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Migration behaviors of leaky dielectric droplets with electric and hydrodynamic forces
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The external electric field enables separation and transport of droplets effectively in microfluidic devices.
Herein, a volume-of-fluid (VOF) + level-set (LS) + smoothed physical parameters (SPP) method associated
with the dynamically adaptive grid technique is extended to simulate three-dimensional leaky dielectric droplets
in the electric field. The effects of electric and hydrodynamic forces on droplet behaviors are investigated. It
is demonstrated that the electric force could act toward the outside or inside of a droplet and produce different
droplet deformations. For the dielectrophoretic migration of droplets in the nonuniform electric field, the electric
force has a dominant effect. It is found that when the electric conductivity ratio is greater than 1, an unbalanced
electric force toward a stronger electric field is generated, bringing about the migration toward a stronger electric
field. In contrast, when the electric conductivity ratio is smaller than 1, the unbalanced electric force direction
is reversed and the droplet migrates toward a weaker electric field. The hydrodynamic force produces little
promotion or hindrance to droplet migration. A greater permittivity ratio usually produces greater electric force
and migration velocity. The droplet migrates along one direction in a symmetric nonuniform electric field but
tends to migrate along the normal direction of electric potential profiles in an asymmetric nonuniform electric
field.
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I. INTRODUCTION

Electrohydrodynamics (EHD), which is an interdisci-
plinary field of hydrodynamics and electrodynamics, focuses
on the interaction between fluids and electric fields. Once a
two-phase flow system is subjected to an external electric
field, the electric stress exerted on the fluid alters the fluid
flow situation, and the electric field distribution is modified
by fluid flow in return. Imposing an electric field has become a
widespread technique to manipulate fluid flow and alter fluid
behaviors in industrial applications [1–6]. Because droplets
undergo deformation and dielectrophoretic migration at the
same time under the action of electric force, it is efficient
to control droplet transportation in microfluidic devices by
electric fields [4,5].

A pioneering theoretical model, known as the leaky dielec-
tric model, of droplet behavior in uniform electric fields was
proposed by Taylor [7]. The theory is further extended to the
prediction of transient droplet behaviors in uniform electric
fields by solving the coupled flow and electric field equa-
tions [8,9]. The effectiveness of the leaky dielectric model
for the prediction of small droplet deformation is validated
[7,10–14]. More complicated and comprehensive investiga-
tions of droplet behavior in uniform electric fields have also
been conducted by experimental and numerical simulation
methodologies [15–19]. Lin et al. [15] applied the phase field
model to the prediction of deformation and interior flow of
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a leaky dielectric droplet. Cui et al. [16] concluded that a
prolate droplet may undergo periodic oscillation under certain
circumstances. Salipante and Vlahovska [17] found that the
droplets in a strong electric field might rotate and have oblique
orientation. Breaking up of droplets along the electric field
direction occurs when the electric field intensity is greater than
a critical value [18,19].

Generally speaking, because the electric force exerted on
droplets is perfectly symmetric, a single droplet in the ap-
propriate electric field turns into an ellipsoid shape from a
sphere but its position remains still. The interfacial electric
stress around the droplet gives rise to the circulatory flow, and
four identical vortices appear in the droplet [20,21]. To break
the symmetry and lead to the dielectrophoretic migration of an
uncharged droplet, application of a nonuniform electric field
is inevitable.

Early research on droplet behaviors in nonuniform electric
fields can be traced back to Feng [22], who compared the
different behaviors of a fluid droplet and a solid sphere
with different physical parameters and obtained the droplet
dielectrophoretic velocity, after which detailed analyses of the
deformation, motion, and breakup of droplets in nonuniform
electric fields were carried out [23–29]. A perfect dielectric
droplet might take the form of an oblate shape, which is in
sharp contrast to droplets in a uniform electric field [23]. The
circulatory flow inside a leaky dielectric droplet proved to be
more intense than that in a uniform electric field [24]. Mandal
et al. [25] generalized the theory of Feng [22] by taking the
effects of surface charge convection and shape deformation
into consideration. The gravitational field [26] and external
flow field [27] were further coupled with the electric field
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in their subsequent work. Some scholars [28,29] also investi-
gated droplet dielectrophoretic migration and deformation in
alternating current electric fields. Overall, the investigations
of droplet dynamic behaviors in nonuniform electric fields
are mainly concentrated on theoretical analyses, which are
valid only for small droplet deformation and Stokes flow. The
experimental and numerical investigations [24,30,31] are far
from sufficient compared with the progress made regarding
EHD in uniform electric fields.

Although implicit methods, such as the volume-of-fluid
(VOF) and level-set (LS) methods, are convenient to deal with
the topological changes of an interface, most of them have not
been applied to the simulation of EHD flow in nonuniform
electric fields. In this work, a VOF+LS+SPP (smoothed
physical parameters) method [32,33], which is developed to
predict the dynamic behaviors of perfect dielectric fluids, is
extended to the simulation of three-dimensional leaky dielec-
tric droplets in an electric field with the help of a dynamically
adaptive grid technique. The accuracy of this method is ver-
ified by comparing with previous results. It is found that the
flow field and electric force around the droplet in a uniform
electric field have different distributions for different electric
conductivities and permittivities. The symmetries of elec-
tric and hydrodynamic forces are broken by the nonuniform
electric field and the unbalanced forces are produced, which
has a significant influence on droplet behaviors. Meanwhile,
the droplet deformation and dielectrophoretic migration in
the symmetric and asymmetric nonuniform electric fields are
investigated.

