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Solidification of the Lennard-Jones fluid near a wall in thermohydrodynamic lubrication
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We investigate the thermohydrodynamic lubrication of the Lennard-Jones (LJ) fluid in plain wall channels by
using a molecular-dynamics simulation. It is found that the LJ fluid solidifies near the wall when the viscous
heating of the LJ fluid in the bulk regime is sufficiently large. The thickness of the solidified layer increases with
the channel width. Thus, a long-range-ordered crystal-like structure forms near the wall in high-speed lubrication
when the channel width is large. The mechanism of this counterintuitive solidification is investigated from both
macroscopic and microscopic points of view. It is elucidated that the LJ molecules are densely confined in the
vicinity of the wall due to the macroscopic mass and heat transport in the bulk regime. In this densely confined
regime, the fluid molecules form a crystal-like structure, which is similar to that of the wall molecules, via
direct molecular interaction. Band formation is also observed in the solidified region when the channel width is
sufficiently large.
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I. INTRODUCTION

The molecular-dynamics (MD) study of nanoscale flows
is a very active research field due to the development of
the micro- and nanotechnologies. It has been clarified both
experimentally and theoretically that particular flow behavior
that cannot be described by the hydrodynamic equation, i.e.,
the Navier-Stokes equation, such as slip flows at boundaries
[1–3] and phase transition in molecularly confined channels
[4–8], are significant among nanoscale flows. On the other
hand, it is usually considered that that particular flow behav-
ior is less significant when the channel size is much larger
than the molecular scale; for example, over several hundred
nanometers, and that the flow behavior in plain wall channels
is well described by classic hydrodynamic theory such as the
Reynolds approximation [9].

However, recently, we reported in a proceedings paper [10]
that solidification may occur near the plain wall in high-speed
lubrication even if the channel size is much larger than the
molecular scale. Interestingly, we also found that solidifica-
tion only occurs when the bulk fluid is highly heated due to
the viscous dissipation in high-speed shear flows.

In this paper, we aim to unveil the mechanism of the
counterintuitive solidification from both microscopic and
macroscopic points of view. We carry out large-scale MD
simulations of the Lennard-Jones (LJ) fluid in high-speed
lubrication while changing various physical parameters such
as the channel width, wall speed, wall temperature, fluid den-
sity, and lattice structure of the wall molecules. We focus on
the thermohydrodynamic coupling of mass, momentum, and
energy transfer in the bulk regime and clarify the solidification
mechanism in relation to macroscopic thermohydrodynamic
coupling.

*yasuda@sim.u-hyogo.ac.jp

MD simulations of thermohydrodynamic lubrication in
molecularly thin layers between plane walls, where the chan-
nel width is typically only several tens of nanometers, were
previously investigated in the literature [11–18]. These studies
clarified the distinctive features of nanoscale flows due to the
direct interaction between the fluid and the wall molecules at
the interface, such as the slip flow and density layering at the
boundaries.

For example, in Ref. [12], the effects of viscous heating
on the transport properties in planar Couette flows between
thermal walls were investigated, and a qualitatively different
shear-rate dependence of transport coefficients with and with-
out viscous heating was clarified. The effects of the fluid-
wall interaction on the velocity slip and temperature jump
at wall boundaries were also investigated [14–16]; e.g., in
Ref. [15], it was clarified that the Navier-Stokes equation can
well describe the flow behavior when a fluid-wall interaction
was sufficiently large, while in Ref. [16], it was demonstrated
that the velocity slip and temperature jump became significant
when the fluid-wall interaction was small. A temperature pro-
file qualitatively different from conventional fluid dynamics
was also discovered in planar Poiseuille flows in Ref. [13] and
was discussed in detail in Ref. [17].

Apart from that particular flow behavior occurring only in
molecularly thin layers, this study considers the case where
the channel width is much larger than the molecular scale;
for example, over several hundred nanometers: the direct
interaction between the fluid and the wall molecules is only
restricted in close vicinity of the wall, and macroscopic trans-
port becomes significant in the bulk-fluid regime.

