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Analytic solution for the zero-order postshock profiles when an incident planar
shock hits a planar contact surface
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An explicit analytical solution to calculate the profiles after the shock collision with a planar contact surface
is presented. The case when a shock is reflected after the incident shock refraction is considered. The goal of this
work is to present explicit formulas to obtain the quantities behind the transmitted and reflected shocks valid for
arbitrary initial preshock parameters.
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I. INTRODUCTION

Shock waves have the capability of generating matter with
extreme conditions of pressure and temperature with different
substances either in gas, liquid or solid phases. Anytime a
planar shock wave hits normally the surface that separates
two fluids with different thermodynamic properties, a shock is
always transmitted into the second fluid and a shock or a rar-
efaction wave may be reflected inside the first fluid. The type
of the reflected wave depends on the initial configuration, as
extensively discussed in Refs. [1–4]. This is a basic scenario
occurring in a large number of different phenomena to study
the behavior of matter at high energy densities [1,5,6], ranging
from laboratory created experiments to natural environments.
The use of shock waves has been suggested as an important
tool to diagnose material properties [7–9] within the domains
of high-energy-density physics (HEDP) experiments or within
the domain of geophysics and planetary sciences [10–13]. The
generation of shock waves is also very important in inertial
confinement fusion (ICF) experiments, where typically sev-
eral shock waves are launched in succession to compress the
thermonuclear target with the aim of obtaining fusion energy
at the end of the process [14–16].

When a planar or corrugated shock front impinges a rippled
interface, the refracted wavefronts become also rippled in
shape. The corrugated fronts generate perturbations inside
both fluids, in the form of acoustic fluctuations and/or vor-
ticity and entropy perturbations, which promotes the growth
of the initial ripple of the contact surface. These scenarios,
the classical Richtmyer-Meshkov instability (RMI), are being
studied for a long time, either analytically, experimentally and
numerically [2–4,17–64]. Besides a wider class of instabilities
called RM-like [34], not being caused by the shock-interface
refraction, are still driven by exactly the same physical mech-
anisms as the classical RMI. This class includes instabilities
produced by the collision of perturbed fluid layers, instabil-
ities excited in simulating the evolution of an initial discon-
tinuity in a fluid (the perturbed Riemann problem), among
others. Independently of the process which trigger the RM-
like instability, every model (theoretical or numerical) have
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to obtain the zero-order postshock profiles as a prior step to
develop their calculations.

In 1947, Taub studied the oblique refraction of a plane
shock at a contact discontinuity and obtained the postshock
quantities in terms of the preshock parameters after solv-
ing a polynomial of degree 12 [65]. In this work, we only
consider normal refraction and the reflected shock case. The
postshock quantities behind the reflected and the transmitted
shock fronts are related to the preshock parameters through
the continuity of pressure and normal velocity at the contact
surface together with the Rankine-Hugoniot equations at the
wavefronts [25]. Up to date, no explicit analytical solution
for normal refraction has ever been reported in the literature.
Nevertheless, approximate solutions in the form of Taylor
series expansions in different physical limits as weak/strong
incident shock or small and large initial density jump across
the interface were provided in Ref. [3].

The aim of this work is to show an exact analytical solu-
tion for the aforementioned system of equations for arbitrary
preshock configuration, thus providing another tool, besides
the numerical calculation of the zero-order postshock profiles.
The explicit formulas shown in the work can be easily evalu-
ated and/or included in numerical codes. Additionally, since
it is exact, the solution can be used to benchmark any other
numerical approach.

We structure the work in the following manner: in Sec. II,
we present the basic equations for the zero-order quantities
behind the shocks as a function of the preshock parameters
and the transmitted and reflected shock Mach numbers. The
system of equations formed by the continuity of pressure and
normal velocity at the interface is written, and a polynomial
equation of degree 6 in the reflected shock Mach number is
obtained. In Sec. III, the polynomial equation is reduced to
an equivalent polynomial of degree 4, whose roots can be cal-
culated analytically. The four roots are presented in Sec. IV,
where the selection of the physical solution is discussed. A
summary is given in Sec. V.

