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Fickian yet non-Gaussian diffusion in two-dimensional Yukawa liquids
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We investigate Fickian diffusion in two-dimensional (2D) Yukawa liquids using molecular dynamics simula-
tions. We compute the self–van Hove correlation function Gs(r, t ) and the self-intermediate scattering function
Fs(k, t ), and we compare these functions with those obtained from mean-squared displacement (MSD) using
the Gaussian approximation. According to this approximation, a linear MSD with time implies a Gaussian
behavior for Gs(r, t ) and Fs(k, t ) at all times. Surprisingly, we find that these functions deviate from Gaussian
at intermediate timescales, indicating the failure of the Gaussian approximation. Furthermore, we quantify these
deviations by the non-Gaussian parameter, and we find that the deviations increase when the temperature of the
liquid decreases. The origin of the non-Gaussian behavior may be the heterogeneous dynamics of dust particles
observed in 2D Yukawa liquids.

DOI: 10.1103/PhysRevE.100.033211

I. INTRODUCTION

Dusty plasma is a weakly ionized gas containing ions,
electrons, neutrals, and highly charged dust particles [1–5].
In the laboratory, due to the electric field in the plasma sheath,
dust particles can be levitated and confined. Therefore, they
can be floated in a monolayer, with an ignorable out-of-
plane motion to form a two-dimensional (2D) dusty plasma
[6–8]. Because of shielding by electrons and ions of the
background plasma, the interaction potential between dust
particles is accurately described by the Yukawa potential,
i.e., φ(r) = Q2exp(−r/λD)/4πε0r, where λD is the Debye
shielding length and Q is the dust charge [9,10]. The high
charges of dust particles cause their electrostatic potential
energy to exceed the kinetic energy. Hence, dust particles are
strongly coupled so that the collection of particles exhibits
behaviors of liquids [6–8] and solids [11,12]. Here, we focus
on the Brownian diffusion of dust particles in 2D equilibrium
Yukawa liquids.

The random motion of dust particles in 2D Yukawa liquids
can be described by Brownian diffusion [13]. It was observed
by Brown [14], and its theoretical description was derived
by Einstein [15]. There are two fundamental features with
Brownian diffusion [16]:

(i) The mean-squared displacement 〈�r2(t )〉 is linear with
time,

〈[�r(t )]2〉 = 〈|r(t ) − r(0)|2〉 =
∫

r2Gs(r, t )dr = 2dDt,

(1)

which is called Fickian (normal) diffusion. Here, D is the
diffusion coefficient and d denotes the dimension.

(ii) The self-part of the van Hove correlation function, i.e.,
the distribution of the particle displacement, is Gaussian:

Gs(r, t ) = 1

(4πDt )d/2
exp

(
− r2

4Dt

)
. (2)

*z.ghannad@alzahra.ac.ir

Gs(r, t )dr gives the probability of finding a particle at position
r at time t given that the same particle was at the origin at the
initial time t = 0 [17–19].

In this work, by molecular dynamics (MD) simula-
tion, we investigate the diffusion process in 2D equilib-
rium Yukawa liquids. Investigating the diffusion in 2D
Yukawa liquids has attracted a great deal of interest over
the past decade [20–31]. We find that the distribution func-
tion of dust particle displacement Gs(r, t ) is not Gaussian
as we expected for a Fickian diffusion, while the mean-
squared displacement appears Fickian (linear with time).
Fickian yet non-Gaussian diffusions have also been observed
in various systems, such as colloids [32–35] and porous
media [36,37].

The paper is organized as follows. In Sec. II, we describe
the fundamental features of the simulation technique to mimic
2D Yukawa liquids. In Sec. III, we compute four diagnostics
including the mean-squared displacement, the self-part of the
van Hove correlation function, the non-Gaussian parameter,
and the self-part of the intermediate scattering function to
interpret the underlying physics. In Sec. IV, we present the
conclusions.

II. MODEL AND SIMULATION TECHNIQUE

To study 2D equilibrium Yukawa liquids, we performed
equilibrium MD simulations [38]. We integrated the equation
of motion mr̈i = −∇� jφi j for N = 1024 particles, where φi j

is the Yukawa pair interaction potential [9,10]. An equilibrium
Yukawa system can be characterized by two dimensionless
parameters [22,39]:

(i) The Coulomb coupling parameter � = Q2/4πε0akBT ,
where ε0 is the dielectric constant, kB is the Boltzmann
constant, Q is the charge of a dust particle, T is the kinetic
temperature of dust particles, a = (nπ )−1/2 is the Wigner-
Seitz radius for 2D systems, and n is the surface number
density of dust particles.