We describe the problem and simulation model considered
in this study in Sec. II. The simulation results are given
in Sec. III, where the counterintuitive solidification is also
revealed. In Sec. IV, the solidification mechanism is discussed
from both macroscopic and microscopic points of view. Fi-
nally, we provide concluding remarks in Sec. V.
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FIG. 1. (a) Schematic diagram of problem and (b) the setting of the bins for the calculation of local macroscopic quantities. In panel (a),
the LJ fluid is sandwiched between atomistic walls kept at a constant temperature T w . Boundary-driven shear flows and force-driven flows
are considered. The x axis is parallel to the flow direction, and the y axis points in the direction perpendicular to the parallel walls. In the x
direction, periodic boundary conditions are considered. In panel (b), the width of the channel, except for thin layers on the boundaries between
the fluid and the channel walls, is uniformly divided into 20 bins, and the local macroscopic quantities are calculated in each bin. The thickness
of each thin layer is d

2 , where d is the size of the gap between layers of the fcc lattice structure.

II. PROBLEM AND SIMULATION MODEL

The LJ fluid between parallel plain walls is considered
[see Fig. 1(a)]. The fluid domain extends 0 < y < H , and
the wall domains extend −W � y � 0 (the lower wall) and
H � y � H + W (the upper wall). Both the fluid and the walls
are composed of LJ particles that interact with each other via
the LJ potential:

U (r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6
]

(0 < r < rc)

0 (rc � r).
(1)

Here, rc is the cutoff parameter, and ε and σ are the units of
energy and length of the LJ particles, respectively.

The wall particles are connected to the face-centered cubic
(fcc) lattice structure (whose lattice nodes are denoted by
{rw

i }) by a spring potential, and the temperature of the wall
particles is kept at a constant value of T w by the Langevin
thermostat algorithm [19–21]. On the other hand, the tem-
perature of the fluid domain is not artificially controlled by
any thermostat algorithm but varies autonomously according
to the mass, momentum, and heat transfer between the thermal
walls.

Thus, the dynamics of the LJ particles in the fluid domain
[i.e., ryi ∈ (0, H )] are described by

mr̈i(t ) = −
∑

j

∂U (|ri j |)
∂ri j

(2)

while, for the wall particles (i.e., ryi ∈ [−W, 0] ∪ [H, H +
W ]), the dynamics are described by

mr̈i(t ) = −
∑

j

∂U (|ri j |)
∂ri j

− ks
(
ri − rw

i

) − γ ṙi + R(t ), (3)

where Rα (t ) (α = x, y, z) is white Gaussian noise that satisfies

〈Rα (t )Rβ (t − s)〉 = 2mkBT wγ δαβδ(s). (4)

Here, ri represents the position of the ith particle, ri j is defined
as ri j = ri − r j , m is the mass of a LJ particle, ks is the spring
constant, γ is the damping coefficient, kB is the Boltzmann
constant, and the summation

∑
j applies to both the fluid and

wall particles. Note that the temperature of the upper wall is
controlled by the Gaussian noise only in the y and z directions.

In this study, we only consider the case where the wall
and fluid particles are the same in size and mass. The cutoff
length rc = 2.8, the spring constant ks = 10 and the damping
coefficient γ = 0.1 are fixed. Hereafter, we express quantities
in units of mass m, energy ε, length σ , and time τ =

√
mσ 2/ε.

The LJ fluid is initially in a uniform liquid state with a
density ρ0 and a temperature T0. This initial state of the LJ
fluid is produced by a long-time (i.e., 2 × 107 time steps)
quiescent MD simulation of the system shown in Fig. 1(a).
The radial distribution function (RDF) of the initial liquid
state is shown in Fig. 4(b).

At time t = 0, the upper wall starts to move from left
to right with a speed Vw, and the wall-driven shear flow is
produced in the fluid domain between the walls.

III. RESULTS

In this section, we only consider the initial density ρ0 =
0.844 and initial temperature T0 = 0.722, which is near the
triple point of the LJ potential (the effects of the initial state
will be discussed in the next section). The channel width
varies as H = 168, 252, 336, 420, and 504, whereas the side
lengths of the simulation box Lx = Lz = 16.8 and the thick-
ness of the wall W � 4.1 are fixed. The speed of the upper
wall also varies as Vw = 1.0, 1.5, 1.75, 2.0, 2.5, and 3.0 for
each channel width H .

