between spins, which take two corresponding values J± ∈
C. This rule which assigns interactions between the q-state
spins renders the Potts model anisotropic. Their relation with
the Jones variable is eJ± = −t∓ and the Jones variable is
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determined by fixing q ∈ N via Eq. (1). The Potts partition
function over all spin states {σ } is

Z (q) =
∑

{σ }

∏

(v,v′ )

Tσvσv′ , (2)

Tσvσv′ = 1 − (1 + t−εc )δσvσv′ . (3)

Multiplying the partition function Z (q) with the appropriate
prefactor A(q), which accounts for twists and ensures that the
unknot returns V© = 1, ∀t ∈ C, we write

VK (t (q)) = A(q)Z (q) , (4)

A(q) = [−t (q)
1
2 − t (q)−

1
2 ]

(−nv−1)
[−t (q)

3
4 ]

wK
t (q)

1
4 τK .

III. EXACT PACI PARTITION FUNCTION FROM TENSOR
NETWORK CONTRACTION

Our goal is the evaluation of Z (q) of PACI at some q ∈ N
of our choice in order to use Eq. (4) and obtain the value of
the Jones polynomial at t (q) ∈ C as defined in Eq. (1). Note
that computing the prefactor A(q) in Eq. (4) is in P as all t (q),
wK , τK are efficiently computable. Thus one would focus on
computing Z (q) as efficiently as possible.

However, the evaluation of Z (q) on arbitrary graphs is a
#P-hard problem [50]. Regardless of this complexity, in this
work we will use tensor network methods [47] to obtain Z (q)
for Tait graphs G exactly. From a graph G we construct a
tensor network GT encoding PACI as follows. Each vertex v

is endowed with a spin tensor (also known as a COPY tensor)
of the form

T̃{σv}dv
i=1

= δσv1σv2...σvdv
, (5)

which is a generalized qdv -dimensional Kronecker tensor.
Each edge obtains a vertex on which we place the interaction
tensor T of Eq. (3), which is always a q × q matrix. Reinter-
preting Fig. 1(d), we see the tensor network GT comprising T̃
and T tensors (blue dots and red triangles, respectively).

Full contraction of GT yields Z (q). This amounts to per-
forming a sequence of tensor contractions, each being a dot
product over the common index of two adjacent tensors in
GT [green lines in Fig. 1(d)]. The partition function is then
equivalently expressed as

Z (q) =
∑

{σ }

∏

(σv ,σv′ )

Tσv ,σv′

∏

v

T̃{σv}dv
i=1

. (6)

Every contraction step yields a graph minor H of the initial
graph. Thus, when contracting a tensor network GT , there
occurs at least one tensor of dimension equal to the maximal
vertex degree over all minors �H = maxH maxv dv .

In general, finding the optimal contraction sequence so
that �H grows favorably slowly is an NP-complete graph-
theoretic problem [51–54]. Practical contraction schemes for
tensor networks is an active field of research [55]. We employ
contraction methods introduced in Ref. [47], where we refer
the reader for explicit details of the methods, here dubbed
greedy and METIS, which were developed for fast evaluation
of partition functions similarly to Z (q). In the greedymethod,
the “cheapest” edge contraction in terms of the resulting
�H is performed. On the other hand, METIS heuristically
constructs a separator hierarchy using the METIS algorithm

[56], attempting to minimize the cut length while splitting
the graph into comparably large components. The contraction
is performed following the separator hierarchy in a coarse
graining fashion. For details we point to Ref. [47]. We provide
an example script demonstrating the evaluation of VK (t ) in an
online repository [57].

A. Subexponential memory and runtime scaling

To investigate the performance of our numerical scheme,
we require a procedure for generating random knots, whose
Tait graphs we can use to evaluate the Jones polynomial. Since
Tait graphs are planar and connected by construction, one may
be tempted to just generate random connected planar graphs.
However, not any planar connected graph corresponds to a
knot shadow. A generic planar connected graph corresponds
to a link shadow, where a link is viewed as the embedding of
multiple nonintersecting S1 components. Instead, we employ
the random grid walk method [58,59] to sample random
knot diagrams, ensuring by construction that the number of
components is always 1. A grid walk consists of horizontal
segments and vertical segments, where vertical segments al-
ways pass over horizontal ones. The walk is encoded by a
random permutation of coordinates x, y ∈ SL, where L is the
linear grid size, and steps of the form (xi, yi ) → (xi, yi+1) →
(xi+1, yi+1). Since all knots have a grid walk representation,
any knot is accessible via this procedure. An example grid
walk is shown in Fig. 1(c).