II. GOVERNING EQUATIONS
AND NUMERICAL METHODS

A. Governing equations

Assuming the droplet and external fluid are incompressible
Newtonian fluids and the fluid flow is laminar and unsteady,
the continuity and momentum equations are

∇ · u = 0, (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = − ∇p + ∇ · [μ(∇u + ∇uT )]

+ ρg + Fσ + Fe, (2)

where u is the velocity vector, ρ is the density, t is the
time, p is the pressure, μ is the dynamic viscosity, g is the
gravitational acceleration, Fσ is the surface tension, and Fe is
the electric force.

B. VOF+LS+SPP method

The VOF+LS+SPP method [32,33] is applied to deal with
two-phase EHD flow. In the VOF method, a volume fraction
α, which is the basis of constructing the phase interface, is
defined to be the volume fraction for each phase in each grid
cell. The evolution of volume fraction α satisfies

αi + αo = 1, (3)

∂αo

∂t
+ ∇ · (uαo) = 0, (4)

where the subscripts i and o refer to the fluid inside and outside
of the droplet, respectively.

A LS function ϕ is defined to be the signed distance from
the interface.

ϕ(r, t ) =

⎧⎪⎨
⎪⎩

+|d| r ∈ outside of the droplet

0 r ∈ the interface

−|d| r ∈ inside of the droplet

, (5)

where r is the position vector and d is the distance from the
interface. The evolution of ϕ is given as

∂ϕ

∂t
+ u · ∇ϕ = 0. (6)

The SPP, including density ρ, dynamic viscosity μ, electric
conductivity σ , and permittivity ε, are obtained by

ρ = ρi(1 − H (ϕ)) + ρoH (ϕ), (7)

μ = μi(1 − H (ϕ)) + μoH (ϕ), (8)

σ = σi(1 − H (ϕ)) + σoH (ϕ), (9)

ε = εi(1 − H (ϕ)) + εoH (ϕ), (10)

where H(ϕ) is the Heaviside function and is defined as

H (ϕ) =

⎧⎪⎨
⎪⎩

0 ϕ < −a
1
2

[
1 + ϕ

a + 1
π

sin
(

πϕ

a

)] |ϕ| � a

1 ϕ > a

, (11)

where a = 1.5	, and 	 denotes the grid size.
A continuum surface force (CSF) model [34] is utilized to

calculate the surface tension Fσ :

Fσ = −γ κ (ϕ)δ(ϕ)∇ϕ, (12)

where γ is the surface tension coefficient, and

κ (ϕ) = ∇ ·
( ∇ϕ

|∇ϕ|
)

, (13)

δ(ϕ) =
{

1+cos (πϕ/a)
2a |ϕ| � a

0 |ϕ| > a
. (14)

C. Leaky dielectric model

For two leaky dielectric fluids, there exists a small amount
of free charges throughout the whole space. It is reasonable to
assume that the free charges accumulate at the interface much
faster than the fluid motion [7], and the charge conservation
equation is

∇ · (σE ) = 0, (15)

where E is the electric field intensity.
In EHD, the dynamic current is so small that the magnetic

induction is neglected. According to Maxwell equations, the
electric field intensity satisfies

∇ × E = 0, (16)

∇ · (ε0εE ) = q, (17)
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where ε0 is the permittivity of vacuum, and q is the volume
density of local free charges.

According to Eq. (16), the electric field intensity can be
expressed as the gradient of electric potential φ:

E = −∇φ. (18)

Combining Eqs. (15) and (18), it can be obtained that

∇ · (σ∇φ) = 0. (19)

The volume density of local free charges q is

q = ∇ · (ε0εE ) = σE · ∇
(ε0ε

σ

)
. (20)

The electric force is given by [20,21]

Fe = qE − 1

2
ε0E · E∇ε + 1

2
ε0∇

(
ρE · E

∂ε

∂ρ

)
. (21)

The first term is the Coulomb force which acts along the
direction of the electric field due to free charges. The second
term is the dielectric force which acts perpendicularly to
the interface due to polarization charges. The third term is
the electrostrictive force which is caused by inhomogeneity
of the electric field and variation of permittivity with density.
The electrostrictive force is ignored for incompressible fluids
[12].

