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Avalanches triggered by Kelvin-Helmholtz instability in a cylindrical plasma device

Y. Lang ,1,* Z. B. Guo,1 X. G. Wang,1 and B. Li2,†

1Fusion Simulation Center, School of Physics, Peking University, Beijing 100871, China
2School of Physics, Beihang University, Beijing 100191, China

(Received 13 June 2019; published 26 September 2019)

A profile-evolving simulation of the Controlled Shear Decorrelation Experiment (CSDX) linear device is
performed with our newly developed code. The simulation result shows an excellent agreement with the
experimental observations of profiles and fluctuations of plasma density and electric potential in the B = 1000 G
standard discharges, suggesting the mechanism of their evolutions. According to our simulation, an avalanche of
plasma density, featuring a rapid destruction of particle profile, is triggered every time the dominant instability
transits from near adiabatic collisional drift wave to non-adiabatic Kelvin-Helmholtz instability. The avalanches
always start at the point where the local vorticity is the maximum among the whole device. A critical vorticity
is found for any avalanche to happen. The avalanches always lead to intermittent particle and heat convective
structures outside the main plasma column, and these structures are ejected out as avaloids when zonal flow
intensity at birth time is weak.
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I. INTRODUCTION

From low temperature cylindrical laboratory plasma de-
vices to toroidal fusion devices, boundary intermittent convec-
tive structures, known as blobs [1], filaments [2] and avaloids
[3], are observed to dominate particle and heat transport
outside the bulk plasma. In tokamaks, the smaller ones, called
blobs, are believed to be beneficial because they enlarge the
plasma wetted area of the limiter/divertor targets, and thus
alleviate local target heat load. However, the bigger ones,
called edge localized mode (ELM) filaments, are believed
to be harmful since they can damage the first wall severely.
Consequently, the birth of these structures at the edge of main
plasma is of wide interest.

For the birth of blobs and ELM filaments in tokamaks,
quantitatively comparing simulations with experiments can be
really hard, in that a simulation model to cover the complex
physics across a tokamak separatrix is still not good enough,
and that a sufficient global high-resolution diagnostics of the
tokamak edge is currently unavailable. These difficulties are
rather easy to overcome in linear devices like the Controlled
Shear Decorrelation Experiment (CSDX), which share similar
scaling properties [4] with tokamak boundaries but do not
have magnetic curvature, magnetic shear, magnetic separatrix,
equilibrium current, neoclassical effects, hot ions, and various
impurities, and thus the mechanisms should be simpler. In
tokamaks and linear devices, avaloids are intermittent con-
vective structures outside the main plasma, moving radially
outward but remaining connected to the main plasma, with
large spacial scale (turbulence macroscale) and large radial
velocity (the order of 1/10th of sound speed) [3]. Although
avaloids in CSDX share similarities with ELM filaments in
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tokamaks [3,5], how much its mechanism can be adapted
to tokamak boundary convective events still requires further
investigation. What draws our special interest is that CSDX
is equipped with insulating endplates, thus eliminating radial
current conduction by walls, and is in this sense a better test
bed to study tokamak edge physics.

In CSDX, experiments show that the fluctuations inside
and outside the main plasma column have a distinct relation
[3]. That is, a necessary condition for an avaloid to eject is
that the main plasma transits from a poloidal mode number
m � 3 dominated phase to an m = 1 dominated phase, and the
m = 1 mode amplitude exceeds some threshold. Later more
explanations are given about these two phases, naming the
m � 3 dominated phase shear flow growth phase and the other
collapse phase [6], which is the way we refer to them in this
paper. These observations suggest that the transition between
modes is key to understand the birth of the transport events we
are interested in.

Experiments suggest that the transition phenomenon is the
result of the turbulence modulated by bursting azimuthal flow,
and the flow modifies the density gradient significantly [7].
Previously two 2D (two-dimensional) codes [8,9] and one 3D
code [10] were used to simulate plasma behavior in CSDX.
All of them fix density profiles as the particle source and sink,
forbidding m = 0 evolutions. However, these simulations suf-
fer from equilibrium density gradient uncertainties, because
equilibrium density steepening stiffly affects the turbulence
saturation level [11]. These motivated us to build a source-
driven code that evolves full parameters. The code leads to the
conclusion that the m = 1 mode is a Kelvin-Helmholtz (K-H)
instability, which results in the avalanche of plasma density,
that is, a fast-growing destruction of density profile.