The MD simulations are performed using the LAMMPS

software package [22,23], in which Eq. (2) is time-integrated
via the velocity Verlet method with a time-step size of �t =
0.005.
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The width of the channel except the thin buffer layers
along the boundaries [see Fig. 1(b)], i.e., d

2 < y < H − d
2 ,

is uniformly divided into 20 bins, and in each bin, the local
macroscopic quantities, i.e., the density ρ, the flow velocity
ux, the temperature T , and the stress pαβ , are calculated via
the following equations:

ρ(l ) = 1

|V l
bin|

∫
r∈V l

bin

∑
i

δ(r − ri )dr, (5)

ρ(l )ux(l ) = 1

|V l
bin|

∫
r∈V l

bin

∑
i

ṙx i δ(r − ri )dr, (6)

ρ(l )T (l ) = 1

3|V l
bin|

∫
r∈V l

bin

∑
i

[ṙi − ux(l )δxα]2δ(r − ri )dr, (7)

pαβ (l ) = 1

|V l
bin|

∫
r∈V l

bin

∑
i

{[ṙα i − ux(l )δxα]ṙβ i+ rα i fβ i}

× δ(r − ri )dr, (8)

where the summation
∑

i is taken over all the molecules and
V l

bin and |V l
bin| represent the region of the lth bin and the

volume of the local bin, respectively. On the right-hand side
of Eq. (8), f i is the force applied to the ith molecule due to the
interaction among the ambient molecules, i.e., the right-hand
side of Eq. (2).

The local quantities are also time-averaged in the stationary
state after a long time t0 has passed (i.e., t0 = 4 × 107�t),
where the instantaneous quantities are sampled every 10 time
steps in the interval t = [t0, t0 + 105�t] (i.e., 104 samples are
averaged for each local quantity). The standard deviations of
the instantaneous local macroscopic quantities shown in Fig. 2
are at most 0.012 for the velocity ux, 0.013 for the temperature
T , 0.0026 for the density ρ, 0.075 for the shear stress pxy, and
0.12 for the normal stress pyy. The local viscosity is calculated
from the time-averaged quantities as μ = pxy/(dux/dy).

In this section, we mainly show the results for H = 504.
The results for other channel widths are given in Ref. [24].

A. Distribution of macroscopic quantities

Figure 2 shows the spatial distributions of the local macro-
scopic quantities (i.e., velocity, temperature, density, and
stress) and local viscosity for different wall speeds Vw. It
is seen that the normal and shear stresses, pyy and pxy, are
uniform between the upper and lower walls for all cases. This
confirms that the local stresses are balanced so that the flow
velocity is in the stationary state.

The other macroscopic quantities vary spatially between
the walls. The temperature increases in the middle region
due to viscous heating, while it remains close to the wall
temperature near the walls. By contrast, the local density
decreases in the middle but increases near the walls.

Remarkably, for Vw = 2.5 and 3, we can observe signifi-
cant jumps in local density and local viscosity near the walls.
Related to the rapid increase in the local viscosity in the
vicinity of the wall, the velocity profile becomes nonlinear;
i.e., the velocity gradient becomes much smaller near the wall
than in the middle of the channel.

In the following text, we focus on the peculiar behavior
observed in the vicinity of the wall when the wall speed is
large.

FIG. 2. The spatial distributions of the macroscopic quantities,
i.e., (a) velocity ux , (b) temperature T , (c) density ρ, (d) shear stress
pxy, (e) normal stress pyy, and (f) local viscosity μ, for different wall
velocities Vw in the channel where H = 504.

B. Solidification

Figure 3 shows snapshots of the local distributions of
molecules in the lower, middle, and upper regions at two
different time steps. From the motions of tracer particles,
we can distinguish the different diffusive behavior of local
molecules between in the vicinity of the walls and in the
middle of the channel. It is clearly seen that the tracer
molecules in the vicinity of the walls do not diffuse in the
lateral direction (y axis) but rather form a long-range-ordered
crystal-like structure, which is similar to that of the wall
molecules. On the other hand, the molecules in the middle re-
gion diffuse in the lateral direction, as is observed in the fluid
phase.