(ii) The screening parameter κ = a/λD.
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TABLE I. Dimensionless units for 2D Yukawa liquids.

Quantity Symbol Dimensionless unit

Length r −→ r/a
Time t −→ ωpdt
Temperature T −→ �−1

Surface number density n −→ na2

Potential energy φ −→ φ/a2ω2
pd

Wave number k −→ ka

The dimensionless units in this work are listed in
Table I, where ωpd = (Q2/2πε0ma3)1/2 is the nominal 2D
dusty plasma frequency [40].

The values of � and κ are entered as input parameters in
simulations. We chose three values of κ = 0.5, 1.2, and 2.0 as
the beginning, the middle, and the end of the allowed interval
from an experimentally relevant range of 0.5 � κ � 2.0 [41].
For each κ value, there is one specific melting point �m, so that
for � < �m, the 2D Yukawa system is in the liquid phase as
reported by Hartmann et al. [42]. These values are �m = 142
for κ = 0.5 [5,42], �m = 200 for κ = 1.2 [42], and �m = 415
for κ = 2.0 [21,42]. In simulations, we chose the values of �

over a range that allows simulations of liquids.
The simulation box is a rectangular box with a size of

61.1a × 52.9a, so that the surface number density is consis-
tent with the definition of the Wigner-Seitz radius, i.e., n =
1024/(61.1a × 52.9a) ≈ 1/(πa2) [43]. To eliminate bound-
ary effects caused by the finite size of the simulation box, and
to model the system as an infinite one, we applied the periodic
boundary conditions.

We began from an initial random configuration of dust
particles and used a Nosé-Hoover thermostat [44,45] to reach
the system at the desired temperature. Then, we turned off the
thermostat to sample the dynamical properties.

We used the velocity Verlet algorithm [46] to integrate
the equations of motion with the integration time step of
0.037ω−1

pd , and we verified that this time step is adequately
small to conserve energy. Generally, the time step is chosen
from the range between [0.0037 and 0.037] ω−1

pd depending on

the � values; i.e., 0.0037ω−1
pd for 1.0 � � < 4.0, 0.0093ω−1

pd

for 4.0 � � < 10.0, 0.0185ω−1
pd for 10.0 � � < 40.0, and

0.037ω−1
pd for � � 40.0 [6]. The last one is chosen in our

simulations because we studied � > 100.
Since the Yukawa potential decays as exp(−r)/r, the cut-

off radius for this potential in MD simulations should be
sufficiently large to ensure that the perturbation introduced
into the simulations due to the potential truncation is negli-
gible [1]. We truncated the Yukawa potential at rcut = 24.8a,
as in [6–8].

To verify that our MD simulations reasonably modeled
a canonical ensemble in thermal equilibrium, we applied a
standard test as follows:

In a finite system in equilibrium, the temperature fluctuates
about the mean value, i.e., δT = T − 〈T 〉. If the system
exhibits canonical fluctuations (within a computationally rea-
sonable time), then the variance of the temperature is [47]

〈(δT )2〉 = 2

d

〈T 〉2

N
, (3)

where 〈T 〉 is the mean temperature. We calculated the vari-
ance of the temperature in our simulations and compared
it to the variance for the canonical ensemble in thermal
equilibrium, given in the above equation. According to the
standard test, the ratio of these two variances is unity for a
canonical system in thermal equilibrium. Although a value
of unity is an ideal value, in a simulation due to a limited
time range for sampling, a value very close to 1 is considered
successful. We found that the ratio was 0.996, which assured
us our simulations precisely modeled a canonical system in
equilibrium.

III. RESULTS AND DISCUSSIONS

In this section, we use four diagnostics to characterize
the dynamics of dust particles in 2D Yukawa liquids. They
are the mean-squared displacement, the self-part of the van
Hove correlation function, the non-Gaussian parameter, and
the self-intermediate scattering function, as explained below.