II. BASIC EQUATIONS

A. Downstream quantities across the different wave-fronts

We consider a shock wave traveling from right to left inside
fluid “b” along the x̂ axis with speed −Di x̂ as measured in the
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FIG. 1. A space-time diagram of the five regimes of the problem.
Each regime is characterized by its pressure, density, isentropic
exponent, and velocity. The solid lines are shock fronts and the dotted
line is the contact surface between fluids “a” and “b.” The velocity
of each front is indicated next to its line.

laboratory frame (see Fig. 1). The fluid in front of the shock
front is an ideal gas with preshock density ρb0 and sound speed
cb0 = √

γb p0/ρb0, where γb is the isentropic exponent and p0

is the initial fluid pressure. The shock is driven by pressure p1

downstream and the fluid acquires, after compression, a veloc-
ity −U1x̂ in the laboratory frame. The density is increased to
the value ρb1 and the downstream sound speed is cb1. All the
quantities behind the incident shock can be obtained through
the Rankine-Hugoniot equations [5,6] and are shown below.
The shock strength can be characterized in several ways,
either by defining the relative change in pressure across the
front, or with the Mach numbers associated to the front. We
define the relative change of pressure for the incident shock,
as [66]

zi = p1 − p0

p0
. (1)

We assume that all these quantities are time independent. The
upstream Mach number Mi is defined as [3]

1 < Mi = Di

cb0
=

√
1 + γb + 1

2γb
zi, (2)

An important quantity is the velocity of the compressed fluid
in the laboratory frame, which can be also calculated either in
terms of zi or Mi:

U1

cb0
= zi

γb

√
1 + γb+1

2γb
zi

= 2

γb + 1

M2
i − 1

Mi
. (3)

We therefore define the downstream Mach number βi in terms
of the relative shock velocity with respect to the compressed
fluid:

0 < βi = Di − U1

cb1
=

√
2γb + (γb − 1)zi

2γb(1 + zi )

=
√

(γb − 1)M2
i + 2

2γbM2
i − γb + 1

< 1. (4)

The density compression ratio across the incident shock is

Ri = ρb1

ρb0
= Di

Di − U1
= 2γb + (γb + 1)zi

2γb + (γb − 1)zi

= (γb + 1)M2
i

(γb − 1)M2
i + 2

, (5)

the pressure ratio is

p1

p0
= 1 + zi = 2γbM2

i − γb + 1

γb + 1
, (6)

and the ratio of sound speeds is

cb1

cb0
=

√
1 + zi

Ri
=

√(
2γbM2

i − γb + 1
)[

(γb − 1)M2
i + 2

]
(γb + 1)Mi

.

(7)

We assume that at x = 0 there is a planar contact discon-
tinuity that separates fluid “b” from a different fluid “a.” The
initial density of fluid “a” is ρa0 and its isentropic exponent
is γa. We define the preshock density ratio R0 = ρa0/ρb0. The
initial sound speed of fluid “a” is given by: ca0 = √

γa p0/ρa0.
Immediately after the incident shock arrives to the contact
discontinuity, a transmitted shock propagates inside fluid “a.”
A shock or a rarefaction wave may be reflected backwards
inside fluid b. The conditions to have one or the other kind of
wavefront to be reflected back have been discussed in the lit-
erature [3,23]. These conditions involve the fluids compress-
ibilities as well as the preshock density ratio and the shock
strength, and are extensively discussed in Refs. [1,2,23]. We
can continuously go from a situation where a shock or a
rarefaction is reflected by changing the value of R0. If we fix
the incident shock Mach number and the isentropic exponents
of the gases, then there exists a value of the initial density
ratio for which a shock is always reflected, if the preshock
density ratio stays above that value. Otherwise, we would
have a rarefaction wave traveling backwards. We indicate this
particular value of the preshock density ratio with the symbol:
Rtt

0 . The superindex tt is the acronym of total transmission,
and it refers to the situation where no wave front is reflected
inside fluid “b.” The expression of Rtt

0 as a function of the
other parameters is

Rtt
0 = γb(γb + 1)M2

1

γa − γb + γb(γa + 1)M2
i

. (8)

We will only concentrate here on the cases in which a shock is
always reflected after the incident wavefront hits the contact
surface. For fluids with equal isentropic exponents, Rtt

0 = 1,
that is, the incident shock comes from the less denser fluid. For
fluids with different isentropic exponents, Rtt

0 can be smaller
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or larger than unity. In Fig. 1 we show the transmitted and
reflected shocks after the incident front has been refracted at
the contact surface. The transmitted shock moves to the left
with velocity −Dt x̂ in the laboratory frame. The sound speed
of the compressed fluid “a” is ca f . The reflected shock moves
to the right with velocity +Dr x̂. The fluid in between both
fronts moves to the left with velocity −U x̂. The pressure
in between both shocks is p f . The relative pressure jump
across the transmitted shock is zt = (p f − p0)/p0 and across
the reflected shock is zr = (p f − p1)/p1. The transmitted and
reflected shock upstream Mach numbers are given by