D. Solving methodology

The velocity and pressure [Eqs. (1) and (2)] are coupled
by the PISO algorithm. The second-order upwind scheme is
utilized to discretize the convection term in the momentum
and LS equations [Eqs. (2) and (6)]. The user-defined scalar
electric potential is introduced to solve Eq. (19). The user-
defined functions are developed to calculate the electric force
[Eq. (21)] and SPP [Eqs. (7)–(10)]. The geometric recon-
struction scheme [35] is adopted to solve the volume fraction
equation [Eq. (4)]. The first-order implicit scheme treats the
time marching. The Courant number Co is defined to control
the time step 	t by setting Co � 0.01:

Co = 	t

	/|u| . (22)

III. DROPLET IN THE UNIFORM ELECTRIC FIELD

A. Physical problem

A spherical droplet with a radius R is located in the center
of a cubic cavity, as shown in Fig. 1(a). A uniform electric

FIG. 1. Physical problem of droplet deformation in the electric
field: (a) schematic diagram and (b) grid system.

field, along the vertical direction with a magnitude of E0 =
φ0/10R, is generated by an applied voltage between the top
and bottom plates. The boundary conditions are listed below:

z = 10R, no-slip wall, φ = φ0

z = 0, no-slip wall, φ = 0

x = 10R, no-slip wall,
dφ

dn
= 0

x = 0, no-slip wall,
dφ

dn
= 0

y = 10R, no-slip wall,
dφ

dn
= 0

y = 0, no-slip wall,
dφ

dn
= 0. (23)

The grid number required for a full three-dimensional EHD
problem increases dramatically compared with the simulation
of a two-dimensional problem [32,33]. The dynamically adap-
tive grid technique is introduced to refine the grids near the
interface and save computer resources. In Fig. 1(b), the base
grid is 40 × 40 × 40, three grid levels are applied, and the grid
resolution R/	 increases from 4 to 16. The grid number is
only 219 022, while the grid number of a uniform grid system
needs to be 4 096 000 to keep the same resolution. The region
using the dynamically adaptive grid technique is confined by

|ϕ| � R. (24)

The densities of two fluids are assumed to be identical. The
behaviors of a leaky dielectric droplet in the electric field are
characterized by four dimensionless parameters:

λσ = σi

σo
, λε = εi

εo
, λμ = μi

μo
, CaE = ε0εoE2

0 R

γ
,

(25)

where λσ , λε, and λμ are the ratios of electric conductivity,
permittivity, and dynamic viscosity between the droplet and
external fluid, respectively. The electric capillary number CaE

describes the relative importance of electric force and surface
tension.

A spherical leaky dielectric droplet surrounded by another
leaky dielectric fluid deforms into either a prolate ellipsoid
(D > 0) or an oblate ellipsoid (D < 0) in the electric field, as
shown in Fig. 2. The deformation rate D is defined as

D = L − B

L + B
, (26)

where L and B are the maximum droplet length along the
parallel and vertical direction of the electric field, respectively.

Under the assumption of Stokes flow, Taylor [7] presented
that the terminal deformation rate of a leaky dielectric droplet
in the electric field is

D = 9 fd (λσ , λε, λμ)

16(2 + λσ )2 CaE ,

fd (λσ , λε, λμ) = λ2
σ + 1 − 2λε + 3

5
(λσ − λε )

2 + 3λμ

1 + λμ

.

(27)
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FIG. 2. Schematic of droplet deformation.

When fd (λσ , λε, λμ) = 0, the droplet still remains spher-
ical. The droplet takes the form of a prolate ellipsoid when
fd (λσ , λε, λμ) > 0, while an oblate ellipsoid results from
fd (λσ , λε, λμ) < 0.

A grid independence test is performed using three different
grid systems. The grid resolutions R/	 are chosen to be 12,
16, and 20. As shown in Fig. 3, the simulation results are
almost the same for three different grid systems. Thus, the
grid resolution is chosen to be R/	 = 16 for the following
simulations. The dimensionless flow time T is defined as

T = t

μo/ε0εoE2
0

. (28)

B. Results and discussion

Figure 4 shows the deformation rates of a leaky dielectric
droplet in the electric field. As shown in Figs. 4(a) and
4(b), the deformation rate increases almost linearly with the
increase of electric capillary number CaE for small droplet

FIG. 3. Evolution of the droplet deformation rate with time for
three different grid systems (λσ = 0.5, λε = 2, λμ = 1, CaE = 0.2).

FIG. 4. Droplet deformation rates: (a) λσ = 2.5, λε = 2, λμ =
1; (b) λσ = 100, λε = 17.54, λμ = 0.00071; (c) λσ = 5, λμ = 16,
CaE = 0.2; and (d) λε = 2, λμ = 1, CaE = 0.2.

deformation (D � 0.1). As the electric capillary number CaE

continues to increase (D > 0.1), the droplet deformation
increases dramatically. It should be noted that the electric
conductivity ratio λσ is greater than 10 000 in the experiment
[36], which has been viewed as a challenge for present two-
phase flow models. Fortunately, the system behaves just as if
an uncharged conducting drop in an insulating fluid when the
electric conductivity ratio λσ is greater than 100. The increase
of λσ hardly affects droplet behavior [37]. Therefore, the
conductivity ratio λσ is set to be 100 in Fig. 4(b). Figure 4(c)
shows that the terminal droplet shape in the electric field
transforms from a prolate ellipsoid to an oblate ellipsoid as
the permittivity ratio λε increases. When the deformation
rate is greater than 0, the permittivity ratio λε shows only
a limited effect on droplet deformation. However, when the
deformation rate is smaller than 0, the droplet deformation
increases rapidly with the increase of permittivity ratio λε. All
the above results fit well with Lin’s numerical results [14,15].
In Fig. 4(d), the electric conductivity ratio λσ is changed while
other parameters are kept constant. Simulation results are in
good agreement with Yang’s numerical predictions [13]. The
terminal droplet shape transforms from an oblate ellipsoid to
a prolate ellipsoid while increasing the electric conductivity
ratio λσ from 0.2 to 20. The relationship between deformation
rate and the common logarithm of electric conductivity ratio
is approximatively linear [12,13].

