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Identifying metastable states of biomolecules by trajectory mapping and density peak clustering
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Efficiently and accurately analyzing high-dimensional time series, such as the molecular dynamics (MD)
trajectory of biomolecules, is a long-standing and intriguing task. Two different but related techniques, i.e.,
dimension reduction methods and clustering algorithms, have been developed and applied widely in this
field. Here we show that the combination of these techniques enables further improvement of the analyses,
especially with very complicated data. Specifically, we present an approach that combines the trajectory mapping
(TM) method, which constructs slow collective variables of a time series, with density peak clustering (DPC)
[A. Rodriguez and A. Laio, Science 344, 1492 (2014)], which identifies similar data points to form clusters
in a static data set. We illustrate the application of the TMDPC approach with hundreds of microseconds of
all-atomic MD trajectories of two proteins, the villin headpiece and protein G. The results show that TMDPC is
a powerful tool for achieving the metastable states and slow dynamics of these high-dimensional time series due
to the efficient consideration of the time successiveness and the geometric distances between data points.
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I. INTRODUCTION

In the analysis of high-dimensional data, such as pattern
recognition [1] and the understanding of molecular dynam-
ics (MD) trajectories [2], two different but closely related
techniques are usually performed: clustering algorithms and
dimension reduction methods. Both of these methodologies
evaluate the similarity among the data points and then ob-
tain a simplified description of the data by neglecting small
deviations among points. While clustering algorithms focus
on grouping similar data points to decrease the size of the
data, the dimension reduction methods attempt to achieve low-
dimensional features from high-dimensional data. In recent
decades, many clustering algorithms (e.g., k-means clustering
[3] and density-based clustering [4]) and dimension reduc-
tion methods [e.g., principal component analysis (PCA) [5],
independent component analysis [6], time-structure-based in-
dependent component analysis [7], isometric feature mapping
[8], and diffusion maps [9]] have been developed and widely
applied in the analysis of a variety of data and have greatly
improved our ability to understand complicated data.

A common situation is that the efficiency and accuracy of
these data analysis methods inevitably decrease as the dimen-
sion of the data points increases. Thus, endeavors to improve
the performance of these methods in more complicated data
have continued. Rodriguez and Laio introduced a powerful
clustering algorithm, called density peak clustering (DPC)
[10], to efficiently identify aggregated points as clusters based
on the density of points. However, similar to other methods,
the capability of DPC quickly decreases as the dimension
of the space where these data points are located increases.
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Therefore, it is natural to combine dimension reduction tech-
niques with clustering algorithms to achieve the capability of
analyzing high-dimensional data [2]. In addition, for many
specific data, in addition to the geometric similarity between
points, there may be other features that characterize the rela-
tions among the data. For example, for the MD trajectory, the
frames, i.e., the conformations, are time ordered as in a time
series. Two time-consecutive conformations are intrinsically
more likely to be located in the same metastable state, even
though their geometric similarity is not as high. Therefore,
conformations should not be treated by the MD trajectory as
only a set of all individual conformations, but the time orders
of these conformations in the trajectory should be considered.

In previous works, techniques, such as the trajectory map-
ping (TM) technique [11–14], have been developed to effi-
ciently construct a few collective variables in slow dynamics
from the MD trajectory by taking into account both the time
successiveness of the conformations and the usual geometric
similarity between conformations. Here we further combine
the TM with the DPC to produce the TMDPC approach to
further improve the analyses of the MD trajectory of more
complicated biomolecules. In the TMDPC approach, we first
use the TM to construct some collective variables to focus on
the slow dynamics of the MD trajectory (or other time series).
Then we apply the DPC to group the aggregated data points
in the slow-variable space to achieve the metastable states of
the system. We demonstrate the application of the TMDPC
approach in the atomistic MD trajectories of two proteins: a
125-μs trajectory of the villin headpiece [15] and a 444-μs
trajectory of protein G [16] with explicit water molecules. The
results show that the TMDPC approach can more efficiently
capture the slow-dynamics characteristic of the systems than
applying the original TM or DPC method alone.
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II. METHODS

A. Trajectory mapping: Constructing slow variables

The TM approach can robustly identify slow motions from
MD trajectories. The feature of the TM is that it treats each
segment of the trajectory in time, rather than treating an
individual conformation as a data point, and then simplifies
these data points, i.e., trajectory segments, based on principal
component analysis. The principal components give slow-
dynamics variables of the MD trajectory. Here we provide a
brief description of the TM approach, which mainly includes
three steps. More details in the TM approach have been
described in previous works [11–14].