1 < Mt = Dt

ca0
=

√
1 + γa + 1

2γa
zt , (9)

1 < Mr = Dr + U1

cb1
=

√
1 + γb + 1

2γb
zr . (10)

The fluids velocity at both sides of the contact surface can be
written as

U

ca0
= zt

γa

√
1 + γa+1

2γa
zt

= 2

γa + 1

M2
t − 1

Mt
. (11)

The quantities across the transmitted front are related by

Rt = ρa f

ρa0
= Dt

Dt − U
= 2γa + (γa + 1)zt

2γa + (γa − 1)zt

= (γa + 1)M2
t

(γa − 1)M2
t + 2

, (12)

p f

p0
= 1 + zt = 2γaM2

t − γa + 1

γa + 1
, (13)

ca f

ca0
=

√
1 + zt

Rt
=

√(
2γaM2

t − γa + 1
)[

(γa − 1)M2
t + 2

]
(γa + 1)Mt

.

(14)

The downstream transmitted shock Mach number, βt , is

0 < βt = Dt − U

ca f
=

√
2γa + (γa − 1)zt

2γa(1 + zt )

=
√

(γa − 1)M2
t + 2

2γaM2
t − γa + 1

< 1. (15)

The mass density of fluid “b” behind the reflected shock is
indicated by ρb f . The final sound speed of fluid “b” is cb f .
The quantities at both sides of the reflected shock are related
by

Rr = ρb f

ρb1
= Dr + U1

Dr + U
= 2γb + (γb + 1)zr

2γb + (γb − 1)zr

= (γb + 1)M2
r

(γb − 1)M2
r + 2

, (16)

p f

p1
= 1 + zr = 2γbM2

r − γb + 1

γb + 1
, (17)

cb f

cb1
=

√
1 + zr

Rr
=

√(
2γbM2

r − γb + 1
)[

(γb − 1)M2
r + 2

]
(γb + 1)Mr

.

(18)
The fluid velocity jump across the reflected shock is given by

U1 − U

cb1
= zr

γb

√
1 + γb+1

2γb
zr

= 2

γb + 1

M2
r − 1

Mr
. (19)

The downstream reflected shock Mach number βr is given by

0 < βr = Dr + U

cb f
=

√
2γb + (γb − 1)zr

2γb(1 + zr )

=
√

(γb − 1)M2
r + 2

2γbM2
r − γb + 1

< 1. (20)

The initial conditions given by the four parameters: γa, γb,
R0, and the incident shock strength, represented either by zi or
Mi determine without ambiguities the final state of each fluid,
after shock refraction. The key point is to determine zt and
zr (equivalently, Mt and Mr) as functions of the four preshock
parameters. Once the reflected and transmitted Mach numbers
are obtained, the postshock quantities behind each wavefront
are easily calculated using the equations above. The procedure
is to ask for continuity of pressure and normal velocity at the
contact surface, after shock refraction. It is easy to see that
pressure continuity at the material surface can be put in terms
of the quantities zi, zr , and zt in the form

zt = zi + (1 + zi)zr, (21)

or in terms of the upstream shock Mach numbers,

M2
t = 1 + γb(γa + 1)

γa(γb + 1)

(
M2

i − 1
) + γb

γa

[
γa + 1

γb + 1
+ 2γb(γa + 1)

(γb + 1)2

(
M2

i − 1
)](

M2
r − 1

)
. (22)

The continuity of the normal velocity can be written as

U = U1 − (U1 − U ), (23)

and in dimensionless form
U

ca0
= cb0

ca0

U1

cb0
− cb0

ca0

cb1

cb0

U1 − U

cb1
. (24)

The last equation can be rewritten, using the relationships derived before, in terms of zi, zr , and zt , as

zt

γa

√
1 + γa+1

2γa
zt

=
√

γbR0

γa

⎡
⎣ zi

γb

√
1 + γb+1

2γb
zi

+
√

1 + zi

Ri

zr

γb

√
1 + γb+1

2γb
zr

⎤
⎦. (25)
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We can also rewrite the last equation in terms of Mi, Mr , and Mt :

