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Electrical resistivity calculations in dense plasmas
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We present calculations of electrical resistivity in dense plasmas using the average-atom model. The Born
approximation is proposed to improve the computations especially in the hot domain of the density and
temperature plane. Both the nonrelativistic and relativistic regimes are considered. Numerical examples are
given.
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I. INTRODUCTION

The calculation of electrical resistivity in dense plasmas
by coupling the density-functional theory and the Ziman ap-
proach has a long history [1–10]. Using the quantum average-
atom model [7,8,11–17] and the Ziman-Evans formula [18],
we can compute the electrical resistivity of dense plasmas
in local thermodynamic equilibrium (LTE) in a large part
of the density and temperature plane and for a great variety
of elements. Comparisons with the scarce experimental data
have shown that this general approach makes sense [19–21].

However, it appears that this method should be improved
in hot dense plasmas. Indeed, calculations have shown that
the electrical resistivity usually decreases when the tem-
perature increases in the plasma phase at constant density.
Then sometimes, the electrical resistivity still decreases with
temperature but with a change of slope at some threshold
temperature in a log-log graph. The reason is to be found
in the limited number of partial waves that are taken into
account to calculate the differential elastic-scattering cross
section [22–24]. In practice, we limit the maximum orbital
quantum number (�>). If this is acceptable in the warm dense
matter, then it is questionable in the hot dense regime. One
way to correct this deficiency could be to increase �>. Yet this
can be problematic to calculate the continuum wave functions
for large �. We rather propose to use the Born approximation
to calculate the phase shifts [25,26]. This method is inspired
from the technique used to calculate the continuum density
using an identity concerning the spherical Bessel functions
[14]. Our approach works in the nonrelativistic and relativistic
regimes. It is much simpler than using an effective Yukawa
potential [3,9]. It is also more efficient since we use the
same short-range Kohn-Sham potential that appears in the
average-atom model and which is employed to calculate the
phase shifts. In clear, we use the fact that the exact phase shifts
are nearly equal to the Born phase shifts for sufficiently large
� [25,26]. This is the case in dense plasmas.

This paper is organized as follows. In Sec. II, we present
the method to improve the calculation of the differential
elastic cross section that is used to calculate the resistivity
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from the Ziman-Evans formula. Both the nonrelativistic and
relativistic conditions are considered. In Sec. III, we apply our
formalism to calculate the electrical resistivity in hot dense
matter. Section IV is the conclusion. Particular developments
are presented in the Appendix.

II. THEORY

We consider LTE dense plasmas at temperature T and den-
sity ρ of single element. The Wigner-Seitz radius RWS is re-
lated to the ion density Ni through the equation 4πR3

WSNi/3 =
1. The average ionization Z̄ is calculated [27] by the formula
Z̄ = n(RWS)/Ni, where n(r) is the radial electron density. The
electrical resistivity � is calculated as follows [3,9,18]:

� = − h̄

3πe2Z̄2Ni

∫ ∞

0
dk

df0

dk

∫ 2k

0
q3σ (q)S(q)dq, (1)

where h̄ is the reduced Planck constant, e the elementary
charge, Z̄ the average ionization, Ni the ion density, S(q) the
structure factor, and σ (q) is the differential elastic-scattering
cross section [3,9]. The quantity f0 is the Fermi-Dirac factor,

f0 = 1

1 + eβ

(
h̄2k2
2me

−μ

) . (2)

β = 1/kBT , where kB is the Boltzmann constant and me is
the electron rest mass. The scattering cross section σ (q) is
calculated quantum mechanically [3,9] using the phase shifts
found in the electronic potential V (r) of the quantum average-
atom model. The chemical potential μ is calculated such that

∫ RWS

0
4πr2n(r)dr = Z, (3)

where Z is the nuclear charge of the element. q is the wave
number transferred from the incident electron with wave
number k. We have q2 = 2k2(1 − cos θ ), where θ is scattering
angle between the incident wave vector k and the scattered
wave vector k′. We recall that the wave number k is equal
to the wave number k′ in the elastic-scattering process. To
calculate S(q), we use the approach proposed by Bretonnet
and Derouiche [28]. These authors have determined a simple
analytic formula to calculate the structure factor of the OCP
system.
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A. Nonrelativistic regime