(i) Many functions of the Cartesian coordinates of atoms
are chosen to describe the conformations in the MD trajectory.
These functions are called basis functions. Usually, collective
variables that are relevant to large changes in conformations,
such as dihedral angles, pair distances of heavy atoms, and the
root-mean-square deviation (RMSD), are more appropriate as
basis functions than local-motion-relevant variables, such as
bond lengths and bond angles. Before using these different
types of collective variables as basis functions, we first sub-
tract the mean value of each variable and normalize it by
dividing it by its standard deviation. Therefore, each basis
function is a dimensionless variable with a mean of zero and
a unit standard deviation.

(ii) Each of the original MD trajectories is cut into seg-
ments with a preset time length τ and the conformations in
each segment are averaged as a mapped data point in the space
spanned by these basis functions. This τ -length average can
filter out fast motions whose timescales are much shorter than
τ . The parameter τ is a free parameter that can be determined
by our desired timescale in the specific problem. We first set
τ to be large enough (e.g., a fraction of the length of the
whole trajectory) to obtain a simpler picture of slow dynamics
at longer timescales. Then more detailed dynamics at shorter
timescales can be obtained by using a smaller τ . We verified
that the constructed slow variables are robust to different
values of τ [13].

(iii) The principal components (PCs) are obtained from
the τ -length-trajectory-mapped points by the standard PCA
technique. These PCs give the slow variables of the system.
The first few PCs correspond to the slowest motions. A
method for choosing the number of PCs is provided by the
plot of the eigenvalues sorted in decreasing order.

B. Density peak clustering

Density peak clustering is based on two assumptions [10].
First, the local density of a cluster center is higher than the
local density of its neighbors. Second, the distance between
a cluster center and any other points with a higher local
density is large. To identify the cluster center, we only need to
calculate two quantities for each data point i: its local density
ρi and its distance δi from the nearest points with higher
density. The local density ρi is defined as

ρi =
∑

j

χ (di j − dc), (1)

where χ (x) = 1 when x < 0 and χ (x) = 0 otherwise. Thus,
ρi is the number of points that are closer than a preset cutoff

value dc to point i. The distance δi is defined as

δi = min
j:ρ j>ρi

(di j ), (2)

where δi corresponds to the minimum distance between point
i and any other point with a higher density. If we chose
an appropriate dc, the points on the top right corner of the
decision graph (the scatter plot of ρi and δi) correspond to
cluster centroids. As proposed by Rodriguez and Laio [10],
the plot of γi = ρiδi sorted in decreasing order also helps
choose the number of clusters. The final results are robust
to different dc. After obtaining the cluster center points, the
remaining points can be assigned to the closest centroid.

C. The TMDPC method

The TMDPC method mainly involves three steps. First,
the TM is used to construct slow variables with a preset
parameter τ . Second, the original trajectory is cut into short
segments of length τα , the τα-length-trajectory segments are
mapped to the slow-variable space, and each segment is
averaged into one point. Third, the DPC is used to identify
clusters of the τα-length-averaged points in the slow-variable
space. These clusters correspond to the metastable states of
the system. Here the τα average is applied to reduce the
amount of calculation in DPC and to further filter possibly
remaining fast components of motions. The length τα can be
set approximately two to three orders of magnitude smaller
than τ , and the results of DPC are robust to the selection of τα .

After obtaining the metastable states, we can extract var-
ious kinetic information by directly identifying the transition
events along the simulation trajectories. Here we mainly focus
on the transition rates among states. As proposed by Gong and
Zhou [11], the transition rate kβα from state Sα to state Sβ can
be estimated by

kβα = N trans
βα

tα
, (3)

where tα is the survival time of state α and N trans
βα denotes the

total number of transition events from state Sα to Sβ .

