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Depinning dynamics of two-dimensional dusty plasmas on a one-dimensional periodic substrate
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We investigate the depinning dynamics of two-dimensional dusty plasmas driven over one-dimensional
periodic substrates using Langevin dynamical simulations. We find that, for a specific range of substrate
strengths, as the external driving force increases from zero, there are three different states, which are the
pinned, the disordered plastic flow, and the moving ordered states, respectively. These three states are clearly
observed using different diagnostics, including the collective drift velocity, static structural measures, the particle
trajectories, the mean-squared displacements, and the kinetic temperature. We compare the observed depinning
dynamics here with the depinning dynamics in other systems.
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I. INTRODUCTION

There are a wide variety of particlelike systems that, when
coupled to some form of underlying substrates, exhibit de-
pinning under an applied drive [1]. These include vortices in
type-II superconductors [2–5], colloids [6–8], Wigner crystals
[9,10], and pattern-forming systems [11,12]. For collections
of interacting particles, the depinning can be either elastic
[1,13], in which all the particles maintain the same neighbors
and retain topological order during depinning, or plastic,
where neighbors exchange with each other and topological
disorder can be generated [1,14]. For systems that exhibit
plastic depinning, at higher drives beyond depinning, further
transitions can occur from a plastically moving state into a
moving crystal [3–5,15] or moving smectic state [4,5,16,17]
which are associated with the emergence of hexatic ordering.

Another class of system that can be modeled as an as-
sembly of interacting particles is complex or dusty plasmas
[18–26], which refer to a partially ionized gas containing
highly charged micron-sized dust particles. Under typical lab-
oratory conditions, these dust particles are negatively charged
to ≈ − 104e, so that they are strongly coupled, exhibiting
collective solidlike [25,27] and liquidlike [28,29] behaviors.
These dust particles can be levitated and confined in the
plasma sheath by an electric field, so that they can self-
organize into a single-layer suspension with the negligible
out-of-plane motion, called a two-dimensional dusty plasma
(2DDP) [30]. Although dusty plasmas have been studied for
about two decades, it was only recently proposed to couple a
dusty plasma to a one-dimensional periodic substrate (1DPS)
[31,32]. Distinct features in the phonon spectra [31] and
self-diffusion [32], as well as the melting transitions [32],
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appear in the presence of the substrate which are absent in
a substrate-free 2DDP system.

A natural next question to address is whether dusty plasmas
also exhibit a depinning transition under an applied drive.
Building upon our previous work on dusty plasmas coupled
to 1DPS [31,32], here we study the driven dynamics of dusty
plasmas coupled to 1DPS for varied substrate coupling and
drives. We find that this system exhibits plastic depinning,
with a disordered mixing of the particles at the depinning
threshold correlated with the proliferation of non-sixfold co-
ordinated particles. At the highest drives, the system dy-
namically reorders into a moving triangular crystal with the
hexagonal symmetry, and interestingly the moving structure
is more ordered than the system with pinning at zero drive.
For weaker substrate strengths, the depinning is continuous,
but for stronger substrates the depinning is probably a dis-
continuous transition from our simulation results. This is in
contrast to the depinning of overdamped particles on a 1D
substrate where the depinning threshold is always continuous.
The crossover to discontinuous depinning is consistent with
predictions for the depinning of systems in which inertial
or overshoot effects are important [33]. Our results indicate
that dusty plasmas represent another class of system that can
exhibit depinning and nonequilibrium driven sliding phases
when coupled to a periodic substrate.

This paper is organized as follows. In Sec. II, we briefly in-
troduce our Langevin dynamical simulation method to mimic
2DDP interacting with 1DPS and a driving force. In Sec. III,
we present our results on the structural and dynamical prop-
erties, as functions of the external driving force. Finally, we
provide a brief summary.

