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Physics of relativistic collisionless shocks. II. Dynamics of the background plasma
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In this second paper of a series, we discuss the dynamics of a plasma entering the precursor of an
unmagnetized, relativistic collisionless pair shock. We discuss how this background plasma is decelerated and
heated through its interaction with a microturbulence that results from the growth of a current filamentation
instability in the shock precursor. We make use, in particular, of the reference frame Rw in which the turbulence is
mostly magnetic. This frame moves at relativistic velocities towards the shock front at rest, decelerating gradually
from the far to the near precursor. In a first part, we construct a fluid model to derive the deceleration law of the
background plasma expected from the scattering of suprathermal particles off the microturbulence. This law leads
to the relationship γp ∼ ξ

−1/2
b between the background plasma Lorentz factor γp and the normalized pressure

of the beam ξb; it is found to match nicely the spatial profiles observed in large-scale 2D3V particle-in-cell
simulations. In a second part, we model the dynamics of the background plasma at the kinetic level, incorporating
the inertial effects associated with the deceleration of Rw into a Vlasov-Fokker-Planck equation for pitch-angle
diffusion. We show how the effective gravity in Rw drives the background plasma particles through friction on
the microturbulence, leading to efficient plasma heating. Finally, we compare a Monte Carlo simulation of our
model with dedicated PIC simulations and conclude that it can satisfactorily reproduce both the heating and the
deceleration of the background plasma in the shock precursor, thereby providing a successful one-dimensional
description of the shock transition at the microscopic level.
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I. INTRODUCTION

The physics of collisionless shock waves is an important
and longstanding theoretical question, which encompasses
various fields of research, from fundamental plasma physics,
to space plasma physics, and laboratory astrophysics, see, e.g.,
Ref. [1] for a recent review. In high-energy astrophysics, col-
lisionless shock waves are—nearly ubiquitously—associated
with the generation of nonthermal power laws of accelerated
particles [2], whose secondary interactions with ambient fields
provide the multimessenger radiations that are being so ac-
tively studied [3]. As the direct offsprings of the relativistic
outflows of extremely powerful astrophysical sources, rela-
tivistic collisionless shock waves are associated with some of
the most important outbursts of radiation seen in nature, e.g.,
γ -ray bursts, pulsar wind nebulae, or blazar-type objects [4].

In the hydrodynamic approximation, these shock waves
are described as simple discontinuities, the quantities on
both sides being related by the conservation laws of energy-
momentum and matter fluxes, see Ref. [5] for the relativistic
regime. Particles that scatter off the magnetized flows on both
sides of the shock front then gain energy through the so-
called Fermi process, e.g., Refs. [2,6] and references therein.
However, it has long been recognized that one cannot com-
prehend this scenario in its inner workings without drawing
a connection to the physics of the shock front and to the
nature of the turbulence that is excited in the shock vicinity.
In the rather extreme case of the ultrarelativistic forward

shock of a γ -ray burst outflow, the (initial) magnetization
of the unshocked plasma is so weak—σ ≡ (uA/c)2 ∼ 10−9

(uA Alfvén four-velocity)—that the accelerated particles ac-
tually scatter off a magnetized turbulence that they them-
selves excite through microinstabilities in the shock precursor
[7–10]. The shock precursor is understood here as the region
upstream of the shock where the beam of suprathermal or ac-
celerated particles and the background plasma interpenetrate
each other.

In unmagnetized relativistic collisionless shocks, numeri-
cal particle-in-cell (PIC) simulations have demonstrated that
the current filamentation instability (CFI) [11–14] is the
dominant source of turbulence [10,15–20]. The nature of the
resulting turbulence, how it evolves in time and space, how it
heats up the background plasma, how it scatters the suprather-
mal particles, and so forth, remain questions of importance,
which have been actively debated in the literature (see, e.g.,
Refs. [21–31] or Refs. [6,32] for reviews in the relativistic
limit).

This paper belongs to a series in which we discuss various
physical aspects of unmagnetized, relativistic collisionless
shocks (see Ref. [33] for a summary of our model). Our theo-
retical analysis is supported by dedicated large-scale 2D3V
PIC simulations of relativistic shocks in electron-positron
plasmas. In Paper I [34], we argue that there exists a frame
Rw in which the microturbulence that is excited in the pre-
cursor is mostly of magnetic nature, and we further show
that this frame moves subrelativistically with respect to the
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background plasma. Building on these results, we address
here the physics of deceleration and heating of the background
plasma at a microscopic level. In a subsequent Paper III [35]
of this series, we will discuss the physics of the suprathermal
particles, in particular their scattering length and their distri-
bution function in the shock precursor. Finally, in Paper IV
[36], we will examine the microturbulence growth through
current filamentation instabilities in the nonlinear regime, and
provide comparisons to PIC simulations.

This paper is laid out as follows. In Sec. II, we set up the
problem, make explicit our approximations, and define the
main quantities of interest. In Sec. III, we discuss the decel-
eration of the background plasma imparted by the scattering
of suprathermal particles. In Sec. IV, we discuss the heating
mechanism and compare its predictions to PIC simulations.
Finally, we summarize our results in Sec. V. Everywhere, we
use Gaussian units with kB = c = 1.

II. SETUP

We discuss the dynamics of a background plasma as it
penetrates the precursor of a relativistic collisionless shock in
the laboratory frame, which coincides with the shock frame
Rs, in which the shock front lies at rest at x = 0. The back-
ground plasma moves along the x axis with velocity βp(x) < 0
(quantities indexed by p refer hereafter to the background
plasma). The asymptotic velocity of the background flow
outside the precursor is written β∞ and its corresponding
Lorentz factor γ∞ (four-velocity u∞ ≡ γ∞β∞). The bulk
plasma velocity βp and temperature Tp are both functions
of the distance x to the shock front. The figures that follow
provide clear illustrations of this overall geometry.

The precursor corresponds to the region 0 < x < �prec that
is permeated with suprathermal particles undergoing Fermi
cycles around the shock front. The length scale �prec de-
termines the maximum extent of this region (measured in
the shock rest frame). Its value will be left unspecified for
now, but for reference, in the time-dependent regime of a
PIC simulation, the tip of the precursor moves at �c relative
to the shock front, hence �prec � ctmax|d, where tmax|d is the
integration time of the simulation. By virtue of the shock-
crossing conditions [5], βp → −1/3 (in 2D3V PIC simula-
tions, the adiabatic index of the downstream plasma �̂d =
3/2, hence βp → −1/2) and Tp → γ∞m/(3

√
2) as x → 0

[γ∞m/(2
√

3) in 2D3V PIC simulations], but βp → β∞ and
Tp → 0 as x → �prec. The main objective of the present work
is to discuss the evolution of βp and Tp as a function of x.

In the shock frame, the suprathermal particle distribution
in momentum space, which we label with b (b for beam) is
close to isotropic. Its characteristic proper temperature1 Tb is
larger than the temperature of the shocked thermal plasma, as
a result of the generation of an extended nonthermal tail. As in
Refs. [33,34], we write Tb = κTb γ∞m, with κTb a dimension-
less number of the order of a few to an order of magnitude.
The pressure of this beam is conveniently normalized by the

1By temperature of the beam, it is understood here the character-
istic energy of the beam particles in the rest frame in which their
distribution function is isotropic.

ram pressure at infinity, F∞ ≡ u2
∞w∞, and thus expressed in

terms of ξb:

ξb ≡ pb

F∞
. (1)

Here, w∞ ≡ n∞m is the proper enthalpy density, and n∞ the
proper number density of the background plasma, which is
cold outside of the precursor. We assume that ξb depends on
the distance to the shock front, with limx→�prec ξb(x) = 0.

We consider an unmagnetized shock, i.e., the back-
ground plasma does not carry any background magnetic
field at x → +∞. Consequently, the CFI develops in
the shock precursor through the interpenetration of the
suprathermal and background plasma particle populations,
thereby generating a small-scale electromagnetic turbu-
lence. The transverse CFI mode produces plasma cur-
rent filaments oriented along the shock normal, surrounded
by a (toroidal) magnetic field δB⊥ and (radial) elec-
tric field δE⊥. As discussed in Refs. [33,34], this mode
is essentially magnetic (i.e., mostly aperiodic, |ω|�k)
in some frame Rw, which we call the Weibel frame. This
frame is more specifically defined as that in which the trans-
verse electrostatic component vanishes. In the frame Rs, this
Weibel frame thus moves with velocity βw = δE⊥×δB⊥/δB2.

We note that the Weibel frame may be ill defined in
some regions of the precursor, because the development
of oblique modes may generate a configuration in which
δE⊥ � δB⊥. However, the transverse CFI mode is believed
to dominate over most of the precursor, and especially close
to the shock front, where deceleration and heating of the
background plasma mainly take place, e.g., Refs. [27,29,30].
In Refs. [33,34], we have confirmed that this is indeed the
case, i.e., that βw is well defined within �300–1000 c/ωp of
the precursor, using large-scale 2D3V PIC simulations. Yet
the boost to Rw cannot erase any longitudinal electric field
component δEx that would originate from the growth of the
CFI, or from a contribution of oblique modes. An important
assumption that we make here is to neglect the influence of
this longitudinal electric field. We will justify this assumption
in more detail in Sec. IV D 2. By contrast, the longitudinal
electric field component is expected to play an important role
in electron-ion shocks, because of the difference of inertia
between negatively and positively charged species, regarding
the deceleration as well as heating, e.g., Refs. [16,31].