We can also observe the bands in the solidified layer in
Fig. 3, where the bands run diagonally right upward near the
upper wall. However, the direction of the band is not always
diagonally right upward; instead, it may be the opposite
direction or even appear in the yz cross section. See Fig. 5
in the Supplemental Material [24]. This observation indicates
that band formation is not directly related to the flow velocity
but rather to the compression of molecules from the bulk
region toward the walls.

It is also seen from the supplementary figure [24] that the
solidification of the LJ fluid near the wall occurs only when
the wall speed is sufficiently large, e.g., Vw � 2. When the
wall speed is small, we observe only a thin absorption layer
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FIG. 3. Snapshots of molecules in the lower, middle, and upper
regions at two different time steps for H = 504 and Vw = 3.0. Three-
dimensional particle distributions extended in the depth direction 0 <

z < Lz are projected onto the x-y plane. Thus, the LJ particles, which
align in the depth direction of the fcc lattice, overlap and form a
regular square lattice in the projection map. The motion of (green-
colored) tracer particles after τ = 10 000 time steps have passed is
monitored. In the figures, the diameter of each tracer particle is set to
0.3σ .

of molecules on the surface of the wall. The thickness of the
absorption layer is only the length of a few molecules.

We also calculate the local RDF in the lth bin by

gl (r) =
〈

ni(r)

4πr2drρ0

〉
l

, (9)

where ni(r) counts the number of molecules within the dis-
tance [r, r + dr] from the ith molecule in the lth bin and 〈 〉l

represents the ensemble average over all the molecules con-
tained in the local bin. Figure 4 shows the local RDFs of the
molecules in the upper, lower, and middle regions. It is clearly
seen that the RDFs near the walls have similar peak profiles to
those of the fcc lattice structure of the wall, while the RDF in
the middle region remains in the initial fluid state. This result
also quantitatively confirms that the solidification occurs near

FIG. 4. Panel (a) shows the RDFs of the molecules in the upper,
middle, and lower bins at time t = t0. Panels (b) and (c) show the
RDFs for the initial liquid state near the triple point and for the fcc
lattice structure of the wall, respectively. The horizontal axis is scaled
as r′ = r/ρ−1/3. The channel width H = 504, and the wall speed
Vw = 3.0.

FIG. 5. The spatial distributions of the local lateral diffusion
coefficient Dy defined by Eq. (10) for different plate speeds Vw = 1.0,
1.75, and 2.5 for the channel width H = 504.

the walls and that the lattice structures in the solidified layers
are similar to those of the walls. In Sec. IV C, we discuss the
effect of the wall structure in detail. To distinguish between
the fluid and solidified phases, we measure the local lateral
diffusion coefficient Dy defined by

Dy =
∫ ∞

0

〈〈
vi

y(t + τ )vi
y(τ )

〉
τ

〉
l
dt, (10)

where vi
y represents the lateral velocity of the ith molecules in

the lth local bin and 〈 〉τ represents the ensemble average over
different τ .

Figure 5 shows the spatial distributions of the local lateral
diffusion coefficient for different wall speeds. It is clearly seen
that the lateral diffusion coefficient Dy is negligibly small; say
Dy < 0.01, in the solidified or absorption layer near the wall.
The solidified layer with the small lateral diffusion coefficient
rapidly broadens when the wall speed changes from Vw =
1.75 to 2.0. We summarize the results of the solidification
under different parameters in Fig. 6, in which a diagram
of the solidification vs the channel width H and the square
of the wall speed V 2

w is shown. In the figure, the thickness
of the solidified layer lS , which is defined by the thickness
of the layer where the local lateral diffusion coefficient is
smaller than 0.01, i.e., Dy < 0.01, is indicated by the color
legend. The square symbols � represent the results obtained
when the solidified layer extends far beyond the molecular
size, i.e., lS > 10. It is clearly seen that long-range-ordered
crystal structures are observed only when the wall speed is
sufficiently large, e.g., Vw � 2. See also the figures in the Sup-
plemental Material [24]. In the high-speed regime, Vw � 2,
the thickness of the solid layer lS proportionally increases with
the channel width H (see Fig. 7). The mechanism underlying
these observations will be discussed in the next section.