II. SIMULATION METHOD

Two-dimensional dusty plasmas systems are usually char-
acterized using the coupling parameter � and the screening
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FIG. 1. Snapshots of particle positions (dots) and the locations of the 1DPS (curve) in a 2D Yukawa crystal with � = 1000 and κ = 2
under different external driving forces for systems with the 1DPS U (x) = U0 cos(2πx/w) of strength U0 = 0.005E0 and period w = 1.002b.
(a) At Fd = 0, all particles are pinned at the bottom of each substrate potential well, forming a pinned state composed of 1D or quasi-1D
chains. (b) At Fd = 0.007, the particle distribution is disordered, which is independent of the spatial distribution of the potential wells. (c) At
Fd = 0.02, the particles are distributed nearly in a triangular lattice, which is also independent of the spatial distribution of the potential wells.

parameter κ [34,35]. Here,

� = Q2/(4πε0akBT ), (1)

where Q is the particle charge, T is the particle kinetic tem-
perature, a = (nπ )−1 is the Wigner-Seitz radius [36], and n is
the areal number density. The screening parameter κ = a/λD

indicates the length scale of the space occupied by one dust
particle over the Debye screening length λD. In addition to
the value of a, we use the lattice constant b to normalize the
length. For a 2D defect-free triangular lattice, b = 1.9046a.

We use Langevin dynamical simulations to study the de-
pinning dynamics of 2DDP on a 1DPS with external driving
force. The equation of motion for dust particle i is

mr̈i = −∇�φi j − νmṙi + ξi(t ) + Fs + Fd . (2)

Here, the particle-particle interaction force, given by a
Yukawa or screened Coulomb potential, is −∇�φi j , with
φi j = Q2exp(−ri j/λD)/4πε0ri j , where ri j is the distance be-
tween particles i and j, and −νmṙi is the frictional gas drag
[37]. The Langevin random kicks term ξi(t ) is assumed to
have a Gaussian distribution with a width that is related to
the desired target temperature, according to the fluctuation-
dissipation theorem [25,38,39]. The force Fs comes from the
1DPS, as shown in Fig. 1, which has the sinusoidal form

U (x) = U0 cos(2πx/w). (3)

The resulting force is Fs = − ∂U (x)
∂x x̂ = (2πU0/w)

sin(2πx/w)x̂. Here, U0 is the substrate strength in units
of E0 = Q2/4πε0a and w is the width of the substrate in units
of b, respectively. The last term on the right-hand side of
Eq. (2) Fd = Fd x̂ is the applied external driving force, in units
of Q2/4πε0a2. Note that, here the external driving force Fd is
spatially uniform and temporally constant in our simulations.

Our simulation includes 1024 particles in a rectangular
box of dimensions 61.1a × 52.9a with the periodic boundary
conditions. We fix � = 1000 and κ = 2 as the conditions of
2DDP to reduce the effect of temperature on the depinning
behavior, since the melting point of 2DDP is � = 396 when

κ = 2 [40]. Since the simulated size is 61.1a ≈ 32.07b in
the x direction, we choose w = 1.002b corresponding to 32
full potential wells to satisfy the periodic boundary con-
ditions. For the substrate strength, we specify three values
of U0 = 0.0025E0, 0.005E0, and 0.01E0, where the unit is
E0 = Q2/4πε0a. We increase the external driving force Fd

along the horizontal direction x and measure the drift velocity
Vx = N−1〈∑N

i=1 vi · x̂〉, where N is the number of particles, at
each driving force increment.

For each simulation run, we integrate Eq. (2) to record
the particle positions and velocities in 107 simulation steps
using a time step of 0.003ω−1

pd for the latter data analysis.
Here, ωpd = (Q2/2πε0ma3)1/2 is the nominal dusty plasma
frequency. We specify the frictional gas damping as ν/ωpd =
0.027, comparable to typical dusty plasma experiments [30].
Other simulation details are the same as those in Refs. [31,32].
In addition, we also perform a few test runs for a larger
system size of N = 4096 dust particles, and we do not find
any substantial differences in the results reported here.

III. RESULTS AND DISCUSSIONS

A. Pinning and depinning

Snapshots of particle positions from our simulations
present the particle distribution of the 2DDP on the 1DPS for
typical values of the external driving force Fd , as shown in
Fig. 1. Here, the conditions of the 2DDP and 1DPS are fixed,
where � = 1000, κ = 2, U0 = 0.005E0, and w = 1.002b. The
only modified variable is the driving force, which is Fd = 0,
0.007, and 0.02 for Figs. 1(a), 1(b) and 1(c), respectively.