In the case of symmetric counterstreaming configurations,
the Weibel frame would coincide with the laboratory frame,
βw = 0. In the precursor of a shock, however, the suprather-
mal beam—background plasma interaction—is highly asym-
metric, and therefore βw 
= 0 in Rs [33,34]. In particular, the
suprathermal particles carry a high inertia in Rw with a typical
Lorentz factor ∼ γwγ∞ � 1, while the background plasma
particles remain subrelativistic or mildly relativistic over most
of the precursor. Consequently, the suprathermal particles are
not tied to the current filaments, but rather suffer small-angle
deflections when crossing them. Their large scattering length
sets the scale of variation of ξb in the Rs frame. For these
reasons, the microturbulence exerts a much larger influence
on the background plasma than on the suprathermal particles.

Two other frames of interest are Rp, in which the plasma
lies instantaneously at rest and Rd , which coincides with the
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rest frame of the downstream shocked plasma and with the
reference frame of our numerical PIC simulations. Quanti-
ties indexed with a subscript |s, |w, |p, |d are understood to be
measured in the respective frame; frame-dependent quantities
without a subscript are understood to be measured in the shock
rest frame Rs.

III. DECELERATION OF THE BACKGROUND PLASMA

A. General comments

The present section discusses the physics of deceleration of
the background plasma inside the precursor in the framework
of a fluid model, relying on the kinetic picture described
in Paper I [34]. In this picture, the Weibel frame Rw has
an everywhere nonvanishing relative velocity with respect to
the background plasma as a consequence of the influence
of suprathermal particles. At the same time, the background
plasma keeps relaxing in Rw through pitch-angle scattering
in the magnetic turbulence. This permanent adjustment of
the velocity of Rw to the physical conditions at x implies
that Rw keeps decelerating from large to small x, along the
background plasma advection history in the shock frame.

In Paper I [34], the relative velocity βw|p has been calcu-
lated in a homogeneous setting, for given conditions fixing
the state of the suprathermal population and of the background
plasma, using two main models: one that searches for a frame
in which the dispersion relation of the CFI can be solved
without an electrostatic component, and one that models the
nonlinear phase of the CFI as a periodic collection of filaments
in stationary pressure equilibrium. We have then shown that
these models provide a satisfactory fit to the spatial profile of
βw|p extracted from PIC simulations, if the model predictions
are calculated at point x using the physical conditions of the
populations at this point.

In principle, to obtain a self-consistent fully kinetic model
of this deceleration process, one would need to extend the
calculations of Paper I to a nonstationary state, and to include
in this time-dependent framework the physics of relaxation
of the background plasma; this formidable task lies well
beyond the scope of any current study, however. To overcome
this difficulty, we construct here a fluid analog of the above
microscopic picture. The influence of suprathermal particles
is, in particular, characterized by their kinetic pressure. We
then solve the equations of conservation of energy-momentum
to obtain the deceleration law as a function of the profile
ξb(x). We also evaluate the influence of the microturbulence
on the background plasma and conclude that it can be safely
neglected here: at the fluid level, this means that the turbulence
is effectively tied to the background plasma, in good accord
with |βw|p| � 1. Note that the buildup of the turbulence in the
precursor through the CFI also exerts work on the streaming
background plasma, but arguments developed in Paper IV [36]
indicate that this ponderomotive force is negligible.

B. Fluid law of deceleration

In order to derive an estimate for the deceleration law of
the Rw frame, we use a fluid description of the conservation
of energy and momentum in the plasma + electromagnetic
turbulence + beam system. We describe the background

plasma as a perfect fluid, with velocity βp, enthalpy wp,
pressure pp, and equation of state wp = npm + αp pp, with the
shorthand notation αp ≡ �̂p/(�̂p − 1) (and similarly for the
beam). Current conservation implies γpβpnp = γ∞β∞n∞.

Since both the beam and turbulence energy and momen-
tum densities vanish outside the precursor, one can write
the integrated version of the equations of energy-momentum
conservation between as +∞ and a point x as

γ 2
∞β∞w∞ = γpγ∞β∞w∞ + γ 2

p βpαp pp + T tx
b + TB

tx,

γ 2
∞β2

∞w∞ = γpβpγ∞β∞w∞+(
γ 2

p β2
pαp+1

)
pp+T xx

b +TB
xx.

(2)

We simplify the notations by defining T tx
b ≡ �bF∞/β∞,

T xx
b ≡ 
bF∞, TB

tx ≡ �BF∞/β∞, and TB
xx ≡ 
BF∞. Fi-

nally, we also define � = �b + �B, 
 = 
b + 
B so that the
above system can be rewritten as

γp

γ∞
F∞ + γ 2

p βpβ∞αp pp = F∞(1 − � ),

γpβp

γ∞β∞
F∞ + (

γ 2
p β2

pαp + 1
)
pp = F∞(1 − 
). (3)

In this form, −� represents the net fraction of initial energy
density picked up by the background plasma on its way,
relative to the incoming momentum flux at infinity, while
−
 similarly represents the relative fraction of picked up
momentum density. It proves instructive to make these terms
explicit, notably to show that |�| � 1 and |
| � 1:

�b = γ 2
b βbβ∞αbξb,


b = (
γ 2

b β2
bαb + 1

)
ξb,

�B = γ 2
wβwβ∞
γ 2∞β2∞

2 εB,


B = γ 2
wβ2

w

γ 2∞β2∞

(
2 + 1

γ 2
wβ2

w

)
εB, (4)

with ξb � 1 and εB � 1. Above, we have assumed a perfect
fluid form for the beam energy-momentum (and neglected
rest-mass energy in front of the pressure of suprathermal
particles). Moreover, the energy-momentum tensor of the
microturbulence takes on a relativistic MHD form, since the
electric field vanishes in the Rw frame by definition (and
the above assumes a magnetic field transverse to the flow).
Finally, βw � βp in the relativistic regime, since

βw � βp

(
1 + βp|w

γ 2
p

)
, (5)

to first order in 1/γ 2
p if |βp|w| � 1.

The above equations imply

pp = F∞

(
βp

β∞
� − 
 + 1 − βp

β∞

)
. (6)

Since βp/β∞ � 1 − 1/(2γ 2
p ) + 1/(2γ 2

∞) as long as γp � 1,
Eq. (6) implies that pp/w∞ becomes of order unity or larger
as soon as |
 − �| � 1/γ 2

∞. Once this inequality is satis-
fied, the background plasma effectively slows down in the
precursor.
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This relationship is by itself not surprising: when 
 → 0,
meaning that the plasma picks up matter at rest in the labora-
tory frame, it is well known that it suffices to add in a fraction
∼ 1/γ 2

∞ of the incoming energy to slow down the plasma,
because once picked up by the flow, the supplementary mass
energy is increased by a factor γ 2

∞ [5] (see also Ref. [37] for a
recent discussion on similar issues). However, if |� − 
| �
1/γ 2

∞, the loading amounts to adding matter moving at about
the same velocity as the background plasma, in which case
there is no increase by γ 2

∞.
This result does confirm that the microturbulence exerts a

negligible influence on the background plasma, as indeed


B − �B � εB

γ 2
p

(7)

according to Eqs. (4) and (5). Let us stress that this result
rests on the observation that |βp|w| � 1, which implies that the
turbulence is essentially carried by the background plasma.
In the following, we thus neglect the contribution of the
microturbulence and retain only that of the beam. In this limit,
the fluid model becomes the relativistic generalization of
cosmic-ray modified shocks [2,38], which have been observed
in numerical nonlinear Monte Carlo simulations of shock
acceleration in the relativistic limit [39].

Since |
b−�b|=O(ξb), and 1−βp/β∞=O(γ −2
p ), Eq. (6)

implies γp � γ∞ if γ 2
∞ξb � 1. In the opposite limit, decelera-

tion takes place; in particular, in the limit 1 � γp � γ∞, using
Eq. (6) in Eq. (3) and neglecting terms of order γp/γ∞, 1/γ 2

p
or � in front of unity, one obtains

αpγ
2
p

(
1

2γ 2
p

+ �b − 
b

)
� 1

(
γ 2

∞ξb � 1
)
, (8)

which provides the deceleration law:

γp �
[

αb − 2

2αb(
b − �b)

]1/2 (
γ 2

∞ξb � 1
)
, (9)

or, in terms of ξb,

γp � γ∞
(
γ 2

∞ξb � 1
)

γp �
{

αp − 2

2αp
[
1 + γ 2

b βb(1 + βb)αb
]
}1/2

ξ
−1/2
b

(
γ 2

∞ξb � 1
)
.