III. RESULTS

A. Villin headpiece

We first use the TMDPC approach to analyze the C-
terminal fragment of the villin headpiece (HP35) with a dou-
ble norleucine mutant (Nle/Nle) [15]. As shown in Fig. 1(a),
this protein contains 35 residues and mainly consists of three
helices. Due to its small size and fast-folding feature, HP35
has been extensively studied in experiments and molecular
dynamics simulations [16–19]. To show the performance and
the potential of the TMDPC approach, we adopt a 125-μs
equilibrium MD trajectory of HP35 at 360 K, which was
performed by Lindorff-Larsen et al. [20]. This trajectory
involves approximately 625 000 snapshots. We downloaded
this trajectory from D. E. Shaw Research [20]. The time series
of the Cα RMSD is shown in Fig. 1(b). We can see that
the whole trajectory undergoes the folding-unfolding process
several times.

We take all 33 pairs of dihedral angles in the peptide
backbone to describe the system. Because the dihedral angles
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FIG. 1. (a) Representative structures of the folded state of HP35.
This protein mainly consists of three helices. The first helix is shown
in blue, the second helix is orange, and the third helix is red. (b) Time
series of the Cα RMSD between each conformation and the folded
structure.

are periodic, we transform those angles into their cosine and
sine functions and obtain a total of 132 dimensionless basis
functions. To filter out fast motions, we set τ = 10 μs; i.e., we
map each 50 000 time-neighboring conformation (trajectory
segment) to one point and obtain 6250 segments by sliding
the time window 20 ns for each conformation (trajectory
segments can partially overlap). As illustrated in Fig. 2(a),
two eigenvalues are significantly greater than zero, indicating
that the system contains two main slow variables in the τ =
10 μs timescale; the two corresponding slow variables, called
B1 and B2, are shown in Fig. 2(b). Here the slow-dynamics
trajectories are smoothed by time-window averaging with a
length of τα = 100 ns. Then DPC is used to cluster these
τα-length-averaged points in the (B1, B2) space. We calculate
the ρ and δ of each point and show the decision graph in
Fig. 2(c). There are three points located at the top, indicating
that this system contains three clusters. In addition, the plot of
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FIG. 2. (a) Eigenvalue of the variance-covariance matrix of the
τ -averaged points of HP35. (b) Time series of slow variables con-
structed by the TM algorithm. (c) Decision graph. The three red
points at the top correspond to the cluster centers. (d) Value of γ

in decreasing order for the data in (c).
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FIG. 3. (a) Distribution of the fraction of native contacts of
the three states of HP35. (b) The τα-averaged conformations are
projected onto slow-variable space constructed by the TM algorithm.
The three colors correspond to the three states. Here the representa-
tive structures of the three states are shown, including their popula-
tions (in %) and transition rates (in μs). For each conformation, the
first helix is shown in blue, the second helix is yellow, and the third
helix is red.

γ = ρδ shows that there are three values that are significantly
greater than zero, which also indicates that this trajectory
contains three clusters [Fig. 2(d)]. The τα-length-averaged
points belonging to the three clusters are illustrated with three
different colors [shown in Fig. 3(b)] in the (B1, B2) space. The
boundaries between these three clusters are quite clear.

The fraction of native contacts [20] of these three states
are shown in Fig. 3(a): One state is the folded state F and the
other two states, called U and T , are not completely folded.
As illustrated in Fig. 3(b), in state U , the second helix and the
first half of the third helix are unfolded, while the first helix
and the second half of the third helix are folded. In state T , the
first half of the third helix and the second helix are combined
together to yield one helix. After obtaining the metastable
states, we directly identify the transition events among these
states along the MD trajectory and the result is shown in
Fig. 3(b). There is only one folding pathway: T � U � F .
In state T , the junction between the second and the third helix
forms a helix structure, which makes the state T unable to
jump to the folded state directly. State T connects to only the
unfolded state U and slightly changes its population. Thus,
the folding-unfolding process is insignificantly affected by
state T , and a two-state model can be used to approximately
describe the folding-unfolding mechanism of HP35 [16] if
state T is ignored. Using the transition rate calculation method
proposed by Gong and Zhou [11], we obtained the folding
rate of HP35: 1.54 μs−1. This rate is in good agreement with
the experimental value, approximately 1 μs−1 [15], and our
previous result: 1.52 μs−1 [13].