When there is no external driving force, all particles are
pinned at the bottom of each potential well of the sub-
strate, forming several 1D or quasi-1D chains, as shown in
Fig. 1(a). Similar results have been reported in Refs. [31,32].
Figure 1(b) presents the particle distribution with the exter-
nal driving force of Fd = 0.007. The particle distribution is
strongly disordered, which is independent of the locations
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FIG. 2. (a) The collective drift velocity Vx vs. external driving
force Fd for substrate strengths U0 = 0.0025E0, 0.005E0, and 0.01E0,
respectively. (b) The corresponding fraction of sixfold coordinated
particles [41] P6 vs. Fd for the same substrate strengths. As Fd in-
creases from zero, for the U0 = 0.0025E0 and U0 = 0.005E0 samples
we observe three states: pinned, disordered plastic flow, and a moving
ordered lattice. For comparison, the lines with small squares indicate
the response for particles sliding freely without a substrate, U0 = 0.

of the substrate potential wells. We attribute this result
to the competition between the external driving force and
the constraint imposed by the 1DPS, and probably only
some particles can overcome the constraint from the 1DPS.
Figure 1(c) presents the particle distribution with the external
driving force of Fd = 0.02. The particles are arranged in a
nearly triangular lattice, which is probably due to the fact
that the external driving force is large enough to totally move
all particles across the constraint of 1DPS as a whole object.
Thus, the arrangement of the particles is independent of the
1DPS when the external driving force is large enough.

In Fig. 2(a) we plot the collective drift velocity Vx versus
the applied driving force Fd , while in Fig. 2(b) we show the

corresponding fraction of sixfold coordinated particles P6 ver-
sus Fd for four different values of U0. Here, Vx is the collective
drift velocity along the direction of the driving force, Vx =
N−1

d 〈∑Nd
i=1 vi · x̂〉, while the fraction of sixfold coordinated

particles P6 is obtained [41] from P6 = N−1
d 〈∑Nd

i=1 δ(6 − zi )〉,
where zi is the coordination number of particle i obtained
from the Voronoi construction. For a perfect triangular lattice,
P6 = 1.0, while the value of P6 is reduced in a more disordered
system.

For the intermediate substrate strengths of U0 = 0.0025E0

and 0.005E0, we find evidence for three dynamic phases, each
of which has characteristic signatures in both Vx and P6. The
first state appears for small drives, when the driving force is
small and the collective drift velocity is nearly zero. In this
pinned state [1], the external driving force is not large enough
to overcome the attraction of the substrate, so all particles
remain nearly stationary around their original equilibrium
locations and the lattice structure is still highly ordered, as
shown in Fig. 1(a). At very large drives, Fd > 0.01, the
collective drift velocity increases linearly with Fd , as shown in
Fig. 2(a), and the structure is highly ordered, as indicated by
the fact that P6 > 0.8 in Fig. 2(b). In this moving ordered state
[1], the external driving force is so large that all of the particles
move over the 1DPS as a stiff solid object, as illustrated
in Fig. 1(c). For intermediate drives of 0.004 < Fd < 0.007
for U0 = 0.005E0 or 0.002 < Fd < 0.006 for U0 = 0.0025E0,
the collective drift velocity increases relatively steeply, as
shown in Fig. 2(a), and the structure is more disordered, as
indicated by the low value of P6 in Fig. 2(b). This is the typical
disordered plastic flow state [1]. A jump in Vx can arise at
the transitions either because more particles begin moving
suddenly, or because there is a change from a disordered
plastic flow state or a pinned state to a moving ordered state.
These dynamic phases have not been observed previously in
dusty plasmas, although they are similar to results reported for
colloids driven over a 1DPS [41] and to phases that have been
found in other systems [3,42–44].

The existence of three dynamical states depends on the
value of the substrate strength. For extremely strong sub-
strates, such as U0 = 0.01E0, the disordered plastic flow state
is destroyed and the particles undergo an abrupt depinning
transition directly into a moving ordered state, as shown by
the rapid increase in both Vx and P6 in Fig. 2. If the substrate
is absent, as shown for U0 = 0 in Fig. 2, the drift velocity
always increases linearly with Fd and the structure is always
highly ordered, so that only the moving ordered state exists.