Incidentally, in Fig. 6, the square of the wall speed, V 2
w , is

used as the horizontal axis rather than the wall speed itself.
This is because V 2

w represents the amplitude of the viscous
heating relative to the thermal conduction in macroscopic
energy transport, i.e.,

μV 2
w/H2

λ�T/H2
∝ V 2

w, (11)
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FIG. 6. Diagram of the phase states near the wall vs the channel
width H and the square of the wall speed, V 2

w . The square symbols
show the results obtained when the thickness of the solidified layer lS ,
which is defined by the thickness of the layer whose lateral diffusion
coefficient is as small as Dy < 0.01, is lS > 10. The solid line shows
the critical line for the solidification obtained by a crude theoretical
estimate, and the dashed line shows the asymptotic limit of the
critical line.

where λ is the thermal conductivity and �T is a characteristic
temperature rise.

IV. DISCUSSION

A. Macroscopic explanation

In this section, we consider the mechanism of the solid-
ification from a macroscopic point of view. We suppose a
Newtonian fluid with a constant viscosity μ and the Fourier
law of heat conduction with a constant thermal conductivity λ.
We also introduce the normalized coordinate ŷ = y/H , which
is relevant to the hydrodynamic analysis. In the following part
of this section, we consider only the stationary state. Then, the
spatial distribution of temperature is described by

−d2T

dŷ2
= μ

λ
V 2

w, (12)

FIG. 7. The thickness of the solidified layer lS vs the channel
width H for large wall speeds, i.e., Vw = 2.0, 2.5, and 3.0.

FIG. 8. The bulk pressure pyy vs wall speed Vw for various
channel widths H .

with the boundary condition T = Tw at ŷ = 0 and 1. The
solution to the above equation is explicitly calculated as

T (ŷ) = 4�T ŷ(1 − ŷ) + Tw, (13)

where �T = μV 2
w/8λ is the difference in temperatures be-

tween the region at the wall and the region in the middle of
the channel.

The mass conservation is written as∫ 1

0
ρ(ŷ)dŷ = ρ0, (14)

where ρ0 is the initial density of the LJ fluid. We can also eas-
ily obtain from the momentum balance equation that the bulk
pressure is spatially uniform in the stationary state because of
the continuity condition ∂vy

∂ ŷ = 0.
We suppose that the equation of state ρ = F (p, T ) holds

at the local fluid elements even in the steady shear flow and
satisfies the conditions ( ∂F

∂T )p < 0 and ( ∂F
∂ p )T > 0. Then, the

bulk pressure p is determined from the equation∫ 1

0
F (p, T (ŷ))dŷ = ρ0. (15)

This indicates that the bulk pressure does not depend on the
channel width H but depends only on the wall speed Vw when
the initial states ρ0 and Tw are fixed since T (ŷ) does not
depend on the channel width H in Eq. (13).

The dependency of the bulk pressure on the wall speed is
obtained by taking the derivative of Eq. (15) against Vw, i.e.,∫ 1

0

(
d p

dVw

)(
∂F
∂ p

)
p

dŷ +
∫ 1

0

(
∂T

∂Vw

)(
∂F
∂T

)
T

dŷ = 0,

d p

dVw

= −
∫ 1

0

(
∂T

∂Vw

)(
∂F
∂T

)
T

dŷ

/ ∫ 1

0

(
∂F
∂ p

)
T

dŷ > 0,

(16)