(10)

In terms of βp, this law can be rewritten

βp � β∞
(
γ 2

∞ξb � 1
)
,

βp � β∞

{
1 − αp

[
1 + γ 2

b βb(1 + βb)αb
]

αp − 2
ξb

} (
γ 2

∞ξb � 1
)
.

(11)

In Fig. 1, we compare the law γp|d ∼ ξ
−1/2
b in the decel-

eration regime (ξb � 1/γ 2
∞ or γp � γ∞) with the profile of

γp|d measured in two PIC simulations with Lorentz factors
γ∞ = 17 and γ∞ = 173, which correspond, respectively, to
Lorentz factors γ∞|d = 10 and 100 in the simulation frame
Rd . These large-scale 2D3V simulations of unmagnetized,

0 1000 2000

100

101

0 1000 2000 3000

100

101

102

FIG. 1. In black, the Lorentz factor of the background plasma,
γp|d, vs distance to the shock x|d (in units of c/ωp), extracted from
PIC simulations of a pair shock of Lorentz factor γ∞|d = 10 [(a)]
and γ∞|d = 100 [(b)]. The law γp|d = 1.2 ξ

−1/2
b is overplotted in

blue, using as input the profile ξb(x) extracted from the same PIC
simulations and the same ad hoc numerical prefactor 1.2 in both
panels. The law γp|d ∼ ξ

−1/2
b is that predicted by Eq. (10) in the

relativistic decelerating regime (1 � γp � γ∞). The numerical data
is light colored in regions where it cannot be measured accurately.

relativistic collisionless pair plasma shocks have been car-
ried out using the parallelized finite difference time-domain
PIC code CALDER [40]. The plasma is injected at the right-
hand boundary of the simulation box with a proper tem-
perature T∞/m = 10−2 and reflects on a conducting wall
to form the shock [10]. Each simulation initially contains
ten macroparticles per cell and per species; the cell size is
�x = �y = 0.1 c/ωp. The Čerenkov instability is mitigated
using the Godfrey-Vay filtering algorithm [41] and the Cole-
Karkkainen finite difference field solver [42–44], which al-
lows a large time step to be used, �t = 0.99�x/c. Dedicated
particle diagnostics have been implemented to distinguish the
beam particles from the background plasma: by our definition,
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background plasma particles correspond to those particles
whose velocity along x is negative and has never changed
sign; by contrast, beam particles are defined as those particles
whose velocity along x is positive. We note here that the
four-velocity and the temperature of the background plasma
cannot be extracted accurately from the PIC simulation be-
yond the shock transition, since its particles have by then been
isotropized, and hence they can no longer be distinguished
from the suprathermal particles.

In Fig. 1, the profile of ξ
−1/2
b has been multiplied by an

ad hoc factor of the order of unity (1.5) to match the profile of
γp in the corresponding region. Equation (10) indeed suggests
a prefactor of the order of unity, but which is difficult to
estimate in our model because of an uncertainty related to the
value of βb. In Paper III, we discuss this latter quantity and
show that βb is small in magnitude, possibly negative, in the
shock front frame, but it is not accurately defined, because the
theoretical solution for ξb in that study neglects the decelera-
tion of the background plasma as well as a possible evolution
of the scattering length with x.

We note that the numerical prefactor takes on a similar
value in both simulations, despite different γ∞ values. Fur-
thermore, the profiles of γp|d and ξ

−1/2
b from both simulations

appear to be closely similar over the same deceleration zones.
This suggests that, in the deceleration region, the precursor
obeys a universal law γp/γ∞ vs x, or ξb(x) vs x.

Using Eq. (10) in the solution obtained for the pressure,
Eq. (6), we derive the additional scaling law

pp � 2F∞

 − �

αp − 2
∝ F∞ ξb

(
γ 2

∞ξb � 1
)
. (12)

In Fig. 2, we compare this law to the numerical data obtained
in our PIC simulations, and find that pp � 0.15F∞ξb provides
a satisfactory agreement. We note that this prefactor is not
independent of that describing the relationship between γp

and ξb. Specifically, writing pp = apF∞ξb and γp = aγ ξ
−1/2
b ,

one finds from Eqs. (10) and (6): ap = (αpa2
γ )−1. Hence, for

aγ � 1.5 and αp � 3 (hot gas in two dimensions), there results
ap � 0.15.

C. Shock transition

The above model nicely explains the value ξb ∼ 0.1 of
the fraction of energy injected into the suprathermal particle
power-law tail, as repeatedly observed in PIC simulations,
regardless of the Lorentz factor γ∞, e.g., Ref. [20]. Where
ξb � 0.1, indeed, the law of deceleration implies that γp

becomes of the order of unity, i.e., the flow becomes subrel-
ativistic and the shock transition forms over a length scale of
∼100 ω−1

p . Hence, that ξb ∼ 0.1 in the immediate precursor is
a natural prediction of our model.

This deceleration law plotted in Fig. 1 also reveals the
existence of a subshock, which is a generic prediction of
cosmic-ray modified shocks:2 the Lorentz factor of the back-
ground plasma is seen to slowly decrease in the precursor
over some ∼103 ω−1

p down to a value γsub ∼ 5, at which

2We thank A. Levinson for pointing this out to us.
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FIG. 2. In red, the normalized pressure of suprathermal particles
ξb vs the distance to the shock x|d (in units of c/ωp), as extracted
from PIC simulations of a pair shock of Lorentz factor γ∞|d = 10
[(a)] and γ∞|d = 100 [(b)]. The law (0.15)−1 pp/F∞ is overplotted
in gray, using the same ad hoc numerical prefactor (0.15)−1 in both
panels. This scaling pp ∝ F∞ξb is that predicted by Eq. (12) in the
relativistic decelerating regime (1 � γp � γ∞). As before, data is
light colored in regions where it cannot be measured accurately.

point the shock transition occurs abruptly. This subshock
arises here as a result of the transition from ultrarelativis-
tic to mildly relativistic flow velocities. Far in the shock
precursor, the length scales characteristic of the background
plasma dynamics are typically dilated by a factor γp when
expressed into the shock frame, so that the transition from
ultrarelativistic to subrelativistic velocities implies a rapid
evolution of the various physical quantities. For instance, the
typical relaxation length scale of background plasma particles
in the microturbulence is of the order of γw/ν|w � ν−1

|w in
the shock frame, as discussed in the forthcoming Sec. IV.
Therefore, it drops to ν−1

|w once ξb � 0.1. For the typical
value ν|w ∼ 0.01ωp inferred in Sec. IV, the relaxation scale is
found to be of ∼100 ωp in the shock transition. Similarly, the
scattering length of beam particles of Lorentz factor γ is of the
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order of γwε−1
B (γ /γ∞)2 ω−1

p [35], which becomes shorter by a
factor γw once the Weibel frame has slowed to subrelativistic
velocities.

The above model neglects the difference between βw and
βp. This is well justified in the relativistic regime γp � 1,
see Eq. (5), but this approximation fails in the subrelativistic
regime βp � 1. In these last hundreds of skin depths, as
discussed in Sec. IV and in Paper I, the plasma decouples
from the microturbulence, before eventually relaxing once the
Rw has decelerated to a constant velocity βw ∼ −1/2 (in two
dimensions). The resulting isotropization of the background
plasma injects into the upstream a fraction of particles, which
then populate the suprathermal population. From their point
of view, the deceleration of the background plasma builds up
a scattering barrier over a few tens of c/ωp: this scattering
barrier results from the reduction of the scattering length scale
due to the reduction in γw and the increase in εB, relatively to
values seen further in the precursor. Hence, those particles that
are energetic enough to cross the barrier are free to stream
into the precursor over long distances, and to populate the
suprathermal particle tail.

Another prediction of the above model is that the strength
of the microturbulence should increase as a result of the
compression of magnetic field lines, modulo the growth factor
imposed by the CFI, once the velocity of the Rw frame
becomes subrelativistic. This effect is best seen using Fara-
day’s law in Rs, in steady state: ∇×δE = 0, which implies
∂xδE⊥ = 0 in the absence of a longitudinal δEx component.
Note that, assuming δEx = 0 implicitly means neglecting the
possible growth of the instability in the vicinity of the shock,
which is indeed a reasonable assumption (see below). Since
δE⊥ = βwδB⊥, the above law implies εB ∼ ε

(far)
B /β2

w in Rs,
with ε

(far)
B representing a typical value of εB well into the

precursor. We compare this prediction with PIC simulations
of a pair shock of Lorentz factor γ∞|d = 10 and γ∞|d = 100
in Fig. 3. Specifically, we overplot on the εB of both PIC
simulations an ad hoc prefactor times 1/β2

w, where βw is
inferred through the ratio 〈E2

y 〉1/2/〈B2
z 〉1/2 from these simu-

lations, see Refs. [33,34]. In the γ∞|d = 10 case, the profile of
εB in the upstream suggests that the CFI is still growing close
to the shock, albeit weakly so. Notwithstanding this growth,
the predicted profile due to magnetic compression provides a
reasonable match to the observed peak of εB.