From our results of Fig. 2 above, it is clear that the
depinning is continuous for weaker substrate strengths.
However, for stronger substrates, the depinning is probably a
discontinuous transition. This feature is completely different
from the depinning of overdamped colloidal particles on a 1D
substrate, where the depinning threshold is always continuous.
In Ref. [33], it is predicted that the inertial or overshoot effects
are important in the depinning dynamics. Our observation of a
discontinuous depinning here is consistent with the prediction
in Ref. [33]. For our simulated 2DDPs, the existence of
the inertial term, as well as the underdamped motion of
particles, modifies the depinning behavior and produces the
discontinuity.
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FIG. 3. Particle configurations (left column) and 2D distribution
functions Gxy (right column) for the 2DDP system with � = 1000
and κ = 2 on a 1DPS with U0 = 0.005E0 at drives of (a, d) Fd = 0
in the pinned state, (b, e) Fd = 0.007 in the disordered plastic flow
state, and (c, f) Fd = 0.02 in the moving ordered state. In the left
column, particles are colored according to their coordination number
of neighbors as marked in the legend at the bottom.

Regardless of the value of the substrate strength, for
sufficiently large driving forces, the collective drift velocity
increases linearly with the driving force at a fixed slope, as
shown in Fig. 2(a). In our simulated 2DDP, the gas damping
is specified as ν = 0.027ωpd , in agreement with typical exper-
imental values [38]. In the moving ordered state, the particles
reach a steady state velocity, in which the driving force is
balanced by the frictional gas drag, Fd = −νmṙi. The relative
motion of particles with respect to each other is negligible
compared to the collective drift motion, so the speed of each
individual particle is nearly identical to the collective drift
velocity, ṙi ≈ Vxx̂. Thus, in the moving ordered state, the slope
of the drift velocity Vx as a function of driving force Fd is given
by Fd/Vx = −νmṙi/Vx · x̂ = −mν, meaning that it is purely
determined by the gas damping value in our simulations.

B. Three phases from various diagnostics

To further verify the structural measurement results of P6 in
Fig. 2(b), we image the locations of the particles and calculate
the 2D distribution function Gxy, as shown in Fig. 3 for a sys-
tem with U0 = 0.005E0. Unlike the pair correlation function
g(r) widely used for isotropic systems, the 2D distribution
function Gxy is the static structural measure mainly used for
anisotropic systems as the system studied here, and it gives the
probability density of finding a particle at position r1, given
that a particle is located at r2 [45]. In Figs. 3(a) and 3(d) at
Fd = 0, most of the particles have six nearest neighbors, and

Gxy shows strong ordering, consistent with the high value of
P6 found in Fig. 2(b) for the pinned state. At Fd = 0.007 in
Figs. 3(b) and 3(e), both the particle configuration and Gxy

indicate strong disordering of the particle positions. There
are also a large number of particles that do not have six
neighbors, as shown in Fig. 3(b). This agrees well with the
low value of P6 in Fig. 2(b) for the disordered plastic flow
state. When Fd = 0.02, as in Figs. 3(c) and 3(f), the particle
configuration is ordered again, most particles have six nearest
neighbors, and Gxy clearly shows strong ordering, which is
again consistent with the high value of P6 in Fig. 2(b) in the
moving ordered state. The structure of the moving ordered
state is more ordered than that of the pinned state at zero
driving.

We next consider the particle trajectories in each of the
three dynamical phases. In Fig. 4 we illustrate typically tra-
jectories of the simulated 2DDP (with � = 1000 and κ = 2)
on a 1DPS with U0 = 0.005E0 at Fd = 0 in the pinned state,
Fd = 0.007 in the disordered plastic flow state, and Fd = 0.02
in the moving ordered state, respectively. Color represents
time, and only ≈4% of the simulated region and ≈0.5% of
the simulation duration are shown here. In the pinned state of
Fig. 4(a), all of the particles are trapped at their equilibrium
locations and can only undergo the caged motion, with no
particles able to escape from its cage or potential well. In the
disordered plastic flow state of Fig. 4(b), the particle trajecto-
ries are very disordered. At one instant in time, some particles
are moving rapidly while other particles remain stationary, but
at a later time, the particles switch roles, so that some of the
moving particles are now stationary while some of the trapped
particles are now moving. The particles do not move strictly
along the driving or x direction, but also undergo considerable
motion in the perpendicular or y direction. This is a conse-
quence of the importance of the particle-particle interactions.
In order for one particle to escape from a substrate potential
well, its neighboring particle inside the same potential well
must shift out of the way by moving along the y direction,
parallel to the orientation of the substrate minimum, as shown
in Fig. 4(b). In the moving ordered state of Fig. 4(c), the
external driving force is large enough that all of the particles
can easily cross the potential barriers simultaneously, allowing
each particle to maintain the same neighbors as it moves [46].
The trajectories clearly indicate that all of the particles move
almost completely parallel to the driving force direction, with
negligible motion in the perpendicular or y direction.