For comparison, in the 132-dimensional original dihedral
angle space, we calculate the ρ and δ of each individual
conformation and use DPC to cluster them. Since the whole
125-μs trajectory consists of 625 000 conformations, it is
difficult to calculate the distance matrix between these confor-
mations. To reduce the amount of calculation, we select one
conformation every 10 ns and obtain 12 500 conformations.
The decision graph of those 12 500 conformations is shown
in Fig. 4(a). Density peak clustering only detects one cluster,

033301-3



CHUANBIAO ZHANG, SHUN XU, AND XIN ZHOU PHYSICAL REVIEW E 100, 033301 (2019)

)b()a(

0 500 1000 1500
ρ

0

1

2

3

δ
0 200 400 600 800

ρ

2

4

6

8

δ

FIG. 4. (a) Decision graph of the samples constructed in
the 132-dimensional dihedral angle space. (b) Decision graph
of the samples constructed in the PCs space. The PCs are constructed
by the standard PCA in the 132-dimensional dihedral angle space
without τ averaging.

meaning it cannot identify any metastable states because the
high-dimensional original basis functions not only involve
the slow processes but also contain a large number of fast
processes, such as the fast twisting of the dihedral angle.
These fast processes blur the state boundaries, and the samples
in each state do not cluster well around the state center, mak-
ing it difficult to identify the centers. We also perform PCA
directly on the dihedral angles without using τ averaging;
then we calculate the ρ and δ of each conformation in the
low-dimensional space spanned by the PCs. The decision
graph is shown in Fig. 4(b). It is hard to identify the number
of centers from this figure. This finding indicates that the
direct PCA is not sufficient to identify a metastable state, and
the τ -averaging process in the TM can efficiently filter fast
motions and achieve slow variables to describe the metastable
states of the system.

To check the robustness of the TMDPC approach, we adopt
different values of τ and τα to perform TMDPC. There is no
rigid standard for selecting τ and τα . As shown in Fig. 5, we
can obtain consistent results with different values of τ and τα .
The TM constructs the slow variables in the selected τ (and
longer) timescale by filtering the motion much faster than τ .
The τα average can greatly reduce the amount of calculation
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FIG. 5. The number of clusters is insensitive to τ and τα . For
HP35, we can obtain three cluster centroids from the decision graph
based on different values of τ and τα: (a) τ = 5 μs and τα = 500 ns
and (b) τ = 40 μs and τα = 50 ns.
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FIG. 6. (a) Representative structures of the folded state of protein
G. This protein mainly consists of four β sheets and an α helix. The
first β sheet (β1) is shown in blue, β2 is red, β3 is yellow, β4 is
green, and the helix is orange. (b) Time series of the Cα RMSD
between each conformation and the folded structure.

and further filter the motions faster than τα without alerting the
slow motions at the τ level. Thus, the results of the TMDPC
are robust to different τ and τα .

B. Protein G

We use TMDPC to analyze the simulation data of protein
G, which has been studied in some experimental and compu-
tational works [16,20–23]. As shown in Fig. 6(a), protein G
contains 56 residues, mainly consisting of four β sheets and
an α helix. Lindorff-Larsen et al. performed a 444-μs equi-
librium MD simulation of protein G at 350 K. The generated
trajectory involves approximately 2 220 000 snapshots with a
time interval of 200 ps. We downloaded this trajectory data
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FIG. 7. (a) Eigenvalue of the variance-covariance matrix of the
τ -averaged points of protein G. (b) Value of γ in decreasing order
for the data in (c). Also shown is the decision graph of the segment-
averaged conformations based on the first (c) three and (d) five slow
variables.
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FIG. 8. (a) Distribution of the fraction of native contacts of three
states of protein G. (b) The τα-averaged conformations are projected
into the slow-variable space; the four colors correspond to the four
metastable states. The number in parentheses indicates the popularity
of each state. The solid black arrow indicates the main folding path.
The number in square brackets indicates the transition time between
two states.

from D. E. Shaw Research [20]. The time series of the Cα

RMSD is shown in Fig. 6(b); the whole trajectory undergoes
the folding-unfolding process several times.