In the standard picture in which the CFI excites the growth
of a magnetic barrier that peaks at the shock, one nagging
question is: given that the growth takes from the tip of the
precursor (at x = �prec) until the shock front (at x = 0), why
would the CFI yield the right value of εB at the location
predicted by a fluid description of the shock front, to induce
there the shock transition? This question has a simple and
self-consistent answer in the present model: the peak in εB is
not associated with an explosion of the instability but, rather,
with the compression of the flow, which occurs where βw turns
subrelativistic, equivalently where the profile ξb(x) finds its
maximum, i.e., at the shock transition.

Downstream of this peak, one does not expect the compres-
sion law to hold anymore, since it is known that the magnetic
field relaxes through dissipation on short length scales in the
downstream. Comparison of the β−2

w and εB profiles suggests

−300 −200 −100 0 100 200 300 400 500
0

0.1

−300 −200 −100 0 100 200 300 400 500
0

0.1

FIG. 3. Evolution of the microturbulence strength parameter εB

in the near precursor, as a function of distance to the shock x|d
(in units of c/ωp), extracted from PIC simulations of a pair shock
of Lorentz factor γ∞|d = 10 [(a)] and γ∞|d = 100 [(b)], in black.
The MHD-like compression law εB ∝ 1/β2

w, with βw extracted
from the same PIC simulations, is overplotted in dashed green,
for comparison. The proportionality factor is chosen to match the
εB(x|d ) curve in the precursor at distances x|d � 100 c/ωp in order
to remove its possible spatial dependence. This choice corresponds
to εB = (1.2×10−2 − 1.6×10−5x|d ) β−2

w in (a) and εB = 0.026 β−2
w

in (b).

that dissipation washes out the magnetic energy by a factor
of 3–4.

IV. NONINERTIAL HEATING OF
THE BACKGROUND PLASMA

In the present section, we describe the heating physics of
the background plasma through its interaction with a micro-
turbulence that can be described as magnetostatic in the frame
Rw, but which moves with a nonuniform bulk velocity βw(x)
in the laboratory frame Rs.
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A. Main equations

Given that pitch-angle scattering takes place in the Rw

frame, while we seek to construct a stationary model in the
Rs frame, it proves convenient to write down the equation
for the distribution function of the background plasma in
a mixed coordinate system, with space variables defined in
the Rs frame, and momentum variables in the Rw frame,
as is common in cosmic ray physics [45], see in particular
Refs. [46,47] for the relativistic regime. Appendix provides
a detailed derivation of the following relativistic transport
equation, which is based on the pioneering work of Webb [46]
and which properly incorporates the noninertial effects:

γw
(
βw pt

|w + px
|w

)
∂x fp

− duw

dx

(
βw pt

|w + px
|w

)
pt

|w

[
μ|w∂p|w + 1 − μ2

|w
p|w

∂μ|w

]
fp

= pt
|w
2

∂μ|w
[
ν|w

(
1 − μ2

|w
)]

∂μ|w fp. (13)

The second term on the left-hand side describes the effective
gravity associated to the deceleration of Rw. The above equa-
tion has been implicitly averaged over the gyrophase φ|w of
particles, so that the distribution function of the background
plasma fp depends solely on x, on p|w and on μ|w ≡ px

|w/p|w.
As explained in Appendix, the scattering frequency ν|w

depends a priori on both μ|w and p|w. In quasilinear theory,
the collision term on the right-hand side, hence ν|w, would be
evaluated to second order δF 2 in the random (Lorentz) force
δF . However, quasilinear theory cannot be applied to describe
the evolution of the background plasma, whose particles are
mostly trapped in the Weibel filaments due to their relatively
low momenta in Rw. Nevertheless, the above transport equa-
tion is expected to remain valid well beyond quasilinear theory
because the collision operator is here dictated by symmetry
considerations, which force it to be transverse to p|w in the Rw

frame. Here, we thus treat ν|w as a parameter and, to simplify
the analysis, we neglect its dependence on μ|w and p|w.
As will be discussed in Sec. IV D 1, the standard scattering
frequency for a marginally unbound particle, meaning with
gyroradius rg|w � r⊥, where r⊥ is the transverse size of the
filament, provides a useful order of magnitude ν|w ∼ εB ωp.

For a given four-velocity profile uw(x) characterizing the
deceleration of Rw in Rs, the following dimensionless param-
eter κ emerges from Eq. (13):

κ ≡ ν−1
|w

duw

dx
. (14)

Where |κ| � 1, the background plasma is effectively tied to
the microturbulence, because it relaxes on a (shock frame)
time scale γwν−1

|w that is smaller than the deceleration time

scale of the turbulence, |u−1
w duw/dx|−1. Close to the shock

front, however, it will be seen that |κ| becomes of the order
of unity and larger, so that the background plasma decouples
(temporarily) from this Weibel turbulence; coupling is even-
tually restored through relaxation on length scales ν−1

|w once
the Rw frame has reached its postshock constant velocity. In
this sense, |κ| provides a useful order parameter to describe
the shock transition.

Equation (13) above can be rewritten as an infinite hierar-
chy of equations through a decomposition of fp into Legendre
polynomials:

fp(x, p|w, μ|w) =
∑

n

fn(x, p|w)Pn(μ|w). (15)

In the limit |κ| � 1, the background plasma distribution func-
tion is approximately isotropic in the Rw frame. We thus limit
the Legendre expansion to its first two terms,

fp ∼ eq fp0(x, p|w) + μ|w fp1(x, p|w), (16)

with | fp1| � fp0 if |κ| � 1, both functions being isotropic.
In the above description, the magnitude of fp1 relative to fp0

characterizes the anisotropy and/or drift velocity of the back-
ground plasma in the Rw frame. Hence, once fp1 becomes
comparable to fp0, the decomposition in Eq. (16) becomes
insufficient and should be extended to higher orders. We retain
this description for the time being, for simplicity.

Taking the average of Eq. (13), respectively weighted
by the first two Legendre polynomials, P0(μ|w) = 1 and
P1(μ|w) = μ|w, we derive the system:

γwβw pt
|w∂x fp0 − 1

3

duw

dx
pt

|w p|w∂p|w fp0 = −1

3
γw p|w∂x fp1

+ βw

3

duw

dx
pt2

|w

(
∂p|w fp1 + 2

p|w
fp1

)
, (17)

1

3
γw p|w∂x fp0 − βw

3

duw

dx
pt2

|w∂p|w fp0

= −1

3
ν|w pt

|w fp1 − 1

3
γwβw pt

|w∂x fp1

+ 1

5

duw

dx
pt

|w p|w

(
∂p|w fp1 + 2

3p|w
fp1

)
. (18)

One can obtain a useful approximation to the solution to
leading order in |κ|, by neglecting the second and third terms
on the right-hand side of Eq. (18), which determines fp1 as

fp1 � κβw pt
|w∂p|w fp0 − γw

ν|w

p|w
pt

|w
∂x fp0 (|κ| � 1). (19)

The smallness of |κ| then validates our approximations.
Again, to leading order in |κ|, one can replace the ∂x fp0 in
the above Eq. (19) equation by its value derived from Eq. (17),
neglecting all terms of order κ2 or higher. We thus end up with

fp1 � κβw

(
1 − p2

|w
3β2

w pt2
|w

)
pt

|w∂p|w fp0 (|κ| � 1). (20)

Inserting this relation in Eq. (17), one obtains to leading order
in |κ| the Fokker-Planck equation for fp0:

βw∂x fp0− βw

3uw

duw

dx
p|w∂p|w fp0

− 1

p2
|w

∂p|w
[
Dp|w p|w p2

|w∂p|w fp0
] = 0. (21)

Some terms linear in ∂p|w have been neglected because they
renormalize the inertial term by small corrections of the order

033209-7



MARTIN LEMOINE et al. PHYSICAL REVIEW E 100, 033209 (2019)

of |κ| or higher. In agreement with our expansion to lowest
order in κ , the above equation also neglects spatial diffusion,
which would otherwise arise through the second term in the
right-hand side of Eq. (19). The momentum space diffusion
coefficient reads

Dp|w p|w = ν|wβ2
w

3γw
κ2

(
1 − p2

|w
3β2

w pt2
|w

)2

pt2
|w. (22)

The momentum diffusion term in Eq. (21), which character-
izes the stochastic heating due to the friction of particles on
the microturbulence, scales with the square of the deceleration
rate. The second term in this equation represents the heat-
ing induced by adiabatic plasma compression. This Fokker-
Planck equation can be seen as a simplified one-dimensional
(1D) version of the more general transport equation derived in
Refs. [46,47]. We also note that Ref. [2] quotes in its equation
(3.46) a diffusion coefficient analogous to Eq. (22) derived by
Krimsky in the subrelativistic limit (the corresponding paper
is not available).