In the nonrelativistic regime, the total electron density of
the average-atom n(r) = nb(r) + n f (r), where

4πr2nb(r) =
∑

n�

2(2� + 1)

1 + eβ(εn�−μ)
Pn�(r)2 (4)

and

4πr2n f (r) =
∫ +∞

0
dε

∑
�

2(2� + 1)

1 + eβ(ε−μ)
Pε�(r)2. (5)

Pn�(r) and Pε�(r) satisfy the self-consistent Schrödinger
equation

− h̄2

2me

ψs + V (r)ψs = εsψs, (6)

where

ψs = (1/r)Pn�(r)Y m
� (θ, φ)χσ (7)

is the bound wave function and

ψs = (1/r)Pε�(r)Y m
� (θ, φ)χσ (8)

is the free wave function. Y m
� (θ, φ) is a spherical harmon-

ics and χσ a spinor. Moreover, n is the principal quantum
number, m is the magnetic quantum number [29], and s is a
generic quantum number. The continuum eigenfunctions are
normalized such that∫ +∞

0
drPε�(r)Pε′�(r) = δ(ε − ε′), (9)

whereas for the bound eigenfunctions, we have∫ +∞

0
drPn�(r)Pn′�(r) = δnn′ . (10)

The self-consistent field potential

V (r) = −Ze2

r
+ e2

∫
dr′ n(r′)

| r − r′ | + Vxc(r) (11)

is such that V (r) = 0 when r � RWS. This electronic potential
V (r) contains the electrostatic interaction between the nucleus
and the electrons, the electrostatic interaction between the
electrons, and the finite-temperature exchange and correlation
potential Vxc(r) using an unpublished work by Perrot based
on Ref. [30]. Vxc(r) is deduced from the exchange and corre-
lation energy of an electron gas at finite temperature evaluated
in the static local-field approximation using the Singwi-Tosi-
Land-Sjölander scheme and parametrized in analytic formu-
las.

The elastic-scattering cross section σ (q) is calculated
quantum mechanically [3,9,23] using the phase shifts found
in this electronic potential V (r). It reads

σ (q) =| fk (θ ) |2, (12)

where

fk (θ ) = 1

k

∑
�

(2� + 1)eiδ�(k) sin δ�(k)P�(cos θ ) (13)

is the scattering amplitude [23]. δ�(k) is the phase shift and P�

the Legendre polynomial of order � [31]. Introducing

W (k) =
∫ 2k

0
q3σ (q)S(q)dq, (14)

we find the compact formula

W (k) � 2k2
�>∑
�=0

�>∑
�′=0

(2� + 1)(2�′ + 1) sin δ�(k)

× sin δ�′ (k) cos[δ�(k) − δ�′ (k)]

×
∫ 1

−1
dx(1 − x)S[k

√
2(1 − x)]P�(x)P�′ (x). (15)

The expression (15) can be calculated numerically but suffers
from the fact that the summation on the orbital quantum
numbers are restricted by �>. This is fine for the warm dense
matter regime but questionable in hot dense matter. The border
between the warm dense matter and hot dense matter regimes
is around 100 eV. We propose to use the Born approximation
as follows. In this approximation, the phase shifts are small
and given by the expression [24]

δB
� (k) = −k

2me

h̄2

∫ +∞

0
drr2V (r) j2

� (kr), (16)

where j� is the spherical Bessel function of order � [31]. The
Born expression of the scattering amplitude (13) is given by

f B
k (θ ) = 1

k

∑
�

(2� + 1)δB
� (k)P�(cos θ ). (17)

What is interesting is that for the Born approximation f B
k (θ ),

we can sum this series. Injecting in this expression the expres-
sion (16) of the Born phase shifts δB

� (k) and using the identity
[31]

sin(qr)

qr
=

∑
�

(2� + 1) j2
� (kr)P�(cos θ ), (18)

where q = 2k sin( θ
2 ) is the transferred wave number, we find

that

f B
k (θ ) = −2me

h̄2

∫ +∞

0
drr2V (r)

sin(qr)

qr
. (19)

This expression is the scattering amplitude obtained in the
Born approximation [23]. We now use this formula as follows.
Instead of calculating σ (q) using Eq. (12), we consider the
expression [26]

σ (q) = ∣∣ f B
k (θ ) + fk (θ ) − f B

k (θ )
∣∣2

. (20)