M2
t − 1

(γa + 1)Mt
=

√
γbR0

γa

[
M2

i − 1

(γb + 1)Mi
+

√(
2γbM2

i − γb + 1
)[

(γb − 1)M2
i + 2

]
(γb + 1)Mi

M2
r − 1

Mr

]
. (26)

To solve for the postshock quantities, we must solve Eqs. (21) and (25) or the equivalent system formed by Eqs. (22) and (26).
The evident difficulty with the quantities zr and zt is that the velocity continuity gives us an algebraic equation in the unknowns
that can not be solved analytically and only a numerical solution seems feasible. However, by considering the Mach numbers
(Mr and Mt ) instead of the relative pressure jumps, we easily arrive to a sixth-degree polynomial equation in Mr . The details of
how to solve this equation are shown next.

B. Polynomial equation for Mr

If we substitute Eq. (22) into (26) and operate algebraically, then we arrive to the following polynomial equation:

a0 + a1Mr + a2M2
r + a3M3

r + a4M4
r + a5M5

r + a6M6
r = 0, (27)

where the coefficients ai (0 � i � 6) are given by

a0 = −4
(
2γbM2

i − γb + 1
)[

(γb − 1)M2
i + 2

][ − γa + γb(2 − γaγb) + (γa + 1)(γb − 1)γbM2
i

]
γa(γb + 1)6M2

i

, (28)

a1 = −8
(
M2

i − 1
)[ − γa + γb(2 − γaγb) + (γa + 1)(γb − 1)γbM2

i

]
γa(γb + 1)5M2

i

√(
2γbM2

i − γb + 1
)[

(γb − 1)M2
i + 2

]
, (29)

a2 = 1

γa(γb + 1)6R0M2
i

{(−12γa + 32(γa + 1)γb − 8(8 + 3γa)γ 2
b + 32γaγ

3
b + 4γaγ

4
b

)
R0

+ [ − 16γb(γb + 1)2 + (−16(5γa + 1)γb + 16(5γa + 13)γ 2
b − 64(2γa + 1)γ 3

b

)
R0

]
M2

i

+ [−16γb(γb + 1)(γb − 1)2 + (
4γa + 8(3γa − 1) − 8(11γa + 4)γ 2

b + 152(γa + 1)γ 3
b − 4(4 + 7γa)γ 4

b

)
R0

]
M4

i

+ [ − 4
(
γ 2

b − 1
)2

γ 2
b + (

4(γb − 1)2γb + 28(γb − 1)2γ 2
b + 4γa(γb − 1)2(7γb + 1)γb

)
R0

]
M6

i

}
, (30)

a3 = 8
(
M2

i − 1
)[−γa + 3γb + γaγb − γ 2

b − 2γaγ
2
b + (γa + 1)(3γb − 1)γbM2

i

]
γa(γb + 1)5M2

i

√(
2γbM2

i − γb + 1
)[

(γb − 1)M2
i + 2

]
, (31)

a4 = 4
(
2γbM2

i − γb + 1
)

γa(γb + 1)6R0M2
i

{(
2γa + (γb − 1)(γb + 7)γb + (

γ 2
b + 8γb − 3

)
γa

)
R0

+ [
4(γb + 1)2γb + (−γa + (3γa + 4)γb − (19γa + 20)γ 2

b + γaγ
3
b

)
R0

]
M2

i

+ [
2(γb − 1)(γb + 1)2γb − 4(γa + 1)(γb − 2)γ 2

b R0
]
M4

i

}
, (32)

a5 = −8(γa + 1)γb
(
M2

i − 1
)

γa(γb + 1)5M2
i

(
2γbM2

i − γb + 1
)3/2

√
(γb − 1)M2

i + 2, (33)

a6 = 4(γa + 1)γb
(
2γbM2

i − γb + 1
)2

γa(γb + 1)5

[
γb + 1

γa + 1

1

R0
− (γb − 1)M2

i + 2

(γb + 1)M2
i

]
. (34)

It is noted that the last factor between brackets in a6 above,
is exactly equal to

γb + 1

γa + 1

1

R0
− 1

Ri
, (35)

where Ri is the density compression ratio across the incident
shock [see Eq. (5)]. This fact will be useful later on, when
discussing the behavior of the roots of the polynomial as a
function of the defining parameters. In fact, for given values
of γa, γb, and R0 there could be situations in which, at a
specific incident shock Mach number, the value of a6 becomes

0 and therefore, the polynomial defining Mr changes to a
polynomial of fifth degree.