Simulation results are also compared with Taylor’s theo-
retical predictions [7]. It is obvious that the simulation and
theoretical predictions agree only reasonably well for small
droplet deformation (|D| � 0.05). There are great differences
between the simulation results and theoretical predictions for
large droplet deformation, since the theoretical model is based
on the small deformation hypothesis [12,15].
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FIG. 5. Velocity vectors (left) and stream functions (right) around the droplet at y = 5R: (a) λσ = 5, λε = 0.5, λμ = 16, CaE = 0.2,
D = 0.092; (b) λσ = 5, λε = 8, λμ = 16, CaE = 0.2, D = 0.014; and (c) λσ = 5, λε = 30, λμ = 16, CaE = 0.2, D = −0.123.

Figure 5 shows the velocity vectors (left) and stream
functions (right) around the droplet at y = 5R for different
parameters. Four identical vortices are generated inside and
outside of the droplet, respectively. When λε = 0.5 [Fig. 5(a)],
the droplet takes the form of a prolate ellipsoid and fluid flows
from the droplet equator to the axis poles along the droplet
interface. When λε = 30 [Fig. 5(c)], the droplet takes the form
of an oblate ellipsoid and the fluid motion direction is totally
reversed. Interestingly, the fluid motion direction of a prolate
droplet with small deformation [Fig. 5(b)] is also reversed to
the droplet with large deformation [Fig. 5(a)]. All of these are
in good agreement with previous results [12,14,15].

The generated flow field inside the droplet suggests that
an isolated droplet is an efficient microreactor to induce the
liquid mixture. The effectiveness is greatly influenced by
the circulatory flow velocity. Figure 6(a) shows the velocity
magnitude distributions around the droplet when λσ = 0.2,
λε = 2, λμ = 1, CaE = 0.2 at y = 5R. The maximum velocity
lies near the droplet interface. Accordingly, Figs. 6(b)–6(d)
shows the dimensionless maximum velocity magnitudes near
the droplet interface for different parameters. The dimension-
less maximum velocity magnitude U is obtained by

U = |u|max√
γ /ρoR

. (29)

Figure 6(b) shows that the circulatory flow velocity in-
creases almost linearly with the increase of electric capillary
number CaE . According to Figs. 6(c) and 6(d), the circulatory
flow direction and magnitude are also influenced by the rela-
tive magnitude of electric conductivity ratio and permittivity
ratio. The velocity magnitude is almost zero when λε = λσ .
The maximum velocity magnitude experiences a slow in-
crease with the decrease of λε or the increase of λσ when
λσ > λε . The maximum velocity magnitude experiences a
significant increase with the increase of λε or the decrease
of λσ when λσ < λε . The circulatory flow directions around
the droplet are also shown in Figs. 6(c) and 6(d) and are
consistent with Fig. 5. To sum up, the fluid flow velocity has
a drastic variation for λσ /λε < 1. However, the variation is
not so drastic for λσ /λε > 1. A droplet with λσ /λε < 1 has
greater potential to be used as a microreactor.

After the droplet deforms into an ellipsoid, the electric
field intensity in the droplet E i is uniform and has the same
direction as the external electric field E0 [38]:

E i = σo

(1 − n)σo + nσi
E0,

n = 1 − e2

2e3

(
ln

1 + e

1 − e
− 2e

)
,

e =
√

1 − B2/L2. (30)

When the droplet and external fluid are exposed to the
electric field, the free charges accumulate on the interface. The

FIG. 6. (a) Velocity magnitude distributions around the droplet
at y = 5R when λσ = 0.2, λε = 2, λμ = 1, CaE = 0.2. The red color
corresponds to high velocity while the blue color corresponds to low
velocity. (b)–(d) The dimensionless maximum velocity magnitude
near the droplet interface. (b) λσ = 2.5, λε = 2, λμ = 1; (c) λσ = 5,
λμ = 16, CaE = 0.2; and (d) λε = 2, λμ = 1, CaE = 0.2.
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FIG. 7. Distribution of volume density of local free charges q at
y = 5R: (a) λσ = 5, λε = 0.5, λμ = 1, CaE = 0.2; and (b) λσ = 5,
λε = 30, λμ = 1, CaE = 0.2.

surface charge density qs at the droplet interface is obtained by

qs = ε0εiEin − ε0εo
σiEin

σo
= ε0εi

(
1 − λσ

λε

)
Ein, (31)

where Ein is the component of electric field intensity E i

normal to the interface in the droplet. E in is always positive
on the top interface while it is always negative on the bottom
interface. The surface charge density qs is fully decided by
λσ /λε. The negative charges accumulate on the top interface
while the positive charges accumulate on the bottom inter-
face when λσ /λε > 1. The positive charges accumulate on
the top interface while the negative charges accumulate on
the bottom interface when λσ /λε < 1. The distributions of

volume density of local free charges q when λσ = 5, λε = 0.5,
λμ = 1, CaE = 0.2 and λσ = 5, λε = 30, λμ = 1, CaE = 0.2
are shown in Fig. 7. They are consistent with Eq. (31).