Previous simulations suggest that high enough zonal flow
shear intensity [12] or preexisting perturbation amplitude
[13] can result in the onset of an ELM. Our code shows
that, in CSDX, Kelvin-Helmholtz (K-H) instability triggered
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avalanches always result in violent loss of confinement, and
the lost plasma can be radially transported in the form of
avaloids outside the main plasma region. An avalanche always
happens when and where the local vorticity w exceeds a
critical value, which contains the contrition of both zonal flow
shear and preexisting perturbation. In this paper we study the
birth of avaloids, and the result may provide insights into the
birth criterion of intermittent convective structures like blobs
and ELM filaments in tokamaks.

II. SIMULATION MODEL

Our simulation model is based on the drift-reduced Bra-
ginskii equations for magnetized plasma [14] with cold ions.
Quasineutrality and electrostatic conditions are used. We
choose the electrostatic simulation model because CSDX is
a low-β device and the drift turbulence is shown to be elec-
trostatic [15]. A detailed derivation of our model equations
is given in Appendix A, and the proof of the corresponding
energy conservation is given in Appendix B.

To obtain the dimensionless equations, the density n is
normalized to n0; electron temperature Te to T0; electric
potential φ to T0/e; velocities, including the E × B velocity
vE , ion parallel velocity v‖i, and electron parallel velocity
v‖e, are normalized to cs0 = √

T0/mi; time to t0 = a/cs0;
parallel length to L‖ and perpendicular length to ρs0 = cs0/�i,
where a and L‖ are the radius and height of the cylindrical
vacuum. The background magnetic field in CSDX is ap-
proximated to be constant, B = Bẑ, so that the ion gyrofre-
quency �i = eB/(mic) is also constant. We have shown (see
Appendix C) that magnetic perturbations perpendicular to the
dominant magnetic field direction are negligible by solving
∇ × B⊥ = j‖ẑ in the code. Expressed in normalized symbols,
the model equations are

dt Te = −2

3
Te∇‖v‖e + χ⊥∇2

⊥Te + χ‖∇2
‖ Te − γ Te + STe , (1)

dt n = −∇‖(nv‖e) + D⊥∇2
⊥n + D‖∇2

‖ n − γ n + Sn, (2)

dtv‖i = −Te

n
∇‖n + μ⊥∇2

⊥v‖i + μ‖∇2
‖v‖i − νi,nv‖i, (3)

dtw = 1

n
∇‖ j‖ + μ⊥∇2

⊥w + μ‖∇2
‖w − νi,nw, (4)

where dt = ∂t + (a/ρs0)vE · ∇, vE = b × ∇φ, ∇‖ =
(a/L‖)∂z. The vorticity of E × B velocity, i.e., wẑ ≡ ∇ × vE ,
is written in the normalized form as

w ≡ ∇2
⊥φ. (5)

STe and Sn are explicit temperature and ion sources, assumed
to have the form

Sn(r) = 0.5Sn0

[
1 − tanh

(
r − r0

d

)]
, (6)

STe (r) = 0.5STe0

[
1 − tanh

(
r − r0

d

)]
. (7)

In experiments the sources of density and temperature pro-
vided by helical antenna increase along the ẑ direction, but
their radial and axial distributions are unknown [16]. In the
form of sources we guess above, we intentionally set the

sources axially uniform to eliminate axial monotonic variation
of electron pressure, which can be a drive of self-amplifying
axial flow [17,18] and the underlying physics is beyond the
interest of this paper. The sink of the density and temperature
of the plasma in the system is determined by the balance
between ionization and recombination processes, which is
roughly estimated by the γ terms. The collisional coupling
between ions and neutrals provides a momentum sink, and
this effect is estimated by the νi,n terms, where νi,n is the
ion-neutral collision frequency. A better understanding of the
damping effect by neutrals can be found elsewhere [18]. χ‖
is estimated according to the classical (Spitzer) parallel heat
conduction density [19],

χ‖n0
dTe

dz

/
eV

cm2s
≈ −q‖cond

/
eV

cm2s

= 1.25 × 1020

(
Te

eV

)5/2 dTe

dz

/
eV

cm
. (8)

D‖ and μ‖ terms are used to damp high k‖ modes that we
cannot resolve in our code. D⊥ and χ⊥ are updated locally by
classical diffusion