because, from Eq. (13), ∂T
∂Vw

> 0 holds at any local position
ŷ ∈ (0, 1). Thus, the bulk pressure monotonically increases
with the wall velocity Vw. In fact, in Fig. 8, our simula-
tion results demonstrate that the bulk pressure monotonically
increases with the wall speed but is less dependent on the
channel width.
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FIG. 9. The transient behavior of the local ρ-T states between
the bulk regime (y = 60) and the surface of the wall y = 0 for
different wall speeds, i.e., Vw = 1.0, 1.75, and 2.5. The initial density
ρ0 = 0.884, the initial temperature Tw = 0.772, and the channel
width H = 504 are fixed. In the ρ-T plane, the upper left corresponds
to the bulk regime, and the lower right corresponds to the vicinity of
the wall. The closed marks indicate that the local lateral diffusion
coefficients are smaller than 0.01, i.e., the fluid regime, and the
open marks indicate that the local lateral diffusion coefficients are
larger than 0.01, i.e., the solid regime. In the phase diagram, “L”
represents the liquid phase; “S” represents the solid phase; and “L +
S” represents the liquid-solid coexistence phase. The solidification
and melting lines (the left and right solid lines, respectively) are
drawn by using the formulas obtained from Ref. [25].

The local density is described by the equation of state
as ρ(ŷ) = F (p, T (ŷ)), where the bulk pressure p is spatially
uniform and the temperature is described by Eq. (13). It is seen
that the local density monotonically increases while approach-
ing the wall [under the condition ( ∂F

∂T )p < 0] and takes the
maximum value at the wall, i.e., ρ(ŷ) ↗ ρw = F (p, Tw ) as
ŷ → 0 or 1. This indicates that the local density in the vicinity
of the wall monotonically increases with the wall speed Vw but
does not depend on the channel width H in the same way as
the bulk pressure.

Thus, if we suppose that the fluid is solidified when the
local density exceeds a critical density ρ∗, the solidification
never occurs unless the wall velocity exceeds the critical
velocity V ∗

w , which satisfies ρ∗ = F (p(V ∗
w ), Tw ), regardless of

the channel width H . This concisely explains the observation
of the existence of a critical wall speed for the solidification
in Fig. 6.

The reason why the thickness of the solidified layer, lS , is
proportional to the channel width H is also explained; i.e., the
local density is a monotonic function of ŷ and independent of
H , so the solidified layer, where the local density is larger than
the critical density, i.e., ρ(ŷ) > ρ∗, is uniquely determined by
the condition ρ(lS/H ) = ρ∗ for a given wall velocity. Thus,
the thickness of the solidified layer lS is proportional to the
channel width H .

B. Transient of the local state

Figure 9 shows the transient behavior of the local ρ-T
states between the bulk (y = 60) and the interface of the wall

(y = 0). Here, instead of using Eq. (5), we calculate the local
density by using

ρ(l ) = 1 + ∫ rc

0 4πr2ρ0gl (r)dr
4
3πr3

c

, (17)

where the local RDF gl (r) is defined in Eq. (9). It is seen
that the conditions supposed in the previous section, i.e.,
( ∂F

∂T )p < 0 and ( ∂F
∂ p )T > 0, are relevant to the simulation re-

sults and, in fact, the maximum density increases with the wall
speed Vw.

The local density rapidly increases around the solidifi-
cation line while approaching the wall from the bulk, and
the ρ-T state enters into the liquid-solid coexistence regime
in the phase diagram. For a large wall speed Vw = 2.5, re-
markable solidification (or crystallization) is observed even
in the liquid-solid coexistence regime, where the thermal
expansion becomes very small, i.e., | 1

ρ
( ∂ρ

∂T )p|  1, as is usu-
ally observed in solid materials. For a small wall speed
Vw < 2, solidification is remarkably not observed, but a thin
absorption layer forms on the surface of the wall (see also
Fig. 5).

These observations demonstrates that the LJ molecules in
the fluid phase are confined in the vicinity of the wall due to
the thermohydrodynamic coupling and that, when the density
in the confined regime is close to the solidification line, the
tightly confined LJ molecules are solidified via the interaction
with the wall molecules. This also indicates that both the wall
structure and the ρ-T state in the vicinity of the wall strongly
affect the solidification near the wall.

C. Effects of the wall structure and the initial state

Thus far, we have considered the face-centered-cubic (fcc)
lattice structure for the wall molecules and the initial condition
of the LJ fluid near the triple point, i.e., ρ0 = 0.844 and
T0 = 0.722. In this section, we change the wall structure and
the initial condition and investigate the effects of the wall
structure and the initial condition of the LJ fluid.