Interestingly, although the distribution of volume density
of local free charges q is fully decided by λσ /λε, the direction
of electric force cannot be simply decided by the nature of free
charges between the electrode and the droplet interface, which
is in contrast with the results of Nath et al. [39]. For the droplet
without deformation, the electric stress components along the
normal direction ‖τ e

rr‖ and tangential direction ‖τ e
rθ‖ at the

interface are given by [10]

∥∥τ e
rr

∥∥ = 9ε0εoE2
0

4(λσ + 2)2

[(
λ2

σ − 2λε + 1
)
cos2θ + λε − 1

]
, (32)

∥∥τ e
rθ

∥∥ = 9ε0εoE2
0

4(λσ + 2)2 (λε − λσ ) sin 2θ, (33)

where θ is the polar angle measured from the electric field
direction in the clockwise direction. The electric stress along
the tangential direction is zero at the droplet axis poles and
equator (θ = 0◦ and 90◦). As a result, the electric stress at
the droplet axis poles (θ = 0◦) point toward the outside of
the droplet when λ2

σ > λε while it points toward the inside of
droplet when λ2

σ < λε. The electric stress at the droplet equa-
tor (θ = 90◦) points toward the outside of the droplet when
λε > 1 while it points toward the inside of the droplet when
λε < 1. The electric stress along the tangential direction is
influenced by the values of λσ /λε and sin2θ at the same
time.

FIG. 8. Electric force distribution around the droplet interface at y = 5R: (a) λσ = 5, λε = 0.5, λμ = 1, CaE = 0.2. D > 0; (b) λσ = 5,
λε = 10, λμ = 1, CaE = 0.2, D ≈ 0; (c) λσ = 5, λε = 30, λμ = 1, CaE = 0.2, D < 0; (d) λσ = 0.5, λε = 0.2, λμ = 1, CaE = 0.2, D > 0;
(e) λσ = 0.5, λε = 1, λμ = 1, CaE = 0.2, D < 0; and (f) λσ = 0.5, λε = 2, λμ = 1, CaE = 0.2, D < 0.
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FIG. 9. Transient development of droplet position along z direc-
tion when λσ = 100, λε = 17.02, λρ = 1.04, and λμ = 0.0013.

Figure 8 shows the electric force Fe distributions around
the droplet interface at y = 5R for different parameters. The
electric force Fe is nondimensionalized by

∣∣Fn
e

∣∣ = |Fe|
γ /R2

. (34)

The electric force could act toward the outside or inside of
the droplet and produce different droplet deformations. The
direction of electric force has a good agreement with above
analyses. In Figs. 8(a)–8(c), the electric force acts toward the
outside of the droplet. When λσ = 5 and λε = 0.5 [Fig. 8(a)],
the electric force at the droplet axis poles is stronger than that
at the equator and produces a prolate ellipsoid droplet. With
the increase of permittivity ratio λε, the electric force at the
droplet equators increases [Fig. 8(b)]. When the permittivity
ratio λε is large enough [Fig. 8(c)], the electric force at the

FIG. 10. Electric potential distribution at y = 5R when the
droplet does not exist.

FIG. 11. Transient development of droplet position along z di-
rection: (a) λε = 2, λμ = 1, CaE = 0.2 and (b) λε = 10, λμ = 1,
CaE = 0.2.

droplet axis poles is smaller than that at the equator and
produces an oblate ellipsoid droplet. In Figs. 8(d)–8(f), the
electric force acts toward the inside of the droplet. When
λσ = 0.5 and λε = 0.2 [Fig. 8(d)], the electric force at the
droplet equator is stronger than that at the axis poles and
produces a prolate ellipsoid droplet. With the increase of
permittivity ratio λε, the electric force at the droplet axis poles
increases while the force at the equator decreases [Fig. 8(e)].
When the permittivity ratio λε is large enough [Fig. 8(f)], the
electric force at the equator even acts toward the outside of
the droplet. Both of the electric forces at the equator and axis
poles produce an oblate ellipsoid droplet.