D⊥ = χ⊥

= 1.625 × 10−5 n

cm−3

(
Te

eV

)− 3
2
(

B

G

)−2

ln 
0 cm2/s,

(9)

where ln 
0 is the Coulomb logarithm calculated using n0 and
T0 instead of the local density and temperature, for numerical
simplicity. We use the estimation of mean ion-ion viscosity
μ⊥ by the generalized Braginskii formula [10]. Parallel cur-
rent is normalized to en0cs0 and is given by the parallel Ohm’s
law

j‖ = 1

ν∗
(∇‖ pe − n∇‖φ), (10)

where ν∗ = t0νe,ime/mi. νe,i is the electron-ion collision fre-
quency updated locally by

νe,i = 2.906 × 10−6 ln 
0
n

cm−3

(
Te

eV

)−3/2

Hz. (11)

The normalized electron parallel velocity is thus given by

v‖e = v‖i − j‖/n. (12)

Similar model equations have been used for the study of
turbulence and transport in the Large Plasma Device (LAPD)
[20,21].

Our simulation domain is the whole CSDX device. We
use a Cartesian (x, y, z) coordinate, whose z increases along
the magnetic field line. We choose x = 0, y = 0 to be at the
center of the cylindrical vacuum vessel, and z = 0 at the end
plate with a glass window [16]. This allows us to express the
perpendicular convection terms in Poisson brackets:

vE · ∇ f = ∂φ

∂x

∂ f

∂y
− ∂φ

∂y

∂ f

∂x
≡ [φ, f ]. (13)

A diagram of the simulation grid is shown in Fig. 1. We use a
cylindrical zero perpendicular boundary condition. That is, all
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FIG. 1. Diagram of the simulation domain. Equations (1) to (4)
are advanced in the r = 10 cm cylinder. The view angle of an
operational fast camera is used [16].

fields at the grid points outside the vessel (r =
√

x2 + y2 > a)
are fixed to be zero, so that the variables are evolved
only inside the vacuum vessel. In this paper we focus on
experiments with insulating end plates, so we use periodic
boundary conditions at z boundaries to eliminate differences
between different x-y planes. Experiments have shown that
the parallel wavelength of the turbulence is comparable to
the length of the device [10,22], and this is also the case in
our simulation results. The model equations are solved by
a finite-difference turbulence code with centered difference
in space and a predictor-corrector scheme for time stepping
[23]. The Poisson equation (5) is solved by a parallel 2D finite
difference solver, with cylindrical zero boundary condition.
We always start the simulations with no plasma and very
small initial random noise. We force Te � 0.004T0 and
n � 0.004n0 for numerical feasibility. The time step is chosen
to be dt = 1.04 × 10−4 ms. We have run separate cases
with orders of magnitude greater initial perturbations, double
time-step width, and half perpendicular grid size to ensure
convergence.

In this paper, we use T0 = 3 eV, n0 = 1 × 1013 cm−3, a =
10 cm, L‖ = 270 cm, μ⊥ = 5.36 × 103 cm2/s, D‖ = μ‖ =
7 × 106 cm2/s, χ‖ = 1.9 × 108 cm2/s, γ = 5 × 103 Hz,
νi,n = 3.4 × 103 Hz, r0 = 3 cm, d = 0.55 cm, B = 1000 G.

III. TURBULENCE PERIOD

For the convenience of analysis, we convert the output data
from Cartesian grid to cylindrical grid. Scalars are interpo-
lated to cylindrical grid points, and vectors are decomposed
to v = vr r̂ + vθ θ̂. This allows us to define and calculate zonal
average and perturbation by

〈 f 〉 =
∫ L‖

0

∫ 2π

0
f (r, θ, z)dθ dz,

f̃ (r, θ, z) = f − 〈 f 〉. (14)

To avoid confusion, it is helpful to mention here that, in most
of the CSDX experimental papers, f̃ refers to the fluctuations
of f , which is the deviation from the equilibrium f0, and
f0 is time independent [11], allowing the zonal average of
fluctuations to be nonzero, which is different from what we
define as perturbations. For the decomposition of different
azimuthal mode numbers, we use the notation


m(r, z) ≡ 1

2π

∫ 2π

0
φ(r, θ, z)e−imθ dθ ≡ |
m|eiSφ,m . (15)

In this way,

φ(r, θ, z) =
∞∑

m=−∞

meimθ

= 2
∞∑

m=1

|
m| cos(mθ + Sφ,m) + 
0, (16)

so any scalar field can be expressed by the summation of
different modes given by

φm(r, θ, z) ≡ 2|
m| cos(mθ + Sφ,m), m = 1, 2, . . . ,∞.