III. SOLUTIONS OF EQ. (27)

A. Numerical solution

At first, we try a numerical solution of Eqs. (21) [or
(22)] and (25) [or (26)] for a specific choice of the preshock
parameters using the Mathematica software [67]. We choose
γa = 5/3, γb = 7/5, R0 = 3, and Mi = 3. For this case, the
incident shock relative pressure jump is zi = 28/3. We obtain
the following values for the relative pressure jumps and/or
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shock Mach numbers:

zr = 0.636971, zt = 15.91537,

Mr = 1.24337, Mt = 3.705711. (36)

The roots of the polynomial given by Eq. (27) can also be
numerically calculated with the same software and we obtain
the following set of six numbers:

Mr1 = −21.0031,

Mr2 = −0.475191,

Mr3 = −0.475191,

Mr4 = 0.350483,

Mr5 = −0.376014,

Mr6 = 1.24337, (37)

where we recognize that the only physical solution is given
by Mr = 1.24337. There are five spurious solutions that do
not represent realizable values for the reflected shock Mach
number. The question is: Would it be possible to obtain the
six roots of Eq. (27) in analytical form? We know that if the
polynomial is of degree 4 or less, this is always possible. For
the equation we have at hand, the answer is uncertain. There
is, however, an intriguing aspect of the set of roots displayed
above: There is a double root. Let us change the value of the
preshock density ratio and repeat the previous procedure. Let
us choose R0 = 5 with the other parameters held fixed. We
obtain a new set of relative pressure jumps and refracted Mach
numbers (zi and Mi are, however, the same as before):

zr = 0.95919, zt = 19.24494,

Mr = 1.34987, Mt = 4.04919. (38)

And the six roots of Eq. (27) for this new situation are

Mr1 = 10.2733,

Mr2 = −0.475191,

Mr3 = −0.475191,

Mr4 = 0.350075,

Mr5 = −0.364392,

Mr6 = 1.34987. (39)

We see that the new situation shows the same double roots
as before. In fact, it will be verified that if we keep γb and
Mi fixed, the double roots Mr2 and Mr3 are the same for the
whole set of permissible γa and R0 values. If this double root
could be found analytically, then we could always extract it

from the original polynomial given by Eq. (27) and obtain a
fourth-degree polynomial equation in Mr which can always be
solved analytically [68]. That this is indeed the case is shown
in the following subsection.

B. Calculation of the double root of Eq. (27)

Let us indicate with σ0 the double root of Eq. (27). From
elementary algebra, we know that it is also a root of the deriva-
tive (with respect to Mr) of the original Eq. (27). Therefore,
we can always write a system of two equations like

a0 + a1σ0 + a2σ
2
0 + a3σ

3
0 + a4σ

4
0 + a5σ

5
0 + a6σ

6
0 = 0,

(40)

a1 + 2a2σ0 + 3a3σ
2
0 + 4a4σ

3
0 + 5a5σ

4
0 + 6a6σ

5
0 = 0. (41)

If we combine both equations in the form: 6× Eq. (40) –
σ0× Eq. (41), then we can substract the term proportional to
σ 6

0 and obtain a new equation which is of degree 5 in σ0:

6a0 + 5a1σ0 + 4a2σ
2
0 + 3a3σ

3
0 + 2a4σ

4
0 + a5σ

5
0 = 0. (42)

We can proceed along the same line of reasoning, by ade-
quately combining Eq. (41) with Eq. (42) to eliminate the
term proportional to σ 5

0 and remain with a fourth-order poly-
nomial in σ0. Proceeding further, at each step we combine
the previous equations to obtain a new equation that is a
polynomial in σ0 but whose degree is decreased in one unit
with respect to the degree of the previous expression. We will
finally arrive to a first-order linear equation in σ0 which gives
us the double root σ0 as a function of the original coefficients
ai. The intermediate calculations can be easily followed with a
software like Mathematica. After careful simplification of the
final result, we obtain the surprisingly simple expression

σ0 = −βi = −
√

(γb − 1)M2
i + 2

2γbM2
i − γb + 1

, (43)

which coincides with minus the incident downstream shock
Mach number. We confirm our prediction, that σ0 is only a
function of the isentropic coefficient of the “incident” fluid γb

and of the incident shock strength Mi. With Eq. (43) we can
immediately reproduce the double roots of the cases studied
before.