IV. DROPLET IN THE NONUNIFORM ELECTRIC FIELD

The electric force around the droplet is no longer symmet-
ric in the nonuniform electric field. Besides employing the
λσ = 100, λε = 17.02, λρ = 1.04, λμ = 0.0013, a theoreti-
cal simulation model, which possessed a similar architecture
configuration as that of the experiment, is constructed [30].
Although the electric conductivity ratio λσ is greater than
1 000 000 in the experiment, it is set to be 100 during the
simulation, which hardly affects droplet behaviors [37]. The

FIG. 12. Transient development of droplet position along z di-
rection when λσ = 5, λμ = 1, CaE = 0.2.
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FIG. 13. Droplet deformation and electric force distribution at y = 5R in the moment of T = 14: (a) λσ = 5, λε = 0.5, λμ = 1, CaE = 0.2;
(b) λσ = 5, λε = 10, λμ = 1, CaE = 0.2; and (c) λσ = 5, λε = 30, λμ = 1, CaE = 0.2.

droplet would migrate toward the electrode in the pin-plate
electrode system for high electric field intensity [30]. The
transient development of the droplet position along z direction
is shown in Fig. 9. The dimensionless flow time T is defined
as Eq. (28). The droplet position Z is evaluated by

Z =
∫

zαidxdydz∫
αidxdydz

. (35)

The simulation results are in good agreement with the
experiments [30].

For ease of comparison, the droplet behaviors in the
nonuniform electric field are simulated using the same
geometry, as shown in Fig. 1. The boundary conditions for
the electric potential are adjusted to generate a nonuniform

electric field with great inhomogeneity:

z = 10R, no-slip wall, φ = φ0

z = 0, no-slip wall, φ = 0

x = 10R, no-slip wall, φ = 0

x = 0, no-slip wall, φ = 0

y = 10R, no-slip wall, φ = 0

y = 0, no-slip wall, φ = 0. (36)

The electric potential distribution at y = 5R when the
droplet does not exist is shown in Fig. 10. The electric
potential profiles are intensive near the top plates while the
electric potential profiles are sparse near the bottom plates.
Because the electric field intensity is the negative gradient of

FIG. 14. Droplet velocity fields at y = 5R in the moment of T = 14: (a) λσ = 5, λε = 0.5, λμ = 1, CaE = 0.2; (b) λσ = 5, λε = 10,
λμ = 1, CaE = 0.2; and (c) λσ = 5, λε = 30, λμ = 1, CaE = 0.2.

033113-8



MIGRATION BEHAVIORS OF LEAKY DIELECTRIC … PHYSICAL REVIEW E 100, 033113 (2019)

electric potential, it is larger at the position with more inten-
sive electric potential profiles. As a result, the electric field
intensity increases along the positive z direction. The droplet
experiences deformation and dielectrophoretic migration at
the same time.

The effects of a symmetric nonuniform electric field on
droplet behaviors are investigated by initially setting a spheri-
cal droplet with a radius R in the center of a cubic cavity. The
electric force around the droplet is only asymmetric along the
z direction. As a result, the droplet experiences deformation
and dielectrophoretic migration only along the z direction.
Figure 11 shows the transient development of droplet position
along z direction for different electric conductivity ratios λσ

when λε = 2, λμ = 1, CaE = 0.2 [Fig. 11(a)] and λε = 10,
λμ = 1, CaE = 0.2 [Fig. 11(b)]. The electric conductive ratio
λσ increases along the arrow direction. The droplet migrates
along the positive z direction when λσ > 1, while the droplet
migrates along the negative z direction when λσ < 1. The
droplet migration velocity increases with the increase of elec-
tric conductivity ratio λσ when λσ > 1, while the velocity
increases with the decrease of electric conductive ratio λσ

when λσ < 1. In other words, a greater difference between
the electric conductivities of droplet and external fluid always
leads to a greater migration velocity.

Figure 12 shows the transient development of droplet
position along the z direction for different permittivity ratios
λε when λσ = 5, λμ = 1, CaE = 0.2. The droplet height has
an evident increase as the permittivity ratios λε increases,
as shown by the arrow. Accordingly, the droplet migration
velocity increases. The droplet shapes and corresponding
electric force distributions at y = 5R in the moment of T = 14
are shown in Fig. 13. Corresponding to Figs. 8(a)–8(c), the
electric force also acts toward the outside of the droplet in the
nonuniform electric field. Because the electric field intensity
increases along the positive z direction, the electric force at the
top half of the droplet is greater than that at the bottom half
of the droplet and an upward force is produced. The droplet
is stretched along the electric field direction and produces
a sharp tip when λε = 0.5. The increase of λε inhibits the
droplet from being stretched, and the droplet even takes the
form of an oblate shape when λε = 30. As a result, the action
area of electric force becomes larger with the increase of
permittivity ratio λε and produces a larger upward force. In
addition, as the droplet goes up to where the electric field
is stronger, the electric force increases and leads to a greater
velocity. Namely, the slope of the curve increases with time in
Fig. 12. Figure 14 shows the droplet velocity fields at y = 5R
in the moment of T = 14. A larger velocity always corre-
sponds to a larger permittivity ratio λε, which is consistent
with Fig. 12. Additionally, because of the migration of the
droplet, the vortices which existed in the uniform electric field
disappear. The hydrodynamic force has only a small influence
on droplet migration compared with the electric force.