Furthermore, to verify the three states observed in Fig. 4,
we also prepare the particle trajectories in the frame moving
with the whole system. Since the whole system is moving at
the drift velocity Vx in the x direction, the trajectories of dust
particles in their inertial frame can be obtained by removing
Vxt from their x coordinate while keeping their y coordinate,
as the insets shown in the panels of Fig. 4. When the driving
force Fd is either small of Fd = 0 or large of Fd = 0.02, the
trajectories clearly indicate highly ordered states like solids,
as shown in Figs. 4(a) and 4(c). However, when the driving
force Fd is modest of Fd = 0.007, the trajectories is much
disordered like typical liquids. These results further verify our
conclusions above.

As described above, in our simulations of 2DDP over
1DPS, when the driving force increases, we observe three
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FIG. 4. Typical particle trajectories from the simulated 2DDP for the same conditions as described in the caption of Fig. 3 under different
constant external driving forces. (a) At Fd = 0 in the pinned state, all of the particles are pinned around their equilibrium locations and undergo
only the caged motion. (b) At Fd = 0.007 in the disordered plastic flow state, some of the particles can escape from the cages and move out
of the potential minima. These particles immediately become trapped in new cages or potential wells, from which they can once again escape,
resulting in trajectories that are disordered along both the x and y directions. (c) At Fd = 0.02 in the moving ordered state, the driving force
is so large that the particles can easily cross over the potential barriers. As a result, the particles move predominantly parallel to the driving
direction (the x direction), with negligible motion in the y direction. For each panel, the inset on the bottom left corner shows the particle
trajectories in the inertial frame moving at the collective drift velocity Vx . These trajectories are obtained from ≈4% of the simulation box over
a time period representing ≈0.5% of the full duration of the simulation.

phases: the pinned state, the disordered plastic flow state, and
the moving ordered state. Similar phases were also observed
in other physical systems or theoretical models [3,47,48].
Based on 2D simulations of vortex lattices [3], Koshelev
and Vinokur mapped out the dynamical phase diagram of
the vortex system, which contains a pinning phase, a plastic
flow phase, and a moving crystal. Using 2D simulations of
colloids [47], Reichhardt and Olson found three dynamical
phases consisting of pinned, plastic flow, and elastic flow.
From 2D simulations of a phase-field-crystal model [48],
Granato et al. obtained a dynamical phase diagram containing
a pinned amorphous glass, plastic flow, and a moving smectic
glass.

C. Dynamical properties of different directions

To study the dynamical properties of 2DDP on 1DPS
perpendicular to the external driving force, we calculated the
mean-squared displacement due to motion in the y direction
only (YMSD), as described in Ref. [32]. Figure 5 shows the
YMSD for the same sample from Fig. 3 at Fd = 0, 0.007,
and 0.02, respectively. For the longer time diffusive motion,
the MSD can be fit to the expression MSD = Dtα , where the
exponent α reflects the diffusion properties. A value α = 1
indicates that normal diffusion is occurring, while α > 1 and
α < 1 correspond to super- and subdiffusion, respectively. We
find that the pinned and moving ordered states have nearly the
same YMSD behavior, while the YMSD for the disordered
plastic flow state is completely different. As the external
driving force increases from zero, the YMSD first increases
and then decreases, both for the initial ballistic motion [49]
and for the later diffusive motion. We fit the YMSD for the
later diffusive motion to YMSD = Dtα for the time interval
100 < ωpdt < 990, and obtain exponents of α = 0.45 in the
pinned state, α = 1.01 in the disordered plastic flow state, and