C. Reduction of Eq. (27) to a fourth-degree polynomial equation

Since we have the value of the double root σ0, we can factor
the original Eq. (27) into the product of (Mr − σ0)2 and a
fourth-order polynomial. We divide the original Eq. (27) by
the coefficient a6 to simplify the intermediate algebraic steps
and propose a factorization of the form

a0

a6
+ a1

a6
Mr + a2

a6
M2

r + a3

a6
M3

r + a4

a6
M4

r + a5

a6
M5

r + M6
r = (Mr − σ0)2

(
b0 + b1Mr + b2M2

r + b3M3
r + M4

r

)
. (44)

After some algebra, and equating equal powers of Mr at both sides of the last equation, we can find the coefficients bi as explicit
functions of γa, γb, R0, and Mi:

b0 = [−(γa + 1)(γb − 1)γb + (γb + 1)(γa − γb)]R0 + (γa + 1)(γb − 1)γbR0M2
i

−4(γa + 1)γbR0 + [(γb + 1)2 − (γa + 1)(γb − 1)γbR0]M2
i

, (45)
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b1 = 4R0

γb
(
2γbM2

i − γb + 1
)3/2[

(γb − 1)M2
i + 2

]1/2
[−2(γa + 1) + ((γb + 1)2 − (γa + 1)(γb − 1))R0M2

i

]
× [

4
(
γa − 2γb + γaγ

2
b

) + 4(γb + 1)(γa − (γa + 3)γb + γaγb)M2
i

+ (γb − 1)2γb(−6 + γa(γb − 4))M4
i − (γa + 1)(γb − 1)3γbM6

i

]
, (46)

b2 = 1

2γb
(
2γbM2

i − γb + 1
) γb[

2(γb(γa + 1)(γb − 1) − 2γb(γa + 1)(γb + 1))R0 + 2γb
(
(γb + 1)2 − (γa + 1)(γb − 1)R0M2

i

)]
× [−4

(
2γa − (γa + 3)γb + (γa + 1)γ 2

b

)
R0 + 4R0(2γb(γb + 1) + (γb − 1)(−γa + (3γa + 4)γb))M2

i

+ 4γb
[
γ 2

b − 1 − 3((γa + 1) − 4(γb − 1) − 4γa(γb − 1) + γb + γaγb)R0
]
M4

i

]
, (47)

b3 = −8(γa + 1)R0 + 4[(γb + 1)2 − 2(γa + 1)γb]M2
i

2(γa + 1)(γb − 1)R0 + [(γb + 1)2 − 2(γa + 1)γbR0]M2
i

√
(γb − 1)M2

i + 2

2γbM2
i − γb + 1

. (48)

Therefore, the problem of determining the postshock quan-
tities of the normal shock refraction problem consists in
identifying the physically meaningful solution of the reduced
equation

b0 + b1Mr + b2M2
r + b3M3

r + M4
r = 0, (49)

where the coefficients bi are given above.

IV. SOLUTIONS OF EQ. (49)

A. Analytic solution of Eq. (49)

The analytical form of the four roots of Eq. (49) (which
we call from now on: σ1, σ2, σ3, and σ4) can be obtained
following the strategy explained, for example, in Ref. [68].
However, they can also be readily obtained with the Math-
ematica software. If written explicitly as functions of the
four preshock parameters, then the expressions for σi would
become extremely large and not practical. It is convenient to
define them through auxiliary functions. The explicit forms of
σi are

σ1 = −b3

4
− θ

2
− 1

2

√
−4

3
b2 + 1

2
b2

3 − P5 − P4

4θ
, (50)

σ2 = −b3

4
− θ

2
+ 1

2

√
−4

3
b2 + 1

2
b2

3 − P5 − P4

4θ
, (51)

σ3 = −b3

4
+ θ

2
− 1

2

√
−4

3
b2 + 1

2
b2

3 − P5 + P4

4θ
, (52)

σ4 = −b3

4
+ θ

2
+ 1

2

√
−4

3
b2 + 1

2
b2

3 − P5 + P4

4θ
, (53)

where the necessary auxiliary functions, are given by the
following expressions:

P1 = 12b0 + b2
2 − 3b1b3, (54)

P2 = 27b2
1 − 72b0b2 + 2b3

2 − 9b1b2b3 + 27b0b2
3, (55)

P3 = −4P3
1 + P2

2 , (56)

P4 = −8b1 + 4b2b3 − b3
3, (57)

P5 = P1

3
3

√
2

P2 + √
P3

+ 1

3
3

√
P2 + √

P3

2
, (58)

θ =
√

−2

3
b2 + 1

4
b2

3 + P5. (59)

In principle, we would need all the branches, because as
any one of the preshock parameters is varied along its range,
we will find particular singularities associated to that param-
eter that would oblige us to change branch. This certainly
happens, for example, when studying the dependence of Mr

as a function of Mi at fixed values of γa, γb, and R0 as will be
shown with a particular example in the following subsection,
where at a particular value Mi = Msing we must change the
branch of the solution.