A. Mean-squared displacement

The first diagnostic, namely mean-squared displacement
(MSD), 〈[�r(t )]2〉 = 〈|ri(t ) − ri(0)|2〉, is calculated to iden-
tify Fickian (normal) diffusion. Here, ri(t ) is the position of
particle i at time t , and 〈· · · 〉 denotes an ensemble average. For
a 2D system, the MSD obeys a power law MSD(t ) ∝ 4Dtα .
When MSD is plotted as a function of time in a log-log plot,
the fitted curve with a straight line gives the slope α. The
signatures of normal diffusion and anomalous diffusion are
α = 1 and α �= 1, respectively. Anomalous diffusion refers to
both superdiffusion (α > 1) and subdiffusion (α < 1). Since
data from simulations will never yield a value that is exactly
1, a range of 0.9 < α < 1.1 is classified as normal diffusion,
and α > 1.1 for superdiffusion [20,29,48].

Results for MSD with selected values of κ and � are shown
as a function of time in a log-log scale in Figs. 1(a)–1(c). At
very short times (ωpdt � 5) when dust particles move in the
cage created by neighboring dust particles, all curves are fitted
by a straight line with a slope α = 2, indicating the ballistic
motion. At later times, dust particles escape from the cages
and diffuse. Here we are interested in motion at intermediate
times (when the Gaussian approximation fails). For a period
of 100 < ωpdt < 600, the fitting results of the exponent α for
κ = 0.5 are α = 1.15 for � = 100, α = 1.08 for � = 120,
and α = 1.05 for � = 130. These results for κ = 1.2 are α =
1.15 for � = 100, α = 1.11 for � = 140, and α = 1.05 for
� = 190. For κ = 2.0, we obtain α = 1.09 for � = 240, α =
1.07 for � = 320, and α = 1.04 for � = 400. All these re-
sults indicate that with increasing � (equivalently decreasing
temperature) to near �m (Tm), superdiffusion of dust particles
tends to normal diffusion. Therefore, for very low tempera-
tures, i.e., supercooled Yukawa liquids (� > 120 for κ = 0.5,
� > 140 for κ = 1.2, � > 320 for κ = 2.0), the diffusion of
dust particles is normal (Fickian) with good accuracy.

B. Self-part of the van Hove correlation function

The self-part of the van Hove correlation function, i.e., the
distribution of the particle displacement, is defined as [19]

Gs(r, t ) = 1

N

〈
N∑

i=1

δ(r − ri(t ) + ri(0))

〉
, (4)
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FIG. 1. Mean-squared displacements 〈[�r(t )]2〉 for different temperatures. (a) κ = 2.0, (b) κ = 1.2, and (c) κ = 0.5. At short times, MSD
∝ t2. At later times, when 100 < ωpdt < 600, MSD ∝ tα , where α comes very close to 1 with decreasing temperature (increasing �), indicating
Fickian diffusion.

where 〈· · · 〉 represents an ensemble average, and δ is the Dirac
delta function. For isotropic liquids, Gs depends only on the
scalar distance, r = |r|. Thus, Eq. (4) reduces to

Gs(r, t ) = 1

N

〈
N∑

i=1

δ(r − |ri(t ) − ri(0)|)
〉
. (5)

Physically, 2πrGs(r, t )dr measures the probability of finding
a dust particle at distance r from an origin at time t given that
the same dust particle was at the origin at the initial time t = 0
[19]. Thus, Gs(r, t ) is normalized by∫

Gs(r, t )dr = 1. (6)

Figures 2(a)–2(c), 3(a)–3(c), and 4(a)–4(c) show the time
evolution of the normalized Gs(r, t ) for the selected κ and �

values, and compare Gs(r, t) with Gaussian distribution
GGauss

s (r, t) (solid lines) obtained from Eq. (2), i.e.,
GGauss

s (r, t ) = {1/π〈[�r(t )]2〉}exp{−r2/〈[�r(t )]2〉}, where
〈[�r(t )]2〉 is obtained from the simulation. At intermediate
times, when the MSD is linear with time, Gs(r, t ) functions
deviate from the Gaussian.

How much difference is between Gs(r, t) and the Gaussian
distribution? To answer this question, we calculate the
relative difference between Gs(r, t) and GGauss

s (r, t),
i.e., Gs(r, t) − GGauss

s (r, t)/GGauss
s (r, t) as shown in

Figs. 5(a)–5(c), 6(a)–6(c), and 7(a)–7(c). Maximum relative
differences between Gs(r, t ) and GGauss

s (r, t ) become as large
as 10, 103, and 104 for κ = 2, � = 240, 320, and 400,
respectively; 10, 102, and 103 for κ = 1.2, � = 100, 140, and
190, respectively; and 10, 102, and 102 for κ = 0.5, � = 100,
120, and 130, respectively.