Figure 10 shows snapshots of the molecules composing the
bottom wall (i.e., −W < y < 0) and those in the vicinity of
the wall (i.e., 0 < y � 60) for the channel width H � 500 and
the wall velocity Vw = 3.0. It is seen that solidification occurs
with both the fcc and bcc structures.

Interestingly, the lattice structures of the solidified layer are
different from each other. With the bcc wall, the LJ molecules
in the solidified layer also create the bcc lattice structure,
although it is known that the fcc structure appears during the
crystallization of the LJ molecules in the equilibrium state.
The thickness of the solidified layer is also affected to the
wall structure; i.e., the solidified layer for the bcc wall is
thinner than that for the fcc wall. Figure 11 shows the transient
behavior of local ρ-T states from the bulk regime to the
surface of the wall for three different initial states of the LJ
fluid. If the initial state is close to the solidification line (i.e.,
the square �), remarkable solidification is observed in the
liquid-solid coexistence regime in the phase diagram. Even
if the initial state is slightly away from the solidification line
(i.e., the circle ◦), we can observe that the solidified layer
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FIG. 10. Snapshots of the LJ particles in the vicinity of the
bottom wall and the wall molecules for the bcc wall (in the left
column) and the fcc wall (in the right column). The snapshots are
shown from three different angles of view. In both the bcc and fcc
structures, the channel width is H � 500, and the wall velocity is
Vw = 3.0. The four figures on the left side are the projections of LJ
particles in the domain [0, Lx] × [−W, 60] × [0, Lz] onto the x-y and
y-z planes. The two figures on the right side are the projections of
LJ particles in the domain [0, Lx] × [−W, 10] × [0, Lz] onto the x-z
plane.

forms in the vicinity of the wall. However, when the initial
state is far from the solidification line (i.e., the triangle �), the
local ρ-T state cannot approach the solidification line even in
the vicinity of the wall, so solidification does not occur in the
vicinity of the wall.

From these observations, we can conclude that the LJ
molecules are confined in the vicinity of the wall via ther-
mohydrodynamic transport and that when the local ρ-T state
is close to the solidification line in the vicinity of the wall,
the LJ molecules are solidified due to the interaction with the
crystallized wall molecules.

FIG. 11. The transient behavior of the local ρ-T states between
the bulk regime (y = 60) and the surface of the wall y = 0 for
different initial states, which are shown in the inset, i.e., ρ0 = 0.8442
and T = 0.8 for the circle ◦, ρ0 = 0.8442 and T = 0.9 for the
triangle �, and ρ0 = 0.9 and T = 0.9 for the square �. The wall
speed Vw = 3.0 and channel width H � 500 are fixed. See also the
caption in Fig. 9.

FIG. 12. The gross viscosity μ vs the gross shear rate �̇ =
Vw/H . The gross viscosity is calculated by the ratio of the spatial
average of local shear stress pxy to the gross shear rate, i.e., μ =
1
H

∫ H
0 pxy(y)dy/�̇. The squares � show the results for Vw = 1.0; the

upward triangles �, for Vw = 2.0; and the downward triangles �,
for Vw = 3.0. The circles ◦ and error bars show the results obtained
by a nonequilibrium MD simulation of the uniform LJ fluid with
temperature T = 0.772 and density ρ = 0.844.

D. Gross viscosity

Figure 12 shows the gross rheological property of the LJ
fluid in the lubrication system, where the gross viscosity μ is
defined by the ratio of the spatial average of local shear stress
to the gross shear rate �̇ = Vw/H , i.e., μ = 1

H

∫ H
0 pxy(y)dy/�̇.

The viscosities of the uniform LJ fluid with temperature
T = 0.772 and density ρ = 0.844 under different shear strain
rates, which are calculated by a nonequilibrium molecular-
dynamics (NEMD) simulation with the SLLOD algorithm
[20,21], are also plotted for comparison.

The NEMD simulations were performed for 3200 LJ parti-
cles in t = [0, 107�t], and the shear viscosity was calculated
by the ratio of the time average of the shear stress to the
applied shear rate. The error bars show the standard deviation
of the shear viscosity calculated in a time interval of 105�t .
It is confirmed that the LJ fluid does not show a significant
shear-rate dependence in the shear viscosity in this small
shear-rate regime, although the fluctuation becomes notable
when the shear rate is small; for example, �̇ < 0.005.