At a first and naive glance, the explicit calculation of
Eqs. (54)–(59) might seem too complicated and superfluous,
because σi (1 � i � 4) can always be found numerically.
Nevertheless, the analytical expressions Eqs. (50)–(53) are al-
ways exact, and hence, can be always used to contrast and/or
benchmark any numerical approach to the same problem.

B. Dependence of Mr on Mi for fixed values of γa, γb, and R0

1. Mi �= Msing

We start at first by examining the behavior of the solutions
to Eq. (49) for the particular case: γa = 5/3, γb = 7/5, and
R0 = 3/2. In Fig. 2(a) we show the four roots in the same plot
to identify the branches that are meaningful to this situation.
We have found that at Mi = 5/

√
13 there is a change of

branch. In fact, for 1 � Mi � 5/
√

13 the physical solution to
Eq. (49) is given by σ3. If we increase the Mach number above
this particular value, then we are obliged to use the branch
σ4 to calculate Mr in the interval Mi � 5/

√
13. The reason

for this behavior should be searched in the behavior of the
coefficients of the original polynomial equation of degree 6 as
a function of Mi. With this purpose, we go back to Eq. (27)
and examine the dependence of the coefficients ai when we
vary the incident shock Mach number. We soon recognize
that the highest power coefficient a6 is zero for a specific
value of Mi > 1. In fact, looking at the expression given in
Eqs. (34) and (35) we see that this happens in all those cases
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FIG. 2. Dependence of the numerical solution and the four in-
dependent roots σ1, σ2, σ3, and σ4 of Eq. (49) as a function of Mi;
(a) for γa = 5/3, γb = 7/5, and R0 = 1.5; (b) for γa = γb = 5/3
and R0 = 1.5. In both cases, the physical solution for Mr starts
from the point (Mi = 1, Mr = 1) and it is given piecewise by σ3

(in the interval 1 � Mi � Msing), and σ4 (in the interval Mi � Msing).
The branches σ1 and σ2 do not correspond to physically realizable
solutions of Mr .

in which the density compression at the incident shock front
Ri equals the value (γa + 1)R0/(γb + 1). For a diatomic gas
with γb = 7/5 this is not difficult to achieve if the shock is
strong enough, in particular, for Mi = 5/

√
13. The general

expression (arbitrary values of the preshock parameters) for
the singularity that obliges us to change from the σ3 branch to
the σ4 branch is given explicitly by calculating the particular
value of Mi that makes the coefficient a6 in Eq. (34) equal to

zero (equivalently, the coefficients bi would have a pole at that
value of Mi). We call it Msing and is given by

Msing =
√

2(γa + 1)R0

(γb + 1)2 − (γa + 1)(γb − 1)R0
. (60)

Exactly at Mi = Msing, the original Eq. (27) has degree 5. This
means that our polynomial in Eq. (49) becomes a polynomial
of the third degree. Therefore, a cubic equation must be
solved to get the physical solution at the singularity. It is
clear that the curve must be continuous and therefore the
physical solution of the cubic equation agrees with the right
limit of σ3 as well with the left limit of σ4 when Mi approaches
Msing either from the left or the right, respectively. The cubic
equation will be presented in the next subsection. Anytime a
singularity appears in a solution of this type, it is related to
a particular characteristic of the problem at hand. Something
special happens that makes that specific choice of parameters
unique. To have a clearer picture of this singularity we choose
another set of parameters. It is worth to study the case in which
both fluids are ideal monatomic gases. We consider the same
initial density ratio R0 = 3/2 as before.