For a fixed value of κ , the maximum relative difference
increases with increasing �, i.e., with decreasing T , and it is
as large as 104, which belongs to the lowest temperature, i.e.,
T = 0.0025 or � = 400 [see Fig. 5(c)]. This means that in the
supercooled 2D Yukawa liquids, the distribution function of
dust particle displacement has the biggest discrepancy from
the Gaussian distribution. In Sec. III D, we discuss the origin
of the non-Gaussian behavior.

At a very long time limit, the Gs(r, t ) curves are matched
with Gaussian distributions, and relative differences between
Gs(r, t ) and GGauss

s (r, t ) approach zero.

C. Non-Gaussian parameter

Deviations from a Gaussian distribution are quantified by a
non-Gaussian parameter (NGP). For a 2D system, the NGP is
given by [49]

α2(t ) = 1

2

〈[�r(t )]4〉
{〈[�r(t )]2〉}2

− 1, (7)

where the moments 〈[�r(t )]n〉 are defined as

〈[�r(t )]n〉 = 〈|r(t ) − r(0)|n〉 =
∫

rnGs(r, t )dr. (8)

Using these two equations, we can see that the NGP is exactly
zero for a Gaussian distribution [given by Eq. (2)].

Figures 8(a)–8(c) show the non-Gaussian parameter α2(t )
for the selected κ and � values. The time evolution of the
non-Gaussian parameter can be classified into three regimes:

(i) At short times when dust particles move in the cage
created by neighboring dust particles, α2(t ) is zero.

(ii) At later times when dust particles escape from the
cages and diffuse, α2(t ) increases with time so that it reaches
a peak at intermediate times indicating maximum deviation
from the Gaussian. For each κ value, this peak increases with
increasing � equivalently decreasing T .

(iii) At a very long time limit, α2(t ) decays to zero, as
we expected from the Gaussian behavior of Gs(r, t) at these
times.

D. Self-intermediate scattering function

The quantity of interest in scattering experiments is the
spatial Fourier transform of the self–van Hove function, which
is called the self-intermediate scattering function (self-ISF)
[18],

Fs(k, t ) =
∫

Gs(r, t )exp(−ik · r)dr, (9)
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FIG. 2. Time evolution of the self-part of van Hove functions
for κ = 2.0. (a) � = 240, (b) � = 320, and (c) � = 400. The
symbols are the simulation results, and solid lines are from the
Gaussian distribution in Eq. (2) with the MSD obtained from the
simulation.

FIG. 3. Time evolution of the self-part of van Hove functions
for κ = 1.2. (a) � = 100, (b) � = 140, and (c) � = 190. The
symbols are the simulation results, and solid lines are from the
Gaussian distribution in Eq. (2) with the MSD obtained from the
simulation.
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FIG. 4. Time evolution of the self-part of van Hove functions
for κ = 0.5. (a) � = 100, (b) � = 120, and (c) � = 130. The
symbols are the simulation results, and solid lines are from the
Gaussian distribution in Eq. (2) with the MSD obtained from the
simulation.

FIG. 5. Relative differences between Gs(r, t) and Gaussian dis-
tribution GGauss

s (r, t) [obtained from Eq. (2)] for (a) � = 240, (b)
� = 320, and (c) � = 400.
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FIG. 6. Relative differences between Gs(r, t) and Gaussian dis-
tribution GGauss

s (r, t) [obtained from Eq. (2)] for (a) � = 100, (b)
� = 140, and (c) � = 190.

FIG. 7. Relative differences between Gs(r, t) and Gaussian dis-
tribution GGauss

s (r, t) [obtained from Eq. (2)] for (a) � = 100, (b)
� = 120, and (c) � = 130.
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FIG. 8. Non-Gaussian parameter α2(t ) for different tempera-
tures. (a) κ = 2.0, (b) κ = 1.2, and (c) κ = 0.5. For each κ value,
the peak of α2(t ) increases with increasing � or decreasing T .

where k is the 2D wave vector. In the MD simulation with
periodic boundaries, the wave vectors are proportional to the
periodicity of the system, i.e., k = (2π/L)(kx, ky), where L
is the length of the simulation box, and kx, ky are integers
[50]. The function Fs(k, t ) is interpreted as the characteristic
function of Gs(r, t ) because according to the probability
theory, the Fourier transform of a probability distribution
function is called the characteristic function of the distribution
[51]. Using the definition of the self–van Hove function from
Eq. (4) and applying the property of the δ function gives