(17)
In order to understand the onset of avalanches, we need

to introduce the whole picture of a standard discharge. The
evolution of plasma behavior is observed in some aspects, but
most of the experimental reports only show time-averaged or
frequency-filtered results. We describe our simulation of the
whole periodic evolution and compare with experiments.

As mentioned in Sec. I, each period is separated into
two phases. Fig. 2 shows how the intensity of m = 3 and
m = 1 perturbations evolves with respect to zonal flow. It
is clear that basically m = 3 dominates over m = 1 when
shear flow grows, and m = 1 dominates over m = 3 when
shear flow collapses. This phenomenon has been confirmed by
experiments [6] and is used to distinguish the two phases. We
have to say that although the driving of m = 1 perturbation
is relatively clear (as will be explained later), the damping
of it is determined by recombination, which is considered
rather roughly in our code. This can result in some error of
the simulated m = 1 mode lifetime.

IV. SHEAR FLOW GROWTH PHASE

We choose the beginning of a period to be the shear flow
growth phase. This phase is vital to this paper because it
determines the onset of K-H instability. A typical one is
chosen here for detailed analysis. Other shear flow growth
phases are basically the same because they share the same
density and temperature sources, but may vary a little since
each one of them is influenced by the collapse phase just
before it.

A. Early shear flow growth phase

A shear flow growth phase starts by a linear growth of
a collisional drift wave (CDW) [24], which we refer to as
the early shear flow growth phase. Density and temperature
sources produce gradients, driving the CDW to grow. We
judge this instability to be a CDW by testing the conditions
of a CDW in a linear device given in [16,25]. Figure 3(a)
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FIG. 2. Simulation result of the evolution of (a) zonal flow
lg〈vE ,θ /(cm/s)〉, (b) m = 3 perturbation autopower lg〈(ñ3/cm−3)2〉,
(c) m = 1 perturbation autopower lg〈(ñ1/cm−3)2〉, (d) particle count
radial distribution 〈2πr n/cm−2〉, (e) outward radial particle con-
vection lg〈2πr nvE ,r/(cm−2cm/s)〉 (left white for inward particle
flux regions). We use same color bar for different azimuthal mode
numbers of perturbations for comparison. We use the same dark blue
color for regions where 〈ñ2

m〉 � 1016 cm−6 and 0 < 2πr〈nvE ,r〉 �
1015 cm−2cm/s, in case of miscalibration of the color bars due to
some trivial low values. Vertical white and black lines show the
times when zonal flow at r = 3 cm starts to decrease and increase
respectively, labeling phase transition times.

shows that its dominant azimuthal mode number m is 3,
independently of radial location. This m = 3 perturbation has
a typical CDW helical structure, rotating in electron diamag-
netic drift direction. The phase velocity at r = 3.6 cm can thus
be estimated using Fig. 3 by

vph = ωr

kθ

= ωrr

m
≈ 4.42 × 104 cm/s. (18)

Referring to Fig. 2(a), one can figure out that in early shear
flow growth phase, the flow velocity is negligible compared
to CDW phase velocity, which means CDW phase velocity is
the same in the laboratory frame as in the plasma frame at
the time. Hereafter vph is used to denote the phase velocity
of CDW in the plasma frame. This velocity determines the
lowest azimuthal velocity of m = 3 fluctuations at r = 3.6 cm,
since the plasma E × B flow velocity is always in the electron
diamagnetic drift direction, as shown in Fig. 2(a). The exact
definition of a camera-seen azimuthal velocity, noted by vθ ,
and its evolution at r = 3.6 cm can be found in [7], mentioned
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FIG. 3. Simulation result of early shear flow growth phase fea-
tures a linear growth of a CDW. (a) Zonal-averaged auto-spectrum of
electric potential perturbation lg〈φ̃2

m/V2〉 at t = 25.19 ms. (b) Evolu-
tion of perturbed electric potential at a certain position at r = 3.6 cm.
The green line connects the beginning and ending of two adjacent
CDW periods, whose incline is used to estimate linear growth rate
γ = 3.34 ms−1 and interval is used to estimate real frequency f =
ωr/2π ≈ 5.86 kHz.

above. Our simulations show that the phase velocity of a
linear CDW (electron diamagnetic velocity shifted by some
additional effects included in our equations) can successfully
explain the minimum azimuthal velocity observed by a fast
camera, in spite of several negative spikes. These spikes
always appear at late collapse phases, when the dominant per-
turbation may be either m � 3 or m = 1. Of course m = 1 per-
turbations are not part of a linear CDW, but can influence 2D
time-delay estimation (TDE) analysis on camera data in [7].