The gross viscosity of the lubrication system also does
not show an evident shear-rate dependence when the wall
velocity is fixed. However, interestingly, it shows a wall-
velocity dependence; i.e., the gross viscosity tends to decrease
as the wall velocity increases.

This wall-velocity dependence of the gross viscosity is rel-
evant to the viscous heating because, as observed in Sec. IV A,
the hydrodynamic analysis says that the increase in tempera-
ture and the related density profile in the lubrication system
does not depend on the channel width but instead depends on
only the wall velocity. Thus, this result clearly demonstrates
that the viscous heating may significantly affect the gross
rheological properties of the lubrication system even for the
simple LJ fluid.
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V. CONCLUDING REMARKS AND PERSPECTIVES

We carried out MD simulations of the thermohydrody-
namic lubrication of the LJ fluid between atomistic thermal
walls. A counterintuitive solidification is discovered, in which
the LJ fluid is solidified near the wall only when the viscous
heating generated in the bulk regime is sufficiently large. The
thickness of the solidified layer increases with the channel
width, so the long-range-ordered crystal structure, whose
width is in the range of several tens of times greater than
the molecular size, forms in the vicinity of the wall when the
channel width is large. Band formation is also found in the
solidified layer when the channel width is large.

Although the thermal lubrication of the LJ fluid has
been studied by the molecular-dynamics simulation in many
publications, the large density variation involving the long-
range-ordered solidification near wall was not observed in
previous studies. This is because most of the molecular-
dynamics studies considered only molecularly narrow chan-
nels; when the fluid molecules are confined in molecularly
narrow channels, the direct interaction between fluid and wall
molecules becomes dominant throughout the channel, so that
the macroscopic quantities do not vary as is described by the
hydrodynamic equation. We note that, in order to investigate
the phase transition behavior coupled with the macroscopic
hydrodynamic transport, one needs a large-scale molecular-
dynamics simulation as is carried out in the present study.

We investigated the solidification mechanism in detail from
both macroscopic and microscopic points of views. It was
found that the LJ molecules were confined in the vicinity of
the wall via thermohydrodynamic transport and that, when
the local ρ-T state in the vicinity of the wall was close to
the solidification line in the phase diagram, the LJ molecules
were solidified due to the interaction with the crystallized wall
molecules.

This study explicitly demonstrates that, even for a simple
fluid in a simple geometry with plain wall boundaries, the
thermohydrodynamic coupling in high-speed lubrication may

affect the gross rheological property of the lubrication system
and even induce long-range-ordered crystallization near the
wall.

Further investigation on more realistic systems involving
the electrostatic interaction and the velocity slip and tem-
perature jump at the fluid-wall interface may represent an
important future research direction.

For example, it has been clarified in previous studies
[26–28] that the thermal resistance at fluid-wall interface ex-
ponentially increases as the fluid-wall interaction εfw becomes
smaller than the fluid-fluid interaction εff such that a large
temperature jump arises at the interface in a small fluid-wall
interaction regime, i.e., εfw/εff < 1. It was also reported in
Ref. [29] that the large temperature jump caused a decrease in
the local viscosity near the wall in nanoscale Poiseuille flows.
In the present study, we fix the fluid-wall interaction to be the
same as the fluid-fluid interaction, i.e., εfw/εff = 1. However,
the results in the previous studies indicate that solidification
near the wall may be hindered due to a large temperature jump
at the interface when the fluid-wall interaction is small.

The slip velocity at the interface may also affect the solidi-
fication. It was reported in Ref. [30] that the interfacial friction
between the fluid and wall caused fluid heating in nanoscale
Poiseuille flows. Furthermore, the interfacial friction becomes
more dominant than the internal friction (i.e., the viscous
heating) in the bulk regime when the external driving force
overtakes the fluid-wall interaction force. In the present study,
the velocity slip at the boundary is negligibly small because
both the fluid-wall interaction and the channel width are suf-
ficiently large, so only the interfacial friction affects the fluid
heating. The effect of the interfacial friction on solidification
near the wall also represents interesting future research.
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