Fs(k, t ) = 1

N

〈
N∑

i=1

exp{−ik · [ri(t ) − ri(0)]}
〉
. (10)

For an isotropic system, Fs(k, t ) depends only on the mag-
nitude k = |k|, therefore averaging over all directions yields

〈exp(−ik · r)〉φ = 1

2π

∫ 2π

0
exp(−ikr cos φ)dφ = J0(kr),

(11)
where φ is the angle between the vectors k and r, and J0(kr) =
sin(kr)/(kr) is the ordinary Bessel function of order zero.
Therefore, for an isotropic system, Fs(k, t ) reduces to

Fs(k, t ) = 1

N

〈
N∑

i=1

sin(k|ri(t ) − ri(0)|)
k|ri(t ) − ri(0)|

〉
. (12)

We computed Fs(k, t ) from Eq. (12) for various wave
numbers k and the selected κ and � values. The results
are shown in Figs. 9(a)–9(i). If the system exhibits Fickian
diffusion, the self–van Hove function is Gaussian at all times
and its Fourier transform is obtained by substituting Eq. (2) in
Eq. (9) as follows:

Fs(k, t ) = exp

(
−k2〈[�r(t )]2〉

4

)
, (13)

which is known as the Gaussian approximation [18]. As
shown in Figs. 9(a)–9(i), by comparing the self-ISF obtained
by simulations and the corresponding Gaussian approxima-
tion, i.e., Eq. (13), in which 〈[�r(t )]2〉 is determined from
the simulation data, we find that at intermediate times, the
Gaussian approximation fails to describe the diffusion of
dust particles, indicating the non-Gaussian dynamics in 2D
Yukawa liquids. At short and very long times, as we expected,
the Gaussian approximation is a good description for the
self-intermediate scattering function.

The origin of this non-Gaussian behavior may be heteroge-
neous dynamics, which has been observed in liquids [52,53].
Dynamical heterogeneity reflects the existence of regions in
which dust particles are more mobile than expected from
a Gaussian approximation, that is, dust particles that move
faster than the rest. These dust particles form clusters, i.e.,
groups of the particles, and they move along stringlike (one-
dimensional) paths. Therefore, strings of mobile dust particles
flow among regions including less mobile dust particles [13].
As a result, the displacement deviations appear over time and
the distribution function of the particle displacement, i.e., Gs

departs from a Gaussian shape. Consequently, α2(t ) is not
zero.
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FIG. 9. Self-part of the intermediate scattering functions Fs(k, t ) for various dimensionless wave numbers ka and the selected � and κ

values: [(a)–(c)] κ = 2.0, [(d)–(f)] κ = 1.2, and [(g)–(i)] κ = 0.5. Solid lines are from the simulation, and dashed lines are from the Gaussian
approximation obtained from Eq. (13) with the MSD obtained from the simulation.

IV. SUMMARY AND CONCLUSIONS

We have investigated the dynamics of dust particles in
two-dimensional Yukawa liquids using molecular dynamics
simulation. First, we have computed the mean-squared dis-
placement on the allowed ranges of experimental parameters,
and we have shown that it is linear with time (Fickian diffu-
sion) in very low temperatures, on the timescales at which dust
particles diffuse. Then, we have computed the distribution of

the particle displacements Gs(r, t ), and we have compared
it with Gs(r, t ) obtained from the Gaussian approximation.
Significantly, we found that at intermediate times, the distribu-
tion of the particle displacement deviates from the Gaussian,
i.e., the failure of the Gaussian approximation, which states
that when diffusion is Fickian, the distribution of particle
displacement is Gaussian. This result may be attributed to
the heterogeneous dynamics of dust particles in Yukawa liq-
uids. The non-Gaussian parameter and the self-intermediate

033211-8
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scattering function have also been computed, and their re-
sults have confirmed these deviations. Furthermore, we found
that the deviations increase as the temperature of the liquid
decreases. Here, we have decreased the temperature to near
the melting point Tm, where the liquid phase is maintained.

A further decrease in temperature results in a phase change
of the system from liquid to solid. Investigating the non-
Gaussian behavior and the degree of deviation from Gaussian
in Yukawa solids can be an interesting research topic. Our
future work will include this research.
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