B. Late shear flow growth phase

As the nonlinear terms grow to be comparable to linear
terms, the system enters the late shear flow growth phase. This
is directly reflected by the shift of the CDW phase velocity
from the plasma frame to the laboratory frame, which means
that the azimuthal convection of the CDW by zonal flow
is no longer negligible. The azimuthal motion of the m = 3
fluctuation is accelerated to vθ ≈ 〈vE ,θ 〉 + vph. The growth of
zonal and parallel flows is shown in Fig. 4. The generation
mechanisms of these flows have been studied intensively both
experimentally and theoretically, but our simulation analyses
on these topics are not ready to be published yet.

For direct comparison with experiments and a clear
illustration of phase transition times, the blue curve
in Fig. 5(a) shows the evolution of zonal flow at
r = 3.6 cm. One finds that the heights of the peaks and
the intervals between peaks in our simulation result are
very close to those observed in experiments [7]. The
simulation of the total shear flow growth phase provides
a reasonable explanation of fast-camera observations of
zonal-averaged increases in azimuthal velocity. To our
knowledge, the most recently published observation of
a 〈vE ,θ 〉 profile [26], which is a time-averaged result,
agrees with our simulation result well. Experimental
observations of high frequency fluctuations ( f � 6 kHz)
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FIG. 4. Late shear flow growth phase features a significant
growth of both (a) zonal flow 〈vE ,θ 〉 and (b) radially sheared parallel
flow 〈v‖i〉.

in B = 1000 G discharges exhibit broadband autospectra
[27,28]. According to our simulation, we infer that this feature
is a result of the acceleration of an m = 3 dominated mode by
growing E × B flow. To experimentally verify our inference,
a wavelet analysis for a shear flow growth phase is required.

After the validation study above, here we introduce some
of the features in shear flow growth phases observed in our
simulation. Although m = 3 perturbations dominate this
phase, other mode number components, especially m = 2
and m = 4 components, are not negligible, and can affect the
transition from shear flow growth phase to collapse phase.
Other features are shown in Fig. 2. Until the end of a whole
shear flow growth phase, the density profile remains stable,
providing a necessary condition for the CDW to grow roughly
linearly in the plasma frame. In this phase, the growth of the
CDW is accompanied by the growth of radial particle flux, at
r ≈ 3 cm. This magnetic flux surface has the maximum
density gradient, consistent with experiments. Previously we
divided the late shear flow growth phase from the early phase
by the condition of 〈vE ,θ 〉 � vph. This is almost the same
time when 〈ñ2

1〉 starts growing. The total flow intensity grows
accordingly, accumulating free energy for the onset of K-H
instability.

V. COLLAPSE PHASE

In this section we focus on the collapse phase, i.e., the
m = 1 dominated phase. Because the source driving the whole
system is zonal, m = 1 perturbations will finally get dissi-
pated. The system then returns to the shear flow growth phase.
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FIG. 5. Evolution of key scalars in the whole case. (a) is the
zonal-averaged azimuthal E × B velocity at r = 3.6 cm and the
global maximum, indicating the time of transitions between two
phases. (b) is the global maximum vorticity contribution by the
radial shear of E × B velocity r̂ × ∂rvE , compared to maximum
total vorticity. (c) is the maximum vorticity contribution by the curl
of azimuthal E × B velocity ∇ × (vE ,θ θ̂), compared to maximum
total vorticity. The global maximum of a scalar f , Max{ f }, is the
maximum f evaluated in the region 0.5 cm � r � 9.5 cm.

A. Basic phenomenon

Zonal flow can be nonlinearly damped through K-H insta-
bility [29]. Experiments suggest that the dominant instability
outside the main plasma column is K-H instability [16]. It is
natural to infer that in our case K-H instability is responsible
for the collapse of shear flow.