Comparing with Fig. 13(b), when the electric conductivity
ratio λσ decreases from 5 to 2, the electric force acts toward
the inside of the droplet because λσ

2 < λε, as shown in
Fig. 15. However, the action area of downward electric force
is much smaller compared with the upward electric force.
A detailed calculation shows that an upward electric force
is finally produced. Besides, because the circulatory flow

FIG. 15. Droplet deformation, electric force distribution (left),
and the corresponding velocity fields (right) at y = 5R in the moment
of T = 14 when λσ = 2, λε = 10, λμ = 1, CaE = 0.2.

velocity has a significant increase with the decrease of λσ

(Fig. 6). The vortices do not disappear in the nonuniform
electric field. An upward hydrodynamic force is also produced
[15]. The droplet migrates along the positive z direction, as
shown in Fig. 11(b).

Figure 16 shows the transient development of droplet posi-
tion along z direction for different permittivity ratios λε when
λσ = 0.5, λμ = 1, CaE = 0.2. Corresponding to Figs. 8(d)–
8(f), the electric force also acts toward the inside of the
droplet in the nonuniform electric field. Because the electric
field intensity increases along the positive z direction, the
electric force at the top half of the droplet is greater than that
at the bottom half of the droplet and a downward force is
produced. The droplet height has an evident decrease when
the permittivity ratios λε increase from 2 to 30, as shown
by the arrow. Accordingly, the droplet migration velocity
increases. The droplet shapes and corresponding electric force

FIG. 16. Transient development of droplet position along z
direction when λσ = 0.5, λμ = 1, CaE = 0.2.
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FIG. 17. Droplet deformation and electric force distribution at y = 5R in the moment of T = 14: (a) λσ = 0.5, λε = 0.2, λμ = 1, CaE =
0.2; (b) λσ = 0.5, λε = 5, λμ = 1, CaE = 0.2; and (c) λσ = 0.5, λε = 20, λμ = 1, CaE = 0.2.

distributions at y = 5R in the moment of T = 14 are shown
in Fig. 17. The droplet is compressed along the electric field
direction with the increase of permittivity ratio λε. In addition,
the downward electric force also has a great increase and
increases the droplet migration velocity. What is unusual is
that when λε increases from 0.2 to 2, the droplet migration
velocity has a slight decrease. The migration velocity when
λε = 0.2 is even greater than λε = 5. Figure 18 shows the
droplet velocity fields at y = 5R in the moment of T = 14.
There exists no vortices when λε = 0.2. However, with the
increase of permittivity ratio λε the vortices begin to appear.
Because the circulatory flow velocity around the top half of
the droplet is greater than that around the bottom half of the
droplet, an upward hydrodynamic force hinders the migration
of the droplet along the negative z direction [15]. Because
the hydrodynamic force is smaller than the electric force, the

droplet migration velocity has only a minor decrease. When
the permittivity ratio is large enough, the electric force begins
to dominate droplet migration and the droplet velocity begins
to increase dramatically. In addition, as the droplet moves
down to where the electric field is weaker, the electric force
decreases, leading to a smaller velocity. Namely, the slope of
the curve decreases with time in Fig. 16. Furthermore, because
the droplet migrates toward a stronger electric field for λσ =
5 while the droplet migrates toward a weaker electric field
for λσ = 0.5, the droplet migration velocity is much faster
when λσ = 5 than that when λσ = 0.5, as shown in Figs. 12
and 16.

Comparing with Fig. 17(a), when the electric conductivity
ratios λσ increase from 0.5 to 0.8, the direction of electric
force is not uniform any longer, as shown in Fig. 19. A
detailed calculation shows that a downward electric force is

FIG. 18. Droplet velocity fields at y = 5R in the moment of T = 14: (a) λσ = 0.5, λσ = 0.2, CaE = 0.2; (b) λσ = 0.5, λσ = 5, CaE = 0.2;
and (c) λσ = 0.5, λε = 20, CaE = 0.2.
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FIG. 19. Droplet deformation, electric force distribution (left),
and the corresponding velocity fields (right) at y = 5R in the moment
of T = 14 when λσ = 0.8, λε = 0.2, λμ = 1, and CaE = 0.2.

also produced. No apparent vortices appear in the nonuniform
electric field. The droplet migrates along the negative z direc-
tion. Because the magnitude of electric force is much smaller
compared with Fig. 17, the migration velocity is very small.

Figure 20 shows the transient development of droplet
position along the z direction for different electric capillary
numbers CaE when λσ = 5, λε = 2, λμ = 1. The droplet
velocity has a dramatic increase when the electric capillary
number CaE increases from 0.1 to 0.4 because of the increase
of electric force, as shown by the arrow.

To have a better understanding of the droplet behaviors in a
more general sense, the effects of an asymmetric nonuniform
electric field on droplet behavior are also investigated by
setting a spherical droplet with a radius R in the position
(7R, 5R, 5R) in the beginning. The surrounding electric field
is asymmetric along x and z directions at the same time.
Figure 21 shows the evolution of droplet positions and corre-
sponding electric force distributions at y = 5R when λσ = 5,

FIG. 20. Transient development of droplet position along
z direction when λσ = 5, λε = 2, λμ = 1.