The first term in this formula is calculated using Eq. (19),
whereas for the last term we use Eqs. (16) and (17). The
middle term is calculated using Eq. (13). At this stage, this
expression is equivalent to Eq. (12) since we just add and
subtract the same quantity calculated differently. However,
δ�(k) → δB

� (k) when � is large in a short-range potential as
it is the case here. This means that when � > �>, δ�(k) ≈
δB
� (k) with | δB

� (k) |� 1. Thus, the contribution due to � >

�> in Eqs. (13) and (17) are seen to cancel if we use this
approximation. The physical meaning of Eq. (20) is now clear.
Each sum in Eq. (20) is limited from � = 0 to � = �> using
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the smooth transition between the phase shift δ�(k) and its
Born equivalent δB

� (k) for large �. So doing, we correct the fact
that in the sum in Eq. (15) we have neglected the contribution
of � > �> that is taken into consideration using Eq. (19) in
Eq. (20). Note also that contrary to Eq. (15), we obtain an
expression for W (k) in which the integral and the sum on the
orbital quantum number are interchanged. Moreover, we have
no more a double sum on � and �′ but only one sum on � using
the real and imaginary parts of the expression that appears in
Eq. (20). Here the Born approximation only correct the real
part of the scattering amplitude since f B

k (θ ) given either by
Eq. (17) or Eq. (19) is real. In practice, we integrate only
between 0 and RWS in Eq. (19) since V (r) = 0 when r � RWS.

B. Relativistic regime

In the relativistic regime [32], the total electron density of
the average-atom n(r) = nb(r) + n f (r), where

4πr2nb(r) =
∑

a

2 | κa |
1 + eβ(εa−μ)

[Pa(r)2 + Qa(r)2] (21)

and

4πr2n f (r) =
∫ +∞

0
dε

∑
κ

2 | κ |
1 + eβ(ε−μ)

[Pε,κ (r)2 + Qε,κ (r)2].

(22)

Pa(r), Qa(r), Pε,κ (r), and Qε,κ (r) satisfy the Dirac equation
for the spherically symmetric potential V (r),⎧⎨
⎩

[V (r) + mec2]Pa(r) + h̄c
[

dQa (r)
dr − κa

r Qa(r)
]

= EaPa(r)

−h̄c
[

dPa(r)
dr + κa

r Pa(r)
]

+ [V (r) − mec2]Qa(r) = EaQa(r)
,

(23)

where c is the speed of light, a = (n, κ ) for bound states, and
a = (ε, κ ) for continuum states. In this case, the one-electron
energy is simply E . In both cases, κa means κ of index a.
Note that the eigenvalue Ea contains the rest-mass energy.
For bound states Ea = εa + mec2 and for free states E =
ε + mec2. We have κ = −1 − � for j = � + 1/2 and κ = �

for j = � − 1/2. This can be summarized as κ = ∓( j + 1/2)
for j = � ± 1/2. As for the bound large (P) and small (Q)
components, we have the orthogonality relations [33]∫ +∞

0
dr[Pn,κ (r)Pn′,κ (r) + Qn,κ (r)Qn′,κ (r)] = δnn′ , (24)

where δnn′ is the Kronecker symbol. Concerning the free large
(P) and small (Q) components, we have∫ +∞

0
dr[Pε,κ (r)Pε′,κ (r) + Qε,κ (r)Qε′,κ (r)] = δ(ε − ε′). (25)

The relativistic generalization of Eqs. (12) and (13) reads [5,8]

σ (q) =| fk (θ ) |2 + | gk (θ ) |2, (26)

where

fk (θ ) = 1

k

∑
κ

| κ | eiδκ (k) sin δκ (k)P�(cos θ ) (27)

and

gk (θ ) = 1

k

∑
κ

| κ |
iκ

eiδκ (k) sin δκ (k)P1
� (cos θ ). (28)

P1
� is the associated Legendre function [24,29,34]. Using �

instead of κ , we find the equivalent expressions [22,24,35]

fk (θ ) = 1

2ik

+∞∑
�=0

{(� + 1)[e2iδ−�−1(k) − 1]