The cross-phase of two scalar fields is defined by

ξm〈n, φ〉(r, z) ≡ Sn,m(r, z) − Sφ,m(r, z). (19)

Two typical transitions from shear flow growth phase to col-
lapse phase are shown in Figs. 6 and 7, where one can clearly
see the dominant azimuthal mode number of both density and
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FIG. 6. Illustration of a typical avalanche with the ejection of
an avaloid. With sequential numbers on the left top labeling time,
the three groups of pictures show the evolution of density, electric
potential, and vorticity at the entire center x-y plane of the vacuum
vessel during t = 15.6347–16.3240 ms. The time interval between
adjacent pictures is �t = 0.0313 ms. The view angle of Fig. 1 is
used.

potential transit from 3 to 1. By comparing the snapshots of
density and potential, one can figure out that 0 < ξ3〈n, φ〉 <

π/4 and π/2 < ξ1〈n, φ〉 < π . This is evidence that the m = 3
mode is a CDW, while the m = 1 mode is K-H instability
[16,25]. The contour lines in Figs. 6 and 7 can be regarded
as the stream lines of E × B velocity, so that one can find how
particles are convected in these snapshots.

Figure 2 can give an overview of all the transition and
collapse events. When a transition happens, outward particle

FIG. 7. Illustration of a typical avalanche without an avaloid
during t = 25.6296–26.3189 ms.

flux increases sharply [Fig. 2(e)], giving rise to a rapid loss of
particles, which is shown in Fig. 2(d). Carrying m = 3 fluctu-
ations [Fig. 2(b)], the motion of the majority of bulk plasma
can be detected as a radial propagation of m = 1 fluctuation
[Fig. 2(c)]. A collapse phase starts by the occurrence of K-H
instability and ends by the exhaustion of zonal flow kinetic
energy. Figures 6 and 7 also show the details of how the
particle profile kept in shear flow growth phase is destructed
faster and faster, and how the plasma entrained by E × B flow
forms a structure that grows in volume, just like an avalanche.
The profile is then recovered by the plasma source.
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FIG. 8. 3D structures of (a) density n, (b) potential φ, and (c) vor-
ticity w in the whole device when the CDW and K-H instability
coexist. Contours of the fields are drawn in the x-y planes with
equal intervals. The time of the snapshot is t = 15.8540 ms, which
is the same time labeled number 8 in Fig. 6. The magnetic axis
(x, y) = (0, 0) is shown by the white line.

B. Avalanche criterion

For monotonic velocity profiles Ux(y), Fjørtoft’s criterion
[30] shows that a necessary condition for instability is the
existence of maximal vorticity W ≡ ∇ × U · ẑ ≡ −∂yUx. To
check whether some theorem like Fjørtoft’s criterion also
exists in our case, we check the evolution of vorticity, and
two fragments of it can be found in Figs. 6 and 7. Avalanches
always start at the position where local vorticity is the max-
imum in the whole x-y plane. To clarify that this criterion
is basically z independent, we show x-y slices of the key
fields at early collapse phase in Fig. 8. With the magnetic
axis plotted, one can see that while the m = 3 CDW features
k‖ ∼ 2π/L‖, the beginning of the avalanche, i.e., the m = 1
K-H instability, features k‖ = 0, consistent with the instability
properties given in [16,25].

Realizing the vital role of maximum vorticity, we track
its evolution. Every time an avalanche happens [when
Max{〈vE ,θ 〉} starts to decrease in Fig. 5(a)], the global max-
imum vorticity [shown by the green curves in Figs. 5(b)
and 5(c)] is always in the narrow interval 1.8 × 105s−1 �

FIG. 9. 3D structure of (a) density, (b) potential, and (c) vorticity
of an avaloid at t = 16.1046 ms, which is the same time labeled
number 16 in Fig. 6. The smaller density peak in each x-y plane is
the avaloid.

Max{w} � 2.2 × 105s−1, while the zonal flow contribution of
vorticity [shown by the blue curves in Figs. 5(b) and 5(c)]
varies a lot. Through the analysis in Sec. IV, we are convinced
that this variation is proved by experiments. This means that
neither zonal flow intensity nor flow shear itself can determine
the onset of K-H instability. A single mode number CDW
does not decide the onset of K-H instability alone too. One
can realize this either by looking carefully at Fig. 2(b) or by
comparing Fig. 6 with Fig. 7. We plot the global maximum
vorticity contribution by local azimuthal velocity using red
curves in Figs. 5(b) and 5(c) to show the importance of the
radial velocity contribution. These result suggest that once
the global maximum vorticity exceeds some threshold, an
avalanche happens immediately. In case the criterion was
affected by the avalanche itself, we filtered the m = 1 con-
tribution and replotted Fig. 5. The result did not alter.