At the microscopic level, dissipation results from stochas-
tic acceleration of the background plasma particles in the
sheared velocity flow that carries the turbulence at velocity
βw(x) [48]. The general relativistic transport equation given
in Ref. [47] also describes momentum diffusion driven by
a shear term, which takes a form ∝ (duw/dx)2 as above,
and an acceleration (or deceleration) term, which in the rel-
ativistic limit also takes the above form. Alternatively, this
heating mechanism can be seen as some form of noninertial
or differential first-order Fermi acceleration: even though the
turbulence is magnetostatic in the Rw frame, acceleration
occurs because of the existence of an external force, which
keeps forcing the particles to interact with the turbulence,
and because the velocity of this turbulence changes at ev-
ery time step. The overall dissipative process can thus be
pictured as a form of collisionless Joule heating, in which
the effective gravity associated with the deceleration of the
plasma plays the role of the driving electric field, while
pitch-angle scattering on the magnetostatic turbulence ensures
momentum transfer. Finally, at the fluid level, the dissipative
term becomes a form of viscosity.

B. Moments

As a result of the mixed coordinate system, the macro-
scopic quantities must be defined with care. In the laboratory
frame Rs, the mean current density and energy-momentum
tensors are defined as

jαp = 2π

∫
d p|wdμ|w

p2
|w

pt
|w

pa
|we�α

a fp,

T αβ
p = 2π

∫
d p|wdμ|w

p2
|w

pt
|w

pa
|w pb

|we�α
a e�β

b fp. (23)

The tetrad e�α
a , which relates the Rw to the Rs frame, is

defined in Appendix, see Eq. (A7).
The above formulas are general and valid to all orders in

the expansion of fp into Legendre polynomials. Restricting

this development to its first two terms as above, we obtain

jt
p = γw4π

∫
d p|w

[
p2

|w fp0 + 1

3
βw

p3
|w

pt
|w

fp1

]
,

jx
p = γw4π

∫
d p|w

[
βw p2

|w fp0 + 1

3

p3
|w

pt
|w

fp1

]
,

T tx
p = γ 2

wβw4π

∫
d p|w p2

|w pt
|w

(
1 + p2

|w
3pt2

|w

)
fp0

+ 1

3
γ 2

w

(
1 + β2

w

)
4π

∫
d p|w p3

|w fp1. (24)

The average drift velocity in the laboratory frame is jx
p/ jt

p,
which takes the form (βw + βp|w)/(1 + βwβp|w), with drift
velocity βp|w in the Rw frame

βp|w = 1

3

∫
d p|w p3

|w fp1/pt
|w∫

d p|w p2
|w fp0

. (25)

For a Maxwellian distribution characterized by a (proper)
temperature Tp � m, inserting Eq. (20) gives βp|w � −κβw.
For a relativistically hot plasma, with Tp � m, one obtains
βp|w � −κβw[1 − 1/(3β2

w)].
Taking the moments of Eq. (A11), we obtain the macro-

scopic equations of conservation of the current density and
energy flux in the laboratory frame:

d

dx
jx
p = 0,

d

dx
T tx

p = −uw

3
ν|w4π

∫
d p|w p3

|w fp1. (26)

To obtain these equations, one must multiply Eq. (A10),
respectively, by 1 and pa

|we�t
a , then integrate over momentum

space, paying attention to the spatial dependence of γw. In
the absence of scattering, the energy-momentum tensor of
the background plasma is exactly conserved in the laboratory
frame, since it is an inertial frame; a finite value of κ , however,
implies a finite fp1 [see Eq. (20) or Eq. (25)], hence a source
term for the energy flux evolution.

To leading order in |κ|, one can make explicit the heating
process by replacing fp1 with its expression given in terms of
fp0 [Eq. (20)] in Eq. (26) above. The algebra is cumbersome
but it simplifies considerably in either the nonrelativistic
Tp � m or ultrarelativistic Tp � m limits, as now detailed.

In the nonrelativistic limit, Tp � m, we split the energy-
momentum tensor in its rest-mass and internal energy compo-
nents, pp0 denoting the pressure associated with fp0. To lowest
order in pp0/(np0m), one has

T tx
p0 � γwm jx

p0 + 5

2
γ 2

wβw pp0. (27)

Then, the moment of the Fokker-Planck equation yields

βw
d

dx
pp0 + 5

3

βw

uw

duw

dx
pp0 − 2

3

κ2βwν|w
γ 2

w

jx
p0 = 0. (28)

This equation describes both adiabatic heating through plasma
compression (second term) and stochastic heating through
turbulence-induced friction (third term). Assuming current
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conservation for jx
p0, which holds to lowest order in |κ|, the

above can be rewritten for the temperature as

d

dx

(
|uw|2/3 Tp

m

)
= 2

3

κ2β2
wν|w

|uw|1/3
. (29)

This compact form makes it clear that in the absence of scat-
tering the background plasma can only be adiabatically heated
according to the law |uw|2/3Tp/m = const. This law properly
describes the adiabatic compression of a 3D nonrelativistic
gas along one spatial dimension. Dimensional analysis of
Eq. (29) further suggests that on a length scale of variation of
the four-velocity, i.e., �x � |uw/κ|, the ratio of Tp/m varies
by an amount of order |κ|; hence, the background plasma
becomes relativistically hot once deceleration takes place and
|κ| approaches unity. Most of the heating is thus expected to
occur in the shock transition.

Consider now the ultrarelativistic limit, Tp � m, in which
case the plasma pressure evolves according to

βw
d

dx
pp0 + 4

3

βw

uw

duw

dx
pp0

− 4

3

(
1 − 1

3β2
w

)2
κ2β2

wν|w
γw

pp0 = 0. (30)

One thus derives the equation for the temperature, assuming
again current conservation to lowest order in |κ|,

d

dx

(
|uw|1/3 Tp

m

)
= 4

3

(
1 − 1

3β2
w

)2
κ2β2

wν|w
|uw|2/3

Tp

m
, (31)

which indicates that heating should become exponentially fast
inside the shock transition, once |κ| takes values of order unity
and larger.

C. Numerical evaluation

The previous analytical approximations, obtained in the
limit |κ| � 1, offer useful insight into the nature and the effi-
ciency of the heating process, but they cannot cover the whole
length of the precursor, in particular the near-shock region.
For a more accurate description, we here present the results
of a numerical integration of the dynamics represented by
Eq. (13).

One way to proceed is to decompose fp in Legendre
polynomials up to some order L, as in Eq. (16) for L=1,
then integrate numerically the analog system of partial dif-
ferential equations in p and x, or to evaluate the moments of
these equations to obtain a hierarchy of fluidlike first-order
differential equations in x. However, the convergence of the
decomposition in Legendre polynomials is usually slow, so
that it becomes necessary to push this decomposition to high L
in order to solve the dynamics close to the shock front. Indeed,
the closer to the shock front, the stronger the anisotropy of fp

in the Rw frame, due to the decoupling of the plasma from
the Weibel turbulence. In practical terms, we find that it is
possible to follow the dynamics of the background plasma up
to x ≈ 102 c/ωp with L = 2, with a numerical integration that
is not devoid of instabilities in p space.

We thus follow a different approach here, making use
of Monte Carlo integration of particle trajectories subject to
pitch-angle diffusion in a noninertial frame. Our parallelized

solver stochastically propagates a large number of particles in
a box of size close to that of the shock precursor. As above,
the deceleration law is characterized by uw(x). Each particle
is subject, in the Rw frame, to an Itô-type stochastic equation

dμ|w = √
2ν|wdt|wξ,

d px
|w = p|w dμ|w − (

βw pt
|w + px

|w
)duw

dx
dt|w, (32)

where ξ ∼ N (0, 1) is a normally distributed random number
representing white noise, and at all times, the transverse
momentum is set according to p⊥|w =

√
1 − μ2

|w p|w.
In the absence of the inertial term, i.e., the second term on

the right-hand side of the second equation, the norm p|w is a
constant and no heating occurs. The time step is taken to be
constant in the shock-front frame. The equations of motion,
however, are solved in the noninertial Rw frame, using the
time step

dt|w = pt
|w dt

γw
(
βw px

|w + pt
|w

) , (33)

with, in practice, dt = 0.01ω−1
p . Particles are injected far

from the shock, isotropically in Rw with a temperature T∞ =
0.01 m, in accordance with that used in our PIC simulations.

This Monte Carlo model is characterized by two parame-
ters: ν|w and uw(x). We retain ν|w as a free parameter, but fix
the deceleration law uw(x) according to one of our theoretical
models developed in Paper I [34] and validated on our large-
scale PIC simulations. This model describes the nonlinear
phase of the CFI as a local quasistatic pressure equilibrium
between the particle populations and the magnetic field in Rw,
borrowing from the study of Ref. [49]. This approximation
implies that the physical conditions evolve slowly enough
throughout the precursor, so that the system is close to steady
state at every location. Detailed comparisons between this
model and our reference PIC simulations show that it is able
to capture, to within a factor of two, the (subrelativistic)
relative velocity βw|p. The simulations provide the energy den-
sity, mean drift four-velocity and temperature of the various
species, which are used as inputs of the model.