+ �[e2iδ�(k) − 1]}P�(cos θ ) (29)

and

gk (θ ) = 1

2k

+∞∑
�=1

[e2iδ−�−1(k) − e2iδ�(k)]P1
� (cos θ ) (30)

since P1
0 (cos θ ) = 0; fk (θ ) and gk (θ ) are the direct and

spin-flip scattering amplitudes [22]. As in the nonrelativistic
regime, we are limited by �>. We can do the same thing by
using the Born approximation. As shown in Appendix, the
Born approximation of the phase shift reads

δB
κ (k) = − k

h̄2c2

∫ +∞

0
drr2V (r)[(E + mec2) j2

� (kr)

+ (E − mec2) j2
�′ (kr)], (31)

where � = �(κ ) and �′ = �(−κ ). This is the relativistic gen-
eralization of the nonrelativistic expression (16) which is
recovered when E � mec2. In the Born approximation, we
have

f B
k (θ ) = 1

k

∑
κ

| κ | δB
κ (k)P�(cos θ ) (32)

and

gB
k (θ ) = 1

k

∑
κ

| κ |
iκ

δB
κ (k)P1

� (cos θ ). (33)

Using Eqs. (18) and (31), and the fact that∑
κ

| κ | j2
� (kr)P�(cos θ ) = sin(qr)

qr
(34)

and [36] ∑
κ

| κ | j2
�′ (kr)P�(cos θ ) = cos θ

sin(qr)

qr
, (35)

we find that

f B
k (θ ) = −E

(
2 − q2

2k2

) + mec2 q2

2k2

h̄2c2

∫ +∞

0
drr2V (r)

sin(qr)

qr
.

(36)

Concerning the spin-flip Born scattering amplitude, we have

gB
k (θ ) = − (E − mc2)

ih̄2c2

q

k

√
1 − q2

4k2

∫ +∞

0
drr2V (r)

sin(qr)

qr
.

(37)
To prove this identity, we have used the formula

P1
�+1(cos θ ) − P1

�−1(cos θ ) = (2� + 1)
√

1 − cos2 θP�(cos θ )

(38)
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for � > 0 with [22,24,29,34]

P1
1 (cos θ ) =

√
1 − cos2 θ (39)

and Eq. (18). One should be careful because there is a phase
factor (−1)m in the definition of the associated Legendre
function Pm

� (x) in Refs. [31,38,39] that is not present in
Refs. [22,24,29,34], for instance. In the nonrelativistic regime,
E � mec2 and we recover Eq. (19) from Eq. (36). Moreover,
gB

k (θ ) cancels. In the Born approximation, one can see that
the direct scattering amplitude is real, whereas the spin-flip
scattering amplitude is purely imaginary. We can use the Born
approximation in the relativistic regime as follows. We write
instead of Eq. (26)

σ (q) = ∣∣ f B
k (θ ) + fk (θ ) − f B

k (θ )
∣∣2

+ ∣∣gB
k (θ ) + gk (θ ) − gB

k (θ )
∣∣2

. (40)

For the first terms in f B
k (θ ) and gB

k (θ ), we use Eqs. (36) and
(37). For fk (θ ) and gk (θ ), we use the series expansions (27)
and (28), whereas for the last terms f B

k (θ ) and gB
k (θ ), we

use the series expansions given in Eqs. (32) and (33) based
on Eq. (31). In each case, we consider only � � �>. As in
the nonrelativistic regime, we integrate only between 0 and
RWS in Eqs. (31), (36), and (37). Note that in practice, the
relativistic calculation of the electrical resistivity is usually
close to the nonrelativistic one. What is important is that
the calculation of the electrical resistivity is now consistent
with the equation of state model in the nonrelativistic and
relativistic regimes.

III. APPLICATIONS

As an illustration, we consider Li at solid density between
100 eV and 10 keV in temperature with or without the
Born correction. At these conditions, calculations are done
in the nonrelativistic regime. We plot in Fig. 1 the electrical
conductivity of solid density Li plasma as a function of
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FIG. 1. Electrical conductivity of solid density lithium plasma
as a function of temperature calculated using the quantum average-
atom model without the Born correction (Wo Born) and with the
Born correction (Wi Born). We compare these calculations with the
Kramers-Kubo-Greenwood (KKG) and the Spitzer approximations.
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FIG. 2. Electrical conductivity of solid density aluminum plasma
as a function of temperature calculated using the quantum average-
atom model without the Born correction (Wo Born) and with the
Born correction (Wi Born). We compare these calculations with the
Kramers-Kubo-Greenwood (KKG) and the Spitzer approximations.