C. Relation between avalanche and avaloid

Experiments suggest that avaloids may be related to shear
flow dynamics, but further study is required [7]. Here we show
the relation in our simulation. We refer to the zonal flow when
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FIG. 10. Radial particle flux at r = 1.5 cm (a) for the snapshots
in Fig. 6 (with avaloid ejection) and (b) for snapshots in Fig. 7
(without avaloid ejection).

a transition from shear flow growth phase to collapse phase
happens as peak zonal flow. In Fig. 5(a) one can see that a
strong peak zonal flow can be more than 100% higher than a
weak one. Apart from affecting the birth time of avalanches,
peak zonal flow can also determine whether the avalanche can
lead to the birth of an avaloid.

Figure 6 is a typical avalanche with weak peak zonal flow.
Evolutions of density and potential show how an avaloid is
separated from the center dense plasma by E × B convection.
The 3D structure of the avaloid is illustrated in Fig. 9. It
distributes basically along the magnetic field line [Fig. 9(a)],
but a k‖ ∼ 2π/L‖ component is still very clear, especially
for the vorticity shown in Fig. 9(c). The evolution of light
intensity at a fixed x-y plane in this kind of process has been
observed in a previous experiment, validating our simulation
in some sense [3,31].

Figure 7 is a typical avalanche with strong peak zonal flow.
In this process, a large amount of ions are pulled out by vE ,
then rotate back in before recombination instead of being
ejected out towards the chamber wall. The corresponding
inward particle flux can be clearly seen in Fig. 10(b).

VI. CONCLUSION AND DISCUSSION

In conclusion, we developed an almost self-consistent code
to study the global plasma evolution in CSDX B = 1000 G
insulating endplate discharges. Analyses of CDW plasma-
frame phase velocity and E × B velocity evolution in our
simulation successfully explain the violent evolution of the
azimuthal velocity of the pattern observed by a fast camera
[7]. What stops zonal flow from growing and drives m = 1
perturbation to dominate over m = 3 perturbation is found
to be K-H instability. The instability always happens when
and where the local vorticity exceeds a fixed critical value,
allowing peak shear flow to vary.

Nonlinear growth of K-H instability always leads to an
avalanche, featured by the outward convection of the main
plasma, explaining the experimental observation that the re-
gion outside the main plasma column (r � 3.5 cm) is dom-
inated by K-H instability [16]. If zonal flow intensity just

before onset of an avalanche is relatively low, an avaloid is
ejected at the end of the avalanche. The avaloid distributes
along a magnetic field line, but has a clear finite parallel
wavelength component.

We use a code with periodic parallel boundary condition
to simulate an insulating end-plate linear device. It is a
compromise because a collisional sheath boundary condition
is difficult to implement in the code. On the other hand,
this boundary condition should make our simulation analysis
for avaloids better adapted to blobs and ELM filaments in
tokamaks. Although the peak vorticity for each avalanche to
happen varies very slightly, they are not the same. Our prelim-
inary analysis suggest that when the vorticity peak features a
smaller perpendicular scale, peak vorticity is relatively higher.
Further study is still required to find a better criterion for
the birth of intermittent convective structures outside the bulk
plasma.
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APPENDIX A: DERIVATION OF THE MODEL EQUATIONS

We start from the equation set simplified from reduced
Braginskii equations [14]:

∂t n + ∇ · [n(vE + vde + v‖e)] = Sn, (A1)

3
2 dt pe + 3

2v‖e∇‖ pe + 5
2 pe∇ · (vE + v‖e) = 3

2 Spe , (A2)

∇ · jpol + ∇ · jd + ∇‖ j‖ = 0, (A3)

mindtv‖i = −∇‖ pe, (A4)

−∇‖ pe + en∇‖φ + η‖en j‖ = 0, (A5)

where

jd = −envde = c

B
B × ∇pe (A6)

is the diamagnetic current,

jpol = − enc

B�i
dt∇⊥φ (A7)

is the polarization current, and

dt = ∂t + vE · ∇ (A8)

is the total time derivative. We have neglected v‖i∇‖ terms
since they are much smaller than vE · ∇ terms.