As discussed in Sec. III B, our simulations distinguish
background plasma from suprathermal particles according to
the sign of their x momentum and the number of reversals
they have experienced. This distinction becomes irrelevant
within the last skin depths to the shock front because the
background plasma particles then suffer strong deflections.
Hence, the quantities up|d and Tp extracted from the simulation
become inaccurate there, and so does βw|p by implication.
Therefore, we complement the profile of uw(x) with a plateau
once uw(x) reaches the shock-crossing value −1/

√
3 (for a

2D3V simulation). This plateau extends over to negative x
values and is not visible in the following figures because of
the choice of a logarithmic scale in x.

Because our Monte Carlo model is defined in the shock
frame, its results must be Lorentz transformed to the down-
stream frame in which the PIC simulations are run. We
should also point out that the present model assumes a steady-
state situation, while PIC simulations are by definition time
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dependent; therefore the comparison between the two turns
out to be slightly delicate. For one, we provide this compar-
ison at a fixed (simulation frame) time t|d, not at a fixed Rs-
frame time. Moreover, in our PIC simulations, the precursor
enlarges in proportion to t|d—the time of the simulation—
while the maximal energy of accelerated particles inside this
precursor increases roughly with

√
t|d, so that their diffusion

length increases as t|d. As discussed in Paper III [35], one may
thus consider that, at all times, a portion of the precursor is
in steady state, because the scattering time of the particles is
smaller than t|d, while the rest of the precursor is populated
by particles with an energy so large that they have not yet
scattered significantly. Since the typical energy of particles
increases with distance to the shock, as a result of the smaller
scattering length of lower-energy particles, the near precursor,
close to the shock front, is expected to be in steady state, while
the far precursor should be described with a time-dependent
model. In the γ∞ = 17 (γ∞ = 173) simulation that we use as
a test bed here, the steady-state approximation seems to be
valid for x � 103ω−1

p (x � 2×103ω−1
p ), while the precursor

extends up to 2×103ω−1
p (3.5×103ω−1

p ).
We thus use our Monte Carlo code with the above u(th)

w (x)
(rather, an interpolation of it) as input for the deceleration law
to obtain theoretical predictions for up|d(x) and Tp(x), which
we compare with the values measured in PIC simulations
in Figs. 4, 5, and 6. We consider three representative values
for our scattering frequency parameter: ν|w = 1, 0.1, 0.01 ωp

represented, respectively, in light, medium, and dark red in
those figures. In each of these figures, the left (right) panel
provides the comparison for γ∞ = 17 (γ∞ = 173).

Figure 4 presents the four-velocity profile of the back-
ground plasma as a function of distance to the shock. As the
scattering frequency increases, up|d lies closer and closer to the
input theoretical profile of uw|d, as one would expect, because
a large scattering frequency implies a stronger coupling of the
plasma to the turbulence. Although the Monte Carlo curves do
not account for the detailed evolution of the measured back-
ground plasma four-velocity, they provide a reasonable match
to the overall PIC profile. We emphasize that our parameter
ν|w is constant, understood as an average quantity over the
precursor, whereas one should rather expect the exact ν|w to
depend on x, just like other quantities. At x � 1 c/ωp (in-
cluding negative values not visible in these figures), the profile
uw|d relaxes further to subrelativistic values, and so does the
background plasma on length scales of tens of c/ωp, until it
eventually matches the asymptotic uw/vertd, with a temperature
a factor of ∼ 2 or so larger than the Monte Carlo curves shown
in Fig. 5. The Monte Carlo calculations indicate that larger
scattering frequencies lead to smaller postshock temperatures.
This can be understood as follows: as ν|w�prec → +∞, the
background plasma behaves as an ideal fluid, therefore it
obeys the adiabatic compression law, see Eqs. (29), (31). This
cannot suffice of course, as the large entropy jump at the shock
requires a significant amount of dissipation, which scales in
inverse proportion to νw, see Eqs. (29), (31) in the small
|κ| limit. A value ν|w ∼ 0.01ωp seems to account reasonably
well for the shock jump condition for both values of γ∞, see
Fig. 6, which combines the above profiles in a trajectory of the
background plasma in the plane |up|d| vs Tp. The black curves

100 101 102 103

10−1

100

101

102

100 101 102 103

10−1

100

101

102

FIG. 4. Profiles of the background plasma four-velocity |up|d| in
the simulation frame Rd as a function of distance to shock x|d (in
units of c/ωp). In red, the results of the Monte Carlo computation,
for different values of the scattering frequency (light red: ν|w = ωp;
medium red: ν|w = 0.1ωp; and dark red: ν|w = 0.01ωp); in black,
the value measured in the PIC simulation. We stress that the values
extracted from the PIC simulation at x � 10c/ωp are inaccurate
because the distinction between background plasma particles and
shock-heated particles becomes difficult. The dotted gray line shows
the four-velocity |uw|, inferred from the PIC simulation, and used as
input in the Monte Carlo computation. (a): γ∞|d = 10 corresponding
to γ∞ = 17; (b): γ∞|d = 100 corresponding to γ∞ = 173.

plot the trajectories extracted from the PIC simulations, while
the red curves correspond to the Monte Carlo simulations with
different values of ν|w. The dotted line shows the trajectory
that would be expected for pure adiabatic compression of
a subrelativistic 2D gas, Tp ∝ |up|−2/3. As observed above,
the trajectories corresponding to larger values of ν|w remain
closer to these adiabatic trajectories, and would provide an
exact match in the limit ν|w�prec → +∞. These plots show a
rather nice agreement of the overall trajectories for our best-fit
scattering frequency ν|w = 0.01ωp.

The left panel of Fig. 5 for γ∞ = 17, however, reveals
a mismatch between the measured temperature and that
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FIG. 5. Same as Fig. 4 for the profiles of the temperature Tp

as a function of distance to shock x|d (in units of c/ωp), in the
simulation frame. We stress that the values extracted from the PIC
simulation at x � 10c/ωp are inaccurate because the distinction
between background plasma particles and shock-heated particles
becomes difficult. The dashed gray line indicates the expected final
values of Tp corresponding to the fluid shock-crossing conditions for
a relativistic unmagnetized shock in two dimensions.

modeled at distances 102c/ωp � x � 103 c/ωp. We interpret
this as a transient effect, which appears in this simulation
of duration 3600ω−1

p , but that fades on longer time scales;
this effect, in particular, becomes substantially milder in the
simulation γ∞ = 173 of duration 6900 ω−1

p and it is absent
of our longest simulation of duration 10700 ω−1

p for γ∞ =
17.3 This sudden heating of the background plasma from
Tp � 10−2m to Tp � 10−1m over a few hundreds of c/ωp

can be related to the oscillatory slowdown feature in the
plasma four-velocity at x � 600–1000 c/ωp (see Fig. 4), and
more particularly to the change in the momentum distribution

3We do not use this simulation to benchmark our model because
its diagnostics cannot disentangle the suprathermal and background
plasma particles finely enough for our present purposes.
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FIG. 6. Same as Fig. 4, but now representing the trajectory of the
background plasma in the plane (Tp, |up|). We stress that the values
extracted from the PIC simulation at large Tp are inaccurate because
the distinction between background plasma particles and shock-
heated particles becomes difficult. The dashed gray line indicates
the expected final values of Tp corresponding to the fluid shock-
crossing conditions for a relativistic unmagnetized shock in two
dimensions (the corresponding value of ux

p is zero in the simulation
frame). The dotted line shows the adiabatic law of compression for a
nonrelativistic gas, Tp ∝ |ux

p|−2/3.

of suprathermal particles: at x � 103 c/ωp, the suprathermal
plasma is dominated by the particles that were specularly
reflected off the mirror at early times, while at x � 103 c/ωp,
the large inertia particles that result from acceleration on the
shock front form the bulk of this population. We expect that
on longer time scales, this preheating effect would fade away,
as for other simulations, and that the theoretical Tp(x) curve
would better match the PIC simulations.

D. Discussion

1. Scattering frequency of the background plasma

Our model indicates a best-fit value of ν|w = 0.01ωp for the
effective scattering frequency of the background plasma in the
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Rw frame. As discussed in Paper I [34], the degree of nonlin-
earity of the filamentation of the background plasma in Rw

can be quantified using the parameter �p|w � e|βp|w|δAx/Tp,
with δAx the x component of the electromagnetic potential
four-vector. In our PIC simulations, this nonlinearity param-
eter is smaller than unity far in the precursor, but close
to unity in the near precursor, indicating that a significant
fraction of background plasma particles are trapped in the
filaments, all the more so within hundreds of skin depths of
the shock front. Individual particles are trapped in a filament
if their gyroradius rg|w < r⊥, with r⊥ ∼ 10 ω−1

p the filament
transverse radius. Defining γ p|w the typical Lorentz factor of a
background plasma particle in Rw, i.e., γ p|w � max[1, Tp/m]
(neglecting the bulk drift velocity in front of the thermal
velocity in Rw), we find that most particles are trapped
if Tp/m < (r⊥ωp)2εB (for Tp < m), or Tp/m < (r⊥ωp)ε1/2

B
(Tp > m).