For a given orientation of the grid diagram, each crossing
has a twist sign. All possible configurations are shown in
Fig. 1(a), and summing over them we obtain the writhe. The
bicolored knot along with its G are shown Fig. 1(d). Keeping
in mind that vertical segments pass over horizontal ones, the
color pattern around a crossing determines the Tait signs εc, as
shown in Fig. 1(b), and so the Tait number is readily available.

With the random grid walk construction that allows us to
randomly sample knots, we now investigate properties of the
corresponding Tait graphs G. First, we perform Reidemeister
moves that leave the knot topology invariant but simplify the
graph. In particular, a Reidemeister I introduces or removes a
twist in the knot. We employ it to remove loops, i.e., edges of
the form (v, v), as well as spikes, i.e., degree-1 vertices, from
the Tait graph. Note that a Reidemeister I move changes the
writhe by 1. A Reidemeister II move amounts to overlaying a
strand over or under another or, inversely, combing the strands
so they do not cross. These moves are usually referred to as
poke and unpoke, respectively. In terms of G, we perform
unpokes in order to remove double edges c, c′ = (v, v′) with
εc = −εc′ . We then study the scaling of graph invariants of the
resulting simplified graphs.

In Fig. 2(a) we provide evidence for quadratic scaling of
average number of vertices, 〈nv〉 ∼ L2, and average number
of edges, 〈nc〉 ∼ L2, for simplified Tait graphs G obtained
by the random grid walk. In Fig. 2(b) it is shown that the
ratio of the average number of edges over the average number
of vertices converges to ∼2 as the size of the Tait graphs
increases. This convergent behavior is compatible with the
lower bound 13

7 of this ratio for random planar graphs [60].
Furthermore, for random planar graphs the average maximal
degree 〈�G〉, defined as �G = maxv dv , scales logarithmically
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FIG. 2. (a) Scaling of average number of vertices 〈nv〉 (triangles)
and edges 〈nc〉 (dots) (logscale) of simplified Tait graphs with the
the grid size L (logscale) of the random grid walk. Dashed and
solid red lines are linear fits on the last 15 data points with slopes
2.0132 and 2.0742, respectively. (b) Ratio 〈nc〉 over 〈nv〉 versus L
converging to ∼2, compatible with the lower bound 13

7 (dashed line)
for random planar graphs. (c) Scaling versus L (logscale) of average
maximal degree 〈�G〉 of simplified Tait graphs G, for L > 22. For
each L ∈ [6, 100] we sampled 200 knots and error bars are standard
mean error.

with the graph size [61]. This is also confirmed for the
simplified Tait graphs sampled by the random grid walk, as
shown in Fig. 2(c). Note that the data presented in Fig. 2
are also a manifestation of the fact that the tensor networks,
or, equivalently, the interaction graphs of the PACI model
relevant to the problem at hand, are irregular. This means
that they are not amenable to efficient methods that yield the
Potts model’s partition function on regular graphs, such as the
corner transfer matrix renormalization group in the case of the
square lattice.

B. Numerical results

The central quantity of interest for the purposes of tensor
network contraction is the maximal degree �H encountered
in the sequence of minors H occurring during contracting G.
This quantity characterizes the complexity of the algorithm,
in the sense that runtime and memory requirements scale as
O(q�H ).

In Fig. 3 we show the scaling of the average �H with the
grid-walk size L. We find an asymptotically linear scaling
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FIG. 3. Scaling with (a) grid walk size L and with (c) crossing
number

√
nc of average maximal degree 〈�H 〉 encountered under

greedy (red squares) and METIS (green triangles) contraction of G.
Solid lines are linear fits (on the last 10 data points) showing the
asymptotic behavior. Black dots represent average maximal degrees
〈�G〉 of G. (b) Instance-by-instance comparison of �H for the two
contraction methods. The same data are used as for Fig. 2. Data
points 〈nc〉 are obtained by binning the interval between max nc for
min L and min nc for max L and placing symbols at the mean of each
bin. This is due to the fact that by sampling graphs for each L we
obtain a finite-variance distribution over nc. Error bars are standard
mean error.

with L, which implies runtime scaling O(q
√

nc ). Both con-
traction methods perform similarly, with METIS exhibiting
marginally better scaling yet only outperforming greedy for
larger graphs (nc � 900). We therefore use greedy to explic-
itly time the computation of Z (q) for realistically accessible
graph sizes. Runtime results for the cases of q = 3, 4, 5 are
shown in Fig. 4.