η‖ = 4πνe,i

ω2
pe

(A9)

is the Spitzer resistivity. Hereafter we use the normalized
symbols and omit the diffusion and damping terms. For
uniform magnetic field, one can easily prove that ∇ · vE =
∇ · (nvde) = 0. We thus have the continuity equation

dt n = −∇‖(nv‖e) + Sn. (A10)
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Using pe = nTe and n∇‖Te 
 Te∇‖n, the electron pressure
equation can be expressed as

3
2 Tedt n + 3

2 ndt Te + 3
2 Te∇‖(nv‖e) + nTe∇‖v‖e = 3

2 Spe.

(A11)
This expression can be simplified by the electron continuity
equation

dt Te = − 2
3 Te∇‖v‖e + STe. (A12)

The ion parallel momentum equation can be simplified to

dtv‖i = −Te

n
∇‖n. (A13)

The vorticity equation is

∇ ·
[

n

(
∂t + a

ρs0
vE · ∇

)
∇⊥φ

]
= ∇‖ j‖. (A14)

Define the vorticity as

w = ∇2
⊥φ. (A15)

Using the Boussinesq approximation [32]

∇ · (ndt∇⊥φ) = ndt∇2
⊥φ, (A16)

we get the vorticity equation

dtw = 1

n
∇‖ j‖. (A17)

Joining Eqs. (A5) and (A9), we get the Ohm’s law equation
(10).

APPENDIX B: ENERGY CONSERVATION

For the verification of energy conservation of our equation
set, we sum all kinds of energies and integrate over all space.
Since we use periodic boundary conditions in both azimuthal
and axial directions, the surface integrals only include radial
contributions, and they are dropped here. In this way, all
convection terms (terms in the form vE · ∇ f ) vanish after
volume integration since ∇ · vE = 0:∫

dV [vE · ∇ f ] =
∫

dV [∇ · ( f vE )] = 0. (B1)

Casting the temperature equation to the pressure equation and
integrating by parts, we get the evolution of thermal energy

∂t

∫
dV

3

2
pe =

∫
dV [v‖e∇‖ pe] +

∫
dV

3

2
Spe . (B2)

Multiply the vorticity equation (A14) by φ yields∫
dV [φ∇⊥ · (ndt∇⊥φ)] =

∫
dV [φ∇‖ j‖]. (B3)

Integrating by parts, we get∫
dV

[n

2
dt (∇⊥φ)2

]
=

∫
dV [ j‖∇‖φ]. (B4)

Using the continuity equation (A1), one can easily prove that∫
dV

[
ndt f

] =
∫

dV [n∂t f + nvE · ∇ f ]

=
∫

dV [n∂t f − f ∇ · (nvE )]

=
∫

dV [n∂t f + f ∂t n]

=
∫

dV [∂t (n f )]. (B5)

Furthermore, the local ion kinetic energy is

n

2
v2

E = n

2
(b × ∇φ)2 = n

2
(∇⊥φ)2. (B6)

We thus get the evolution of perpendicular kinetic energy,

∂t

∫
dV

[
n

2
v2

E

]
=

∫
dV [ j‖∇‖φ]. (B7)

Multiplying the ion momentum equation Eq. (A13) by v‖i, we
get the evolution of parallel kinetic energy,

∂t

∫
dV

[
n

2
v2

‖i

]
=

∫
dV [−v‖i∇‖ pe]. (B8)

Adding Eqs. (B2), (B7), and (B8), we can get the total energy
evolution using Eqs. (A5) and (12):

∂t

∫
dV

[
3

2
pe + n

2

(
v2

E + v2
‖i

)] =
∫

dV

[
3

2
Spe − η‖ j2

‖

]
.

(B9)

So the system energy is controlled by an external energy
source and a resistive dissipation, since we did not include
Ohmic heating in the electron pressure equation.

APPENDIX C: ESTIMATION OF PERPENDICULAR
MAGNETIC PERTURBATIONS

We write the total magnetic field in the form B = Bẑ + B⊥,
where Bẑ is the dominant uniform magnetic field and B⊥ =
Br r̂ + Bθ θ̂ represents the magnetic perturbations perpendic-
ular to it in the cylindrical device. These perturbations are
estimated to be much lower than B by solving ∇ × B⊥ =
j‖ẑ in the code (Fig. 11). Consequently, B = Bẑ is a good
approximation and B⊥ never enters Eqs. (1) to (4).
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FIG. 11. Global maximum amplitude of magnetic perturbations
perpendicular to the dominant magnetic field direction.
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