For those trapped particles, one can form an estimate of the
scattering frequency as follows. Assume that trapped particles
execute oscillating orbits inside the filaments, bouncing on
the magnetic field barrier that reaches a peak at r⊥. The
betatron frequency characterizing those oscillations is ωβ|w =√

π/2(r⊥rg|w/βx|w)
−1/2

, with βx|w the x velocity of the par-
ticle. In the following, we assume βx|w ∼ 1, corresponding
to Tp � m, as observed in the near precursor. At each re-
bound, the particle is deflected by an angle �α|w ∼ ±r⊥ωβ|w.
However, the force remains coherent over the trajectory of the
particle inside the filament, to decohere only once the particle
has exited the filament over a parallel coherence length �‖,
on a time scale �t|w ∼ �‖|w. Therefore, the angular diffusion
frequency can be written

ν
(trapped)
|w = �α2

|w
�t|w

∼ r⊥
�‖|w

ε
1/2
B γ −1

p|wωp, (34)

where γ p|w represents the typical Lorentz factor of back-
ground plasma particles in Rw. For typical values of
r⊥/�‖|w ∼ 0.1, εB ∼ 0.01, and γ p|w ∼ 1, one obtains the same
order of magnitude as the best-fit value, ν|w ∼ 0.01 ωp.

Consider now the untrapped population, with gyroradius
rg|w � r⊥. In this case, the standard estimate of the scattering
frequency leads to ν|w ∼ r⊥/r2

g|w, i.e.,

ν
(untrapped)
|w ∼ (r⊥ωp) εB γ −2

p|wωp, (35)

which also provides a reasonable order of magnitude for
r⊥ωp ∼ 1–10, εB ∼ 0.01, and γ p|w ∼ 1.

The average scattering frequency of the background
plasma can also be directly estimated from our PIC simula-
tions by the following counting argument. In the PIC simu-
lations, the background plasma particles are defined as those
particles that propagate towards the −x direction and that have
not undergone any turnaround. If the scattering frequency
were exactly zero, then the current density u(PIC)

p n(PIC)
p —the

superscript (PIC) referring to how these particles are defined
in the PIC simulation—would be exactly conserved. At finite
scattering frequency, however, this current density must de-
crease at a spatial rate ν|w/γw|d along the plasma trajectory
in the simulation frame. Figure 7 shows the spatial profile of
this current density for our two reference PIC simulations,

100 101 102 103
0

1

101 102 103

FIG. 7. Spatial profile of γp|dβp|dnp/(γ∞|dβ∞|d n∞) extracted
from our two reference PIC simulations, vs the distance to the shock
x|d (in units of c/ωp). This quantity decreases towards the shock as
a result of a finite scattering frequency, because once the momentum
of a particle has changed sign, this particle is no longer characterized
in this postprocessing as a background plasma particle. This figure
shows that about half of the particles are scattered at least once over
the crossing of the precursor.

indicating that indeed, over the crossing of the precursor,
about half of the background plasma particles have expe-
rienced at least one turnaround. One can then approximate
the scattering frequency with ν|w ∼ 〈γw|d〉/�prec|d. For γ∞|d =
10, we estimate an average 〈γw|d〉 ∼ 10 over the precursor
length scale �prec|d ∼ 103ω−1

p , see Figs. 1 and 2 in Paper I
[34], giving ν|w ∼ 0.01ωp. For γ∞|d = 100, we estimate an
average 〈γw|d〉 ∼ 30 over the precursor length scale �prec|d ∼
2×103ω−1

p , see Figs. 1 and 2 in Paper I [33,34], giving
ν|w ∼ 0.015ωp, both in good agreement with the theoretically
inferred value.

2. Possible role of longitudinal electric fields

The above microscopic model of the heating and the
deceleration of the background plasma neglects the possible
contribution of longitudinal electric fields. Accordingly, we
do not expect any coherent electrostatic component δEx to
arise in the present case of a pair shock. One does, however,
expect an inductive δEx associated to growth of the CFI in the
precursor and an electrostatic δEx associated to the broadband
nature of the CFI. Neither of these would be coherent, since
the inductive component should be modulated along the y
direction as δBz, while the electrostatic component should be
modulated at least along x with reversal scale ∼ k−1

x .
As already mentioned, the energy density of the longitu-

dinal electric fields that we observe in the PIC simulations is
significantly smaller than that of the magnetic field, even when
boosting back to the Rw frame, see Ref. [34] for a detailed
discussion. Nevertheless, in order to assess the contribution of
such electric fields to the dynamics of the background plasma,
we have recorded the trajectories of a large set of particles,
and measured the various contributions to the electromagnetic
forces that they suffer in several regions of the precursor.
These simulations indicate that the longitudinal electric forces
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are dominated by the transverse electromagnetic forces in the
near precursor, where most of the heating takes place, but
prevail in the far precursor. This may be expected on the
grounds that the Weibel frame is itself well defined in the near
precursor, but not necessarily so in the far precursor because
of the stronger contribution of oblique modes.

We also note that the dynamics of a pair shock differs
significantly from that of electrons in an electron-ion shock, in
which longitudinal electric fields are observed to play an im-
portant role [31]. In the present case, electrons and positrons
carry the same inertia and account for the totality of the
background plasma. Therefore, in the shock frame, the shock
transition can be described in terms of momentum transfer
between the longitudinal and the transverse directions through
angular relaxation, instead of heating, even though in the
noninertial Rw frame, particle energization does occur. In our
model, this angular relaxation occurs gradually over the near
precursor, as the plasma slowly relaxes in a turbulence frame,
which itself decelerates because of the growing influence of
the suprathermal particles. Accordingly, the hydrodynamic
shock jump conditions indicate that the energy per particle
is conserved between far upstream and far downstream [5].
By contrast, the electrons of the background plasma in an
electron-ion shock form an open system that draws energy
from the ion reservoir, so that electron energization truly
occurs in the shock frame.

One may tentatively extrapolate the present model to the
case of electron-ion shocks as follows. In these shocks, the
inertia carriers are ions and therefore, in a first approximation,
their dynamics is likely similar to that of the pairs in a pair
shock. Yet the disparity in inertia between ions and electrons
should translate into different scattering frequencies, which
would break the equivalence between their trajectories in the
effective gravity field associated with the slowdown of Rw.
Hence, one may then expect a coherent longitudinal δEx field
to arise and to contribute strongly to electron heating, at the
expense of the ions. We note that such a field could not have
been seen in the simulations of Ref. [31], because a symmetric
counterstreaming configuration was then adopted, in which
there is no net βw, hence not net deceleration. Such study is
left for further work.

V. SUMMARY, CONCLUSIONS

The present paper is the second in a series of papers
that address the microphysics of a relativistic unmagnetized
collisionless pair shock. In Paper I [34], it was argued that
the filamentation instability, which represents the leading
microinstability in the precursor of such collisionless shock
waves leads to the generation of a microturbulence of an
essentially magnetic nature in a particular reference frame
noted Rw, which moves at subrelativistic velocities relative to
the background (unshocked) plasma. The present paper makes
use of this result to address the issue of deceleration and heat-
ing of the background plasma, from its asymptotic values u∞
(four-velocity, |u∞| � 1) and T∞ (temperature, T∞ � m) out-
side the precursor, to the downstream values that are expected
to match the shock-crossing values obtained in a fluid limit.

The Rw frame decelerates in the precursor, because of the
presence of suprathermal particles with an x-dependent pro-

file. As discussed in Paper I, indeed, the relative velocity βp|w
of the background plasma in the Rw is essentially controlled
by ξb, which represents the pressure of these suprathermal
particles in units of the incoming asymptotic momentum flux
u2

∞n∞m. As background plasma particles cross the precursor,
they encounter a finite (and, actually, steadily growing) ξb,
which implies an everywhere nonvanishing velocity |βp|w|. At
a fixed background plasma velocity βp in the shock frame,
this implies a smaller |βw| velocity of Rw in this shock
frame, hence a deceleration of the Rw frame. Because of the
finite value of ν|w, the background plasma particles tend to
relax towards isotropy at all times in the Rw. This interplay
between the background plasma and the microturbulence in
the presence of the ξb profile leads to the deceleration of Rw

and the background plasma in the shock frame.
As argued in this paper, the above expresses how mo-

mentum is transferred from the suprathermal beam to the
background plasma via the microturbulence. In order to obtain
the deceleration up(x), we have used a fluid model, which
expresses the conservation of energy and momentum between
suprathermal particles and the background plasma in the
shock precursor. We obtain the law |up(x)| ≈ ξb(x)−1/2 in
the deceleration region where |up| � |u∞|, or equivalently
ξbu2

∞ � 1. We have compared this prediction to the results
of PIC simulations for γ∞ = 10 and γ∞ = 100, and obtained
a satisfactory agreement with the same numerical prefactor
of the order of unity in both cases. This law also explains
why the typical energy density of suprathermal particles at
injection is ξb ∼ 0.1: it is at such values that the background
plasma slows down to subrelativistic velocities, therefore, that
the shock transition occurs.