α = 0.48 in the moving ordered state, as shown in Fig. 5.
Clearly, in the pinned and moving ordered states, the particles
undergo the subdiffusive motion in the y direction, while in
the disordered plastic flow state, the particle motion along
y is nearly the normal diffusion. For both the pinned and
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FIG. 5. Mean-squared displacement (MSD) calculated from the
motion in the y direction, marked as YMSD here, for the simulated
2DDP under the same conditions as described in the caption of Fig. 3
at different constant external driving forces of Fd = 0.0 (squares),
0.007 (circles), and 0.02 (triangles). For both the initial ballistic
motion at early times and the later diffusive motion at longer times,
we find that, as the driving force increases from zero, the YMSD
always increases first and then decreases again. Furthermore, for
the later diffusive motion at Fd = 0.007 in the disordered plastic
flow state, we find Y MSD ∝ t1.01. This behavior is distinct from that
found in the pinned state, YMSD ∝ t0.45, and in the moving ordered
state, YMSD ∝ t0.48. The simulation conditions of our 2D Yukawa
crystal are � = 1000 and κ = 2.
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FIG. 6. The kinetic temperature kBTx (squares) and kBTy (circles),
calculated from the motion in the x and y directions, versus Fd

for the simulated 2DDP at the same conditions as in Fig. 3. The
center-of-mass motion has been removed in calculating the kinetic
temperature, so that only the fluctuations of the particle velocities
are considered. As Fd increases from zero, both kBTx and kBTy first
simultaneously increase and then decrease. The initial increase is
correlated with the transition from the pinned state to the disordered
plastic flow state, while the decrease at higher drives is correlated
with the transition from the disordered plastic flow state to the mov-
ing ordered state. In addition, in the disordered plastic flow state, we
find that the kinetic temperatures are anisotropic, with kBTx > kBTy,
due to the wider range of the x direction velocity distribution in this
phase, while in the pinned and moving ordered state, the anisotropy
is lost and kBTx ≈ kBTy. To quantify the variation in the kinetic
temperature, we fit it to the expression kBT = C1|Fd − C2|β + C0.
Curves with the fitting exponents of β = −0.2927 and −0.2934 for
kBTx and kBTy, respectively, are presented.

moving ordered states, the y-direction motion of the particles
is constrained by the neighboring particles in the lattice, while
in the plastic flow state, the lattice is disordered and this
constraint is lost, permitting the particles to move more freely
along the y direction. In fact, these diffusion results can be
easily understood through the particle trajectories within the
frame moving with the whole system, as three insets shown in
Fig. 4.

We plot the kinetic temperatures kBTx and kBTy, calculated
from the motion in the x and y directions for the same system
as in Fig. 3, as functions of Fd in Fig. 6. To obtain these ki-
netic temperatures, we use the equation kBT = m〈∑N

i=1(vi −
v)2〉/2, where the collective drift velocity v is removed. As
the external force increases from zero, both kBTx and kBTy

increase substantially, and then decrease back to low values.
The initial increase occurs as the system transits from the
pinned state to the disordered plastic flow state, while the
decrease is associated with the transition from the disordered
plastic flow state to the moving ordered state. In the disordered
plastic flow state we find an anisotropic kinetic temperature
with kBTx > kBTy, as shown in Fig. 6. This is likely due to the
fact that the x direction velocity distribution is wider in the
disordered plastic flow state.

We find that the kinetic temperatures kBTx and kBTy can
be fit well to the expression kBT = C1|Fd − C2|β + C0, and
the resulting fitting curves are shown in Fig. 6. The fitting
parameter of C2 corresponds to the peak of the kinetic tem-
perature, i.e., the most disordered plastic flow state, which is
C2 = 0.00708 from our fitting. Fits of the exponent β give
β = −0.2927 and −0.2934 for kBTx and kBTy, respectively.
The significance of these exponent values is unclear, but the
fluctuations in the velocity are largest as the driving force
passes through the most disordered plastic flow state near
Fd = 0.00708.

IV. SUMMARY

In summary, we study the depinning dynamics of a 2DDP
on a 1DPS under a driving force using Langevin dynami-
cal simulations. For a range of substrate strengths, we find
three different dynamical phases as the external driving force
increases from zero, which are a pinned state, a disordered
plastic flow state, and a moving ordered state. Using different
structural and dynamical diagnostics, such as the collective
drift velocity, static structural measures, particle trajectories,
mean-squared displacements, and the kinetic temperature,
we quantify the differences between these three states. Such
dynamical phases have not previously been observed in dusty
plasmas. We compare our observations of the depinning dy-
namics of dusty plasmas with depinning in other previously
studied systems.
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