λε = 2, λμ = 1, CaE = 0.2. The droplet is stretched along
the electric field direction and produces a sharp tip as shown
in Fig. 13. However, because the electric force is no longer
symmetric along the x direction, the electric force has a certain
amount of declination along the negative x direction, as well
as the sharp tip of the droplet. The droplet also has a slight
migration along the negative x direction. Figure 22 shows
the evolution of droplet positions and corresponding electric
force distributions at y = 5R when λσ = 0.5, λε = 2, λμ = 1,
and CaE = 0.2. The droplet is compressed along the electric
field direction as shown in Fig. 17. Because the direction of
electric force is reversed in Fig. 20, the electric force has a
certain amount of declination along the positive x direction.
The droplet also has a slight migration along the positive x
direction. Overall, the droplet tends to experience deformation
and dielectrophoretic migration along the normal direction of
electric potential profiles.

V. CONCLUSIONS

In this work, a VOF+LS+SPP method, which is applied to
simulate the dynamic behaviors of perfect dielectric droplets,
is extended to the simulation of three-dimensional leaky di-
electric droplets in the electric field. The dynamically adap-
tive grid technique, which is effective to improve simulation
accuracy and save computer resources at the same time, is
applied to refine the region around the droplet interface.
Salient findings and conclusions are summarized as follows:

(1) Simulation results about the deformation and fluid
motions of a single droplet in the uniform electric field are
in good agreement with previous theoretical and numerical
predictions, proving the feasibility of the three-dimensional
VOF+LS+SPP method. Four identical vortices are gener-
ated inside the droplet under the action of uniform electric
field. The variation of circulatory flow velocity is drastic for
λσ /λε < 1 but gentle for λσ /λε > 1. A droplet with λσ /λε <

1 is more efficient as a microreactor. Although the distribution
of free charges around the droplet is fully decided by λσ /λε,
the electric force distribution cannot simply be decided by
the nature of free charges between the electrode and the
droplet interface. The electric force could act toward the
outside or inside of a droplet and produce different droplet
deformations.

(2) A droplet in a nonuniform electric field experiences
deformation and dielectrophoretic migration at the same time.
Under the combined actions of electric and hydrodynamic
forces, the droplet migrates toward a stronger electric field
when λσ > 1. In most cases, the electric force acts toward
the outside of the droplet. The electric force at the top half
of the droplet is greater than that at the bottom half of the
droplet. An upward electric force is produced. When the
electric conductivity ratio is much smaller than the permit-
tivity ratio, the electric force acts toward the inside of the
droplet. Interestingly, the electric force at the top half of
the droplet is smaller than that at the bottom half of the
droplet, and an upward electric force is also produced. As a
result, the droplet migrates toward the stronger electric field
in these two circumstances. With the increase of permittivity
ratio λε, the droplet is compressed along the electric field.
The electric force increases and produces greater migration

033113-11



WANG, SUN, LI, CHEN, AND YU PHYSICAL REVIEW E 100, 033113 (2019)

FIG. 21. Evolution of droplet positions and corresponding electric force distributions at y = 5R when λσ = 5, λε = 2, λμ = 1, CaE = 0.2:
(a) T = 0, (b) T = 6, (c) T = 12, and (d) T = 18.

velocity. When the electric conductivity ratio is much smaller
than the permittivity ratio, the vortices exist in the nonuniform
electric field and are beneficial to droplet migration.

(3) The droplet migrates toward the weaker electric field
when λσ < 1. In most cases, the electric force acts toward
the inside of the droplet. The electric force at the top half

of the droplet is greater than that at the bottom half of
the droplet, and a downward electric force is produced. As
a result, the droplet migrates toward the weaker electric
field. With the increase of permittivity ratio λε, the electric
force at the droplet axis poles increases, which is beneficial
to the increase of droplet migration velocity. However, the

FIG. 22. Evolution of droplet positions and corresponding electric force distributions at y = 5R when λσ = 0.5, λε = 2, λμ = 1, CaE =
0.2: (a) T = 0, (b) T = 120, (c) T = 240, and (d) T = 480.
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appearance of vortices around the droplet hinders migration
of the droplet. As a result, the droplet migration velocity has
a slight decrease and then increases dramatically with the
increase of permittivity ratio λε. Under certain circumstances,
the electric force has no fixed direction but a small down-
ward electric force is also produced; the droplet also slowly
migrates toward the weaker electric field.

(4) For the droplet in a symmetric nonuniform electric
field, the droplet migrates only along one direction. Instead,
the droplet in an asymmetric nonuniform electric field tends to
experience deformation and dielectrophoretic migration along
the normal direction of electric potential profiles. The defor-
mation and dielectrophoretic migration phenomena controlled
by a nonuniform electric field has been widely applied to

microfluidic devices for droplet separation and transportation.
Detailed investigations about effects of electric force and
hydrodynamic force on electrohydrodynamic behaviors of a
leaky dielectric droplet provide theoretical guidance for the
design of appropriate electrode distributions.
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