To correctly construct the slow variables of this system
by the TM, we adopt 1759 collective variables as basis
functions, which consist of 1540 distances between atom
pairs among the 56 Cα atoms, 216 trigonometric functions
of the 54 dihedral angles in the backbone of the protein,
the radius of gyration, the Cα RMSD to the native structure,
and the number of hydrogen bonds in the system. The whole
trajectory is divided into short trajectory segments, each
10 μs long (τ = 10 μs). Due to the complexity of the protein,
we found that the eigenvalues decrease to zero very fast, but a
few eigenvalues are significantly greater than zero [Fig. 7(a)].
We choose the first three slow variables to perform DPC. As
shown in Fig. 8(b), the average conformations of the trajectory
(τα = 100 ns) are projected into the three-dimensional slow-
variable space. The ρ and δ of those averaged conformations
are calculated in the slow-variable space. The decision graph
[Fig. 7(c)] and the plot of γ [Fig. 7(b)] indicate that the
system contains four metastable states. We also perform DPC
with more (e.g., five) slow variables, which still yields four

FIG. 9. Most likely secondary structure of each residue in the
four metastable states of protein G. The β1 range is shown in blue, β2
is red, the helix is orange, β3 is yellow, and β4 is green. The second
structure is assigned by the DSSP algorithm [24]. Specifically, H
represents the α helix, B represents the β bridge, E represents the
β sheet, G represents the three-turn helix, I represents the π helix, T
represents the hydrogen-bonded turn, and S represents the bend.
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FIG. 10. Transition network of protein G. Here the representative
structures of the four states and the transition rates (in μs) are shown.

metastable states [Fig. 7(d)]. This finding means that the
first three slow variables are sufficient to describe the main
dynamics of protein G at the τ scale, and more PCs do not
change the identification of metastable states.

From the distribution of the fraction of native contacts
of the four states [Fig. 8(a)], we find that state s4 is the
folded state. To obtain the structural characteristics of the
other three metastable states, we calculate the most likely
secondary structure of each residue in different states. As
shown in Figs. 9 and 8(b), the feature of state s3 is that β3
and β4, i.e., the third and the fourth β sheet, respectively, are
unfolded. The feature of state s2 is that β2 and the latter half
of the helix are unfolded. In state s1, the helix of the native
structure is unfolded and forms a β sheet instead. The four-
state transition network is obtained and portrayed in Fig. 10.
The main folding path is s1 → s2 → s3 → s4, and the direct
transitions from s1 to s3 are much smaller than those from s1
to s2. As presented in Ref. [20], from the collective variable
based on the RMSD, only two states, i.e., the folded state and
the unfolded state, can be distinguished. The four-state model
constructed by TMDPC provides us with more details about
the folding dynamics.

IV. CONCLUSION

In this paper, we proposed a useful approach, TMDPC,
to analyze high-dimensional time series data. The TMDPC
method first adopts the TM algorithm to obtain the slow
variables of the system and then uses the DPC algorithm to
identify the metastable states in the slow-variable space. The
TM algorithm takes advantage of the temporal successiveness
of conformations to construct slow variables rather than con-
sidering only the geometric similarity between conformations.
Compared to applying only a few variables with experience,
such as the RMSD, the slow variables constructed by the
TM algorithm can better reflect the dynamic correlation in
the time series. The DPC can use the distribution of the
segment-averaged trajectory in slow-variable space to auto-
matically identify metastable states with different shapes and
densities. We studied the folding process of villin headpieces
and protein G by TMDPC. It is worth mentioning that the
extension to other kinds of time series data using the TMDPC
approach is direct and does not change.
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