In our description, unmagnetized collisionless shocks are
akin to cosmic-ray-mediated shocks in which the suprather-
mal particles transfer momentum to the background plasma
through their scattering off the turbulence, which is itself car-
ried by the background plasma [2,38]. We show indeed that,
within a fluid picture, the growth of the microturbulence plays
a negligible role in slowing down the background plasma.
Hence, our model departs from the common view that the
shock transition is mediated by the buildup of an electromag-
netic barrier sitting on the shock front. In the present model,
the microturbulence can be described at the fluid level as an
MHD-like turbulence carried by the background plasma over
most of the precursor, because it is essentially magnetic in
the Rw frame, which nearly coincides with the proper frame
of the background plasma. Our model then predicts that the
strength parameter εB, which represents the microturbulence
energy density in units of the incoming momentum flux
u2

∞n∞m, must increase as 1/β2
w through the compression of

the transverse magnetic field lines. And indeed, this law is
found to reproduce nicely the peak of the εB profile seen
in PIC simulations at the shock transition. This peak thus
does not correspond to a suddenly growing microinstability,
but rather to the compression of magnetic field lines as Rw

becomes subrelativistic relative to the shock front.
At the kinetic level, the microturbulence plays of course

an important role, through pitch-angle scattering, in slowing
down and heating the background plasma. To describe this
process, we have written a kinetic equation for the distri-
bution of the background plasma, with the spatial variable
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x along the shock normal expressed in the Rs shock frame
where a stationary solution is sought, and with momentum
variables expressed in the Rw frame. The magnetic nature of
the microturbulence in this Rw frame allows us to express
the effective collision operator as pure pitch-angle diffusion,
characterized by an average scattering frequency ν|w. As the
background plasma particles are effectively magnetized in the
microturbulence, we treat ν|w as a parameter.

Here, a crucial point is that the Rw frame is locally but
not globally inertial. Therefore, an inertial correction appears
in the kinetic equation for the distribution function, which
takes the form of an effective gravity duw/dx associated with
the slowdown of Rw. The background plasma particles then
experience the analog of collisionless Joule heating, in which
the effective gravity plays the role of the driving electric field,
while their scattering off the microturbulence substitutes itself
for collisions. At the microscopic level, particles are heated in
Rw through some form of stochastic shear acceleration.

In order to follow the plasma heating over all the precursors
and to make detailed comparisons with PIC simulations, we
have developed a Monte Carlo code, which advances particles
subject to random pitch-angle diffusion at a rate ν|w in a
noninertial frame Rw. We find that, for a same value ν|w ∼
0.01ωp and a deceleration profile uw(x) borrowed from our
theoretical modeling in Paper I [34], it is possible to repro-
duce satisfactorily the trajectory of heating and deceleration
(up vs Tp) observed in our two reference PIC simulations
with γ∞ = 17 and γ∞ = 173. We show that this value of
the effective scattering frequency is not only theoretically
motivated for background plasma particles interacting with
magnetized Weibel filaments, but is also supported by direct
measurements from our PIC simulations.

Our analytical model is thus able to describe the main
features of the deceleration and heating of the background
pair plasma as it flows across the precursor of a relativistic
collisionless shock front. In subsequent papers of this series,
we will discuss the kinetics of the suprathermal beam particles
and the microturbulence dynamics in the shock precursor.
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APPENDIX: EFFECTIVE FOKKER-PLANCK DYNAMICS
IN A NONINERTIAL FRAME

The full relativistic transport equation in the diffusion
approximation can be found in detailed form in Refs. [46,47].
For self-consistency, we borrow these methods to derive here
our simplified one-dimensional transport equation in the mi-

croturbulence. The first step is to write the Vlasov equation in
its relativistic formulation, as

dxμ

dτ

∂

∂xμ
f + d pi

dτ

∂

∂ pi
f = 0, (A1)

where τ denotes proper time, and the distribution function al-
ready incorporates the mass-shell condition. It is thus regarded
as a function of p, not p0. It is normalized as usual, with the
four-current density defined as

jμ =
∫

d3 p

p0
pμ f . (A2)

We now assume that the turbulence is purely magnetic in a
frame moving at βw with Lorentz factor γw and we rewrite the
above Vlasov system in a mixed coordinate system, with the
spatial coordinates in the shock frame Rs, and the momenta
in the (wave) Weibel frame Rw. The instantaneous or local
Lorentz transform from the shock frame to the Weibel frame
is characterized by the tetrad ea

α and its inverse e�α
a :

pa
|w ≡ ea

α pα, pα ≡ e�α
a pa

|w. (A3)

Primed quantities and latin letters a, b, c are associated to the
locally (but not globally) inertial frame Rw, while unprimed
symbols and greek indices are associated to the (globally
inertial) laboratory frame Rs.

In the mixed coordinate system, the Vlasov equation reads

pa
|we�μ

a

∂

∂xμ
f + m

d pi
|w

dτ

∂

∂ pi
|w

f = 0, (A4)

with

m
d pi

|w
dτ

= q F i
a pa

|w − �i
ab pa

|w pb
|w, (A5)

where m denotes the mass of the particles, F ab represents
the total (coherent + turbulent) electromagnetic field strength
tensor in the Rw frame, indices i, j, . . . run over spatial values
1–3, while a, b, c, . . . run over all four indices. The connection
�i

ab accounts for the inertial terms in the comoving wave
frame; it is expressed as

�a
bc ≡ −e�β

b e�γ
c

∂

∂xγ
ea
β. (A6)

It is not symmetric in its two lower indices, because the tetrad
frame is not a coordinate basis. For our particular problem, the
nonzero components of the tetrad and its inverse are

et
t = ex

x = e�t
t = e�x

x = γw,

et
x = ex

t = −e�t
x = −e�x

t = −γwβw, (A7)

ey
y = ez

z = e�y
y = e�z

z = 1,

so that the only nonzero components of the connection are

�t
xt = �x

tt = 1

βw
∂tγw + ∂xγw,

�t
xx = �x

tx = ∂tγw + 1

βw
∂xγw. (A8)

We further approximate f � 〈 f 〉 + δ f with δ f the fluctu-
ating part of f . The general Vlasov equation then has a formal
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solution [50,51]:

pa
|we�μ

a

∂

∂xμ
〈 f 〉 +

〈
d pi

|w
dτ

∂

∂ pi
|w

〉
〈 f 〉

= q2
∫

dτ

〈
δF i

a pa
|w

∂

∂ pi
|w

G(t ; τ ) δF j
b pb

|w
∂

∂ pj
|w

〉
〈 f 〉,

(A9)

where G(t ; τ ) formally represents the propagator connecting
phase space values at time τ to phase space values at time t . In
standard quasilinear theory, one approximates the right-hand
side of the above equation to lowest order in the powers of
the stochastic force, which amounts to use the unperturbed
trajectory in the propagator.

Here we do not make this approximation, which would fail
badly in the case of the background plasma. We first note
that our assumption of a magnetostatic turbulence in the Rw

frame implies that the scattering operator on the right-hand
side of Eq. (A9) must be purely transverse to p|w. In spherical
coordinates, writing μ|w the cosine of the angle of p|w with
x and averaging over the azimuthal angle φ, this scattering
operator and the resulting equation take the general form:

γw
(
pt

|w + βw px
|w

)
∂t 〈 f 〉 + γw

(
βw pt

|w + px
|w

)
∂x〈 f 〉

−
(

∂tγw + ∂xγw

βw

)
pt

|w px
|w∂px

|w〈 f 〉

−
(

∂tγw

βw
+ ∂xγw

)
pt2

|w∂px
|w〈 f 〉 + qEx pt

|w∂px
|w〈 f 〉

= pt
|w
2

∂μ|w
[
ν|w

(
1 − μ2

|w
)]

∂μ|w〈 f 〉, (A10)

where ν|w is a scattering frequency, which a priori depends
both on μ|w and p|w. We do not aim to calculate ν|w from
quasilinear theory; we rather treat this scattering frequency as
a parameter of the model.

We now assume a steady-state regime in the shock rest
frame, so that Eq. (A10) above further simplifies down to our
main equation:

γw
(
βw pt

|w + px
|w

)
∂x〈 f 〉 − 1

βw

dγw

dx

(
βw pt

|w + px
|w

)
pt

|w∂px
|w〈 f 〉

+ qEx pt
|w∂px

|w〈 f 〉 = pt
|w
2

∂μ|w
[
ν|w

(
1 − μ2

|w
)]

∂μ|w〈 f 〉,
(A11)

and, of course,

∂px
|w ≡ μ|w∂p|w + 1 − μ2

|w
p|w

∂μ|w . (A12)

The term proportional to dγw/dx characterizes the effective
gravity felt by the background plasma particles in the non-
inertial frame Rw. In the main part of the text, we omit
the brackets 〈〉 and simply write f for the average part of
the distribution function. As we are interested in this paper
in the dynamics of a pair plasma, we set Ex = 0 because of
uniform charge neutrality. This electric field is bound to play
a key role in heating the electrons in an electron-ion shock;
we defer this discussion to a future study.
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