The favorable typical-case scaling allows us to evaluate the
Jones polynomial for knots with nc = 200 for q = 3 and with
nc = 135 for q = 5, using moderate computational resources.
For comparison, the largest calculations of the full expression
for the Jones polynomial reported in the literature are for nc =
22 [31–35]. Furthermore, for the exact evaluation of Z (q),
we compare our algorithm’s q-dependent performance with
that of the q-independent tree-decomposed transfer matrix
algorithm (TDTM) [62], which in the literature is presented
for random planar graphs of size up to nc = 100. In Fig. 4
we show that for q = 3 the greedy tensor network algorithm
outperforms TDTM for typical instances.
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FIG. 4. Scaling of median runtime rZ (q) for computing Z (q) at
q = 3, 4, 5 via contracting GT with greedy as a function of

√
nc

for typical instances: For nc we sampled 1000 knots by inverting
the quadratic fit 〈nc〉(L) of Fig. 2(a) to obtain L(〈nc〉) and sampling
for the appropriate L until 1000 knots were obtained. The runtimes
shown were computed for the graphs with �H = median(�H ) for
each nc. Dashed line of slope 0.93 indicates the scaling of TDTM [62]
and the slopes for greedy are 0.68, 0.92, and 1.11, showing superi-
ority for q = 3 and matching performance for q = 4. Computations
were performed on a single processor (Intel Xeon CPU E5-2667 0
2.90 GHz) processor with ∼80 GB RAM.

The main bottleneck in these benchmarks is memory
usage. For each nc there are exceptional knots that yield
atypically large �H and thus evaluation of VK (t ) requires
contraction of large tensors. With larger q, these exceptional
cases may overflow the available memory, even though typical
cases with the same nc are easily amenable. On the other hand,
for any particular knot of interest, one can test various graph
contraction schemes to find the most favorable �H and thus
gauge the resources required a priori. Then one can study
typical cases alone, as we have demonstrated in Fig. 4, where
for every nc we have obtained the runtimes for the graphs with
�H = median(�H ).

Importantly, the asymptotic performance of our tensor
network method does not depend on the content of the tensors,
and so it is expected to perform as favorably for random planar
instances of the Potts model, i.e., including those not corre-
sponding to the Jones polynomial. Recall that Fig. 2 provides
evidence that the graphs on which we have benchmarked our
tensor network algorithm can be considered as random planar
graphs. Therefore, and especially for the case of q = 3, this
is a nontrivial result, as even incremental speedups in solving
#P-hard problems are rare. We note that the slope change in
the scaling of the median runtimes in Fig. 4 is likely due to
the absence of CPU cache misses when tensor sizes remain
small throughout the contraction of the network. We therefore
disregard small systems below this slope change when we
obtain runtime scalings.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have developed a concrete methodology,
based on tensor networks, for the evaluation of the Jones

polynomial of arbitrary knots and demonstrated favorable
performance of actual implementations. Due to the broad
relevance of knot invariants, our methods have wide applica-
bility: Classification of knotted polymers [3], quantification of
turbulence in classical and quantum fluids [5], and study of the
Jones conjecture [63] are just a few examples of problems that
require computation of knot polynomials. Furthermore, since
Tait graphs are defined for links, our algorithm trivially can be
extended to the study of links as well. Recall that a link is the
embedding of disjoint circles in R3 with the knot as a special
case. We therefore believe that the techniques introduced here
can have multifaceted impact.

They also admit several extensions. For example, it is
possible to obtain the coefficients of VK (t ) via polynomial
interpolation between evaluations at a number of values of
t equal to the degree of VK (t ), bounds to which are easily
obtainable from the knot’s bicoloring (which is efficient)
and scale polynomialy with the number of crossings [1].
Moreover, in analogy with condensed matter applications of
tensor networks, where truncation of singular values along
edges of the network lead to accurate approximations of a
desired physical quantity, appropriate truncation procedures
may allow one to obtain controlled approximations of the
Jones polynomial and potentially other knot invariants. It
is also interesting to consider whether our algorithms can
be extended to cases of q ∈ R [64,65]. Indeed, recall that
the evaluation of VK (ei2π/n) corresponding to q � 4 is a
bounded-error quantum polynomial time-complete problem,
except when t = ±1,±i,±e2π i/3,±(e2π i/3)2 corresponding
to q = 1, 2, 3, 4 for which the problem is in P. This means
that the quantum computation for the cases q = 1, 2, 3, 4
can be efficiently evaluated. Nevertheless, our algorithms are
agnostic to the contents of the tensors and thus our results can
extend to and be impactful for the study of the Potts model
itself, as well as related graph-theoretic problems such as k
coloring, where the interactions Ji j decorating an interaction
graph’s edge (i, j) need not be compatible with the topology
of a link diagram.
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