temperature calculated using the average atom model without
the Born correction (Wo Born) and with the Born correction
(Wi Born). We compare these calculations with the Kramers-
Kubo-Greenwood (KKG) [40,41] and the Spitzer models. The
Spitzer formula used in this work is extracted from the Lee
and More formula [42]. Both KKG and Spitzer are semi-
classical approaches. KKG is based on the calculation of the
electrical conductivity using the Kubo-Greenwood approach
developed by Johnson et al. [15] in the framework of the
average-atom model. The free-free component is calculated
using the Kramers approach [36], hence the acronym KKG.
The Spitzer formula we use is taken from Ref. [42] in
which is proposed a conductivity model for dense plasmas.
The average ionization is calculated from the Thomas-Fermi
approach [27]. We are interested by the high-temperature
limit when electrons are nondegenerate, hence our use of the
Spitzer formula taken from this reference. We can see that
the calculations made without or with the Born correction
agree below 100 eV. Beyond this temperature, we can see
that the Born correction becomes important with increas-
ing temperature. Indeed, we are in rather close agreement
with KKG and Spitzer at high temperature using the Born
correction. There is clearly lacking partial waves if we do
not use the Born correction. Above 100 eV, KKG and the
calculations done using the Born approximation reach an
asymptotic regime. The Born correction behaves as T 1.31 and
KKG as T 1.48, so close to a T 3/2 behavior. The Spitzer curve
shows a behavior T 3/2/ ln(T ) due to the Coulomb logarithm
[42]. Similar results are found for Be, B, and C solid density
plasmas between 1 eV and 10 000 eV. Calculations have been
done with �> = 10. On Fig. 2 we plot the same things for an
aluminium plasma at solid density. One can see that Wi Born
calculations are in rather good agreement at high temperature
with KKG and Spitzer compared to Wo Born. Calculations
have been done with �> = 15. Note that below 100 eV there
is a conductivity minimum or a resistivity saturation [10] for
quantum-mechanical calculations without or with the Born
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FIG. 3. Average ionization of solid-density Li and Al plasmas as
a function of temperature using the quantum average-atom model.

correction. KKG is a semiclassical expression valid in hot
dense plasmas but not in the warm dense matter in the range
1–10 eV. It is not surprising that the Ziman-Evans formula
and KKG differ in this regime. KKG does not predict any
resistivity saturation, as far as we know. The agreement at
high temperature indicates that our approach using the Born
approximation is sound. For information, we plot in Fig. 3
the average ionization Z̄ of solid-density Li and Al plasmas
as a function of temperature obtained using the nonrelativistic
quantum average-atom model. We can see the ionization of
the two materials between 1 eV and 10 keV. The curves are
smooth, thanks to the way Z̄ is calculated. At 10 keV, Li and
Al are fully ionized. Between 1 keV and 10 keV, the plasmas
are kinetics in which regime KKG and Spitzer are sound and
can be compared to.

As for relativistic effects, they are small in the thermody-
namic regime encountered in this study. Taking into account
relativistic effects in the calculation of the electrical resistivity
is recommended if the equation of state model is also rela-
tivistic. This is important for the internal consistency of the

approach. Note that we use the same Ziman-Evans formula (1)
for both nonrelativistic and relativistic regimes. This formula
has been obtained using a nonrelativistic method. To be really
consistent, we should also use the relativistic equivalent of
Eq. (1). To our knowledge, this relativistic formula has not
been derived from first principles as was done for the nonrela-
tivistic formula [18]. This means that our relativistic treatment
is partial since we should use the relativistic extension of the
nonrelativistic Ziman-Evans formula (1).

IV. CONCLUSION

We have proposed a method to calculate the electrical
resistivity in hot dense matter. We use the Born approximation
to take into account the phase shifts that are neglected by
calculating directly the electrical resistivity using the Ziman-
Evans formula. Doing this, we use the fact that the exact
phase shifts are nearly equal to the Born phase shifts for
large angular quantum number �. This avoids adding large
angular quantum numbers in the Ziman-Evans formula for
which the continuum wave functions are difficult to calculate.
We have presented the nonrelativistic and relativistic cases.
The calculation of the electrical resistivity is now consistent
with the equation of state model in both cases. By consistent,
we mean that we can calculate an electrical resistivity using
the Born approximation nonrelativistically or relativistically
if the quantum average-atom model, i.e., the equation of state
model, is nonrelativistic or relativistic, respectively. Using the
Born approximation to calculate the elastic-scattering cross
section without using summation over large angular quantum
numbers is important at high temperature. Relativistic effects
are small in the thermodynamic regime considered in this
work.

APPENDIX: RELATIVISTIC BORN APPROXIMATION
FOR PHASE SHIFTS

In this Appendix, we present the relativistic generalization
of the nonrelativistic Born expression for the phase shifts. The
derivation is similar to the nonrelativistic case. Let us start
with the average-atom Dirac equations (23). We have

⎧⎪⎨
⎪⎩

[V (r) + mec2]Pε,κ (r) + h̄c
[

dQε,κ (r)
dr − κ

r Qε,κ (r)
]

= EPε,κ (r)

−h̄c
[

dPε,κ (r)
dr + κ

r Pε,κ (r)
]

+ [V (r) − mec2]Qε,κ (r) = EQε,κ (r)
, (A1)

where ε = E − mec2 in a potential V (r). In a potential V̄ (r), we have at the same energy⎧⎪⎨
⎪⎩

[V̄ (r) + mec2]P̄ε,κ (r) + h̄c
[

dQ̄ε,κ (r)
dr − κ

r Q̄ε,κ (r)
]

= EP̄ε,κ (r)

−h̄c
[

dP̄ε,κ (r)
dr + κ

r P̄ε,κ (r)
]

+ [V̄ (r) − mec2]Q̄ε,κ (r) = EQ̄ε,κ (r)
. (A2)

Let us multiply the first equation of Eq. (A1) by P̄ε,κ (r) and the first equation of Eq. (A2) by Pε,κ (r). In the same spirit, we
multiply the second equation of Eq. (A1) by Q̄ε,κ (r) and the second equation of Eq. (A2) by Qε,κ (r). We find that⎧⎪⎨

⎪⎩
[V (r) + mec2]P̄ε,κ (r)Pε,κ (r) + h̄cP̄ε,κ (r)

[
dQε,κ (r)

dr − κ
r Qε,κ (r)

]
= EP̄ε,κ (r)Pε,κ (r)

−h̄cQ̄ε,κ (r)
[

dPε,κ (r)
dr + κ

r Pε,κ (r)
]

+ [V (r) − mec2]Q̄ε,κ (r)Qε,κ (r) = EQ̄ε,κ (r)Qε,κ (r)
(A3)

033202-5



GÉRALD FAUSSURIER AND CHRISTOPHE BLANCARD PHYSICAL REVIEW E 100, 033202 (2019)

and ⎧⎪⎨
⎪⎩

[V̄ (r) + mec2]Pε,κ (r)P̄ε,κ (r) + h̄cPε,κ (r)
[

dQ̄ε,κ (r)
dr − κ

r Q̄ε,κ (r)
]

= EPε,κ (r)P̄ε,κ (r)

−h̄cQε,κ (r)
[

dP̄ε,κ (r)
dr + κ

r P̄ε,κ (r)
]

+ [V̄ (r) − mec2]Qε,κ (r)Q̄ε,κ (r) = EQε,κ (r)Q̄ε,κ (r)
. (A4)

We now subtract the first equation of Eq. (A3) by the first equation of Eq. (A4) and the second equation of Eq. (A3) by the
second equation of Eq. (A4). We find that

[V (r) − V̄ (r)]Pε,κ (r)P̄ε,κ (r) + h̄c

[
P̄ε,κ (r)

dQε,κ (r)

dr
− κ

r
P̄ε,κ (r)Qε,κ (r) − Pε,κ (r)

dQ̄ε,κ (r)

dr
+ κ

r
Pε,κ (r)Q̄ε,κ (r)

]
= 0 (A5)

and

−h̄c

[
Q̄ε,κ (r)

dPε,κ (r)

dr
+ κ

r
Q̄ε,κ (r)Pε,κ (r) − Qε,κ (r)

dP̄ε,κ (r)

dr
− κ

r
Qε,κ (r)P̄ε,κ (r)

]
+ [V (r) − V̄ (r)]Qε,κ (r)Q̄ε,κ (r) = 0. (A6)

We now add these two equations. The terms in κ/r disappear. We are left with

[V (r) − V̄ (r)][Pε,κ (r)P̄ε,κ (r) + Qε,κ (r)Q̄ε,κ (r)] + h̄c[P̄ε,κ (r)
dQε,κ (r)

dr

− Pε,κ (r)
dQ̄ε,κ (r)

dr
− Q̄ε,κ (r)

dPε,κ (r)

dr
+ Qε,κ (r)

dP̄ε,κ (r)

dr
] = 0 (A7)

or

P̄ε,κ (r)
dQε,κ (r)

dr
− Pε,κ (r)

dQ̄ε,κ (r)

dr
− Q̄ε,κ (r)

dPε,κ (r)

dr
+ Qε,κ (r)

dP̄ε,κ (r)

dr
= d

dr
[P̄ε,κ (r)Qε,κ (r) − Pε,κ (r)Q̄ε,κ (r)]. (A8)

Consequently,

[P̄ε,κ (r)Qε,κ (r) − Pε,κ (r)Q̄ε,κ (r)]R
0 = − 1

h̄c

∫ R

0
dr[V (r) − V̄ (r)][Pε,κ (r)P̄ε,κ (r) + Qε,κ (r)Q̄ε,κ (r)]. (A9)

As usual, there is no contribution from the origin in the
left-hand side of this equation. Assuming that R is large, we
can use the asymptotic expressions of the different functions.
Moreover, we choose V̄ (r) = 0. Since [32,37]

Pε,κ (r) = f (k)vε,κ (r) (A10)

and

Qε,κ (r) = g(k)wε,κ (r), (A11)

where

vε,κ (r) ∼
r→+∞ sin

[
kr − �π

2
+ δκ (k)

]
(A12)

and

wε,κ (r) ∼
r→+∞ − cos

[
kr − �π

2
+ δκ (k)

]
(A13)

when r → +∞. δκ (k) is the phase shift,

f (k) =
√

E + mec2

h̄2πc2k
(A14)

and

g(k) =
√

E − mec2

h̄2πc2k
. (A15)

f (k) and g(k) are smooth functions of k. Let us note that

f (k)g(k) = 1

h̄πc
. (A16)

So at R we have

Pε,κ (r) ∼ f (k) sin

[
kR − �π

2
+ δκ (k)

]
(A17)

and

Qε,κ (r) ∼ −g(k) cos

[
kR − �π

2
+ δκ (k)

]
. (A18)

For the free wave functions, we have

P̄ε,κ (r) = f (k)kr j�(kr) (A19)

and

Q̄ε,κ (r) = −sgn(κ )g(k)kr j�′ (kr), (A20)

where � = �(κ ) and �′ = �(−κ ). sgn(κ ) is the sign of κ .
Asymptotically, we have

P̄ε,κ (r) ∼
r→+∞ f (k) sin

(
kr − �π

2

)
(A21)

and

Q̄ε,κ (r) ∼
r→+∞ −g(k) cos

(
kr − �π

2

)
. (A22)

Consequently, Eq. (A9) becomes

f (k)g(k) sin[δκ (k)] ∼ − 1

h̄c

∫ +∞

0
drV (r)[Pε,κ (r)P̄ε,κ (r)

+ Qε,κ (r)Q̄ε,κ (r)], (A23)
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where we have taken R → +∞. We know assume that δκ (k)
is small for large angular momentum number. We call this the
Born approximation. We can replace Pε,κ (r) by P̄ε,κ (r) and
Qε,κ (r) by Q̄ε,κ (r). We find that

f (k)g(k)δB
κ (k) = − k2

h̄c

∫ +∞

0
drr2V (r)

[
E + mec2

h̄2πc2k
j2
� (kr)

+ E − mec2

h̄2πc2k
j2
�′ (kr)

]
, (A24)

where we have used Eqs. (A14) and (A15). So, using
Eq. (A16), we find that

δB
κ (k) = − k

h̄2c2

∫ +∞

0
drr2V (r)

[
(E + mec2) j2

� (kr)

+ (E − mec2) j2
�′ (kr)

]
. (A25)

This is Eq. (31). We have obtained the relativistic generaliza-
tion of the nonrelativistic expression (16).
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