In this other case, for equal isentropic exponents, the
condition for the singularity reads

Ri = R0. (61)

We see that if the incident shock is strong enough as to
compress the light fluid such that it raises its density from
ρb0 to ρb1 and that this ratio is the same as the preshock
density ratio at the contact surface, then this value of incident
Mach is singular in the sense that the branch in the solution
for Mr must be changed. It is clear that such a situation is
quite particular, as if two identical fluids collided at x = 0.
Even though ρb1/ρb0 = R0, a shock is always reflected back,
because R0 > 1. Substituting γa = γb = 5/3, we get

Msing =
√

3R0

4 − R0
. (62)

An interesting aspect of the solution is evidenced by Eq. (62)
above. If R0 < 4, then Msing < ∞ and therefore, for any
experimental situation involving this pair of gases, the solu-
tion branch must be changed at some incident shock Mach
number. If R0 > 4, then the singularity is not real. This is
because, for a monatomic gas, the maximum compression
ratio achievable at the incident shock is equal to 4. Therefore,
if R0 > 4, then there is no incident shock that can fulfill
the requirement imposed by Eq. (61). For these other cases,
the branch represented by σ3 is enough in the whole range
1 < Mi < ∞. These results are shown in Fig. 2(b).

2. Mi = Msing

When the incident Mach number equals Msing the equation
for Mr is a polynomial of the third degree. It is

c0 + c1Mr + c2M2
r + M3

r = 0, (63)

033107-7



F. COBOS-CAMPOS AND J. G. WOUCHUK PHYSICAL REVIEW E 100, 033107 (2019)

where the coefficients ci are

c0 = −
{
2γb − γa

[
1 + γ 2

b − R0(γa + 1)(γb − 1)
]}√

1 − γb + R0(γa + 1)

2
√

2γb(γa + 1)[1 + γb − R0(γa + 1)]
, (64)

c1 = 2γb − γa
[
1 + γ 2

b − R0(γa + 1)(γb − 1)
]

γb(γa + 1)[1 + γb − R0(γa + 1)]
, (65)

c2 = 1

2
√

2γb(γa + 1)[1 + γb − R0(γa + 1)]
√

1 − γb + R0(γa + 1)

[
γb

(−7 − 2γb + γ 2
b

) + γa
(
1 − 3γb + γ 3

b

)
− 2R0(γa + 1)(γb − 1)[γb + γa(γb + 1)] + γbR2

0(γa + 1)3]. (66)

The three solutions of Eq. (63) are

τ1 = 1

6

[
−2c2 − 24/3 3c1 − c2

2

(Q1 + 3
√

3Q2)1/3
+ 22/3(Q1 + 3

√
3Q2)1/3

]
, (67)

τ2 = 1

12

[
−4c2 + 24/3(1 + i

√
3)

(
3c1 − c2

2

)
(Q1 + 3

√
3Q2)1/3

+ 22/3(i
√

3 − 1)(Q1 + 3
√

3Q2)1/3

]
, (68)

τ3 = 1

12

[
−4c2 + 24/3(1 − i

√
3)

(
3c1 − c2

2

)
(Q1 + 3

√
3Q2)1/3

− 22/3(i
√

3 − 1)(Q1 + 3
√

3Q2)1/3

]
, (69)

where the auxiliary functions are given by the expressions

Q1 = −27c0 + 9c1c2 − 2c3
2,

Q2 = 27c2
0 + 4c3

1 − 18c0c1c2 − c2
1c2

2 + 4c0c3
2. (70)

For the case under study in Fig. 2(a), γa = 5/3, γb =
7/5, and R0 = 1.5, we have Msing = 5/

√
13 ∼= 1.38675...

and the results τ1 = 1.04072..., τ2 = −0.255629..., and τ3 =
0.225136.... The first root τ1 is the physical solution for this
situation. The case shown in Fig. 2(b) shows a similar behav-
ior, the physical solution is given again by τ1 = 1.02636.

C. Selection of the root

So far, the problem of the normal refraction of a planar
shock wave when a shock is reflected back is analytically
solved as we dispose of the four roots [Eqs. (50)–(53)] of
Eq. (49). Nevertheless, the solution is not complete if we do
not have an unambiguous criterion to select the branch of the
solution which corresponds with the physical solution for any
choice of the preshock parameters. At least initially, there is
no reason to discard any of the four branches. Anyway, the
two cases shown in Fig. 2 provide us a hint to follow. In
both cases, only two of the branches of the solution are used
over the whole the parameter space. From Mi = 1 until the
singular point Msing, the physical solution is given by σ3, and
then σ4 from that point forward. Besides, in both cases the
solution at the singular point (cubic equation) is provided by
the first root τ1. Additionally, we study several different cases
trying to cover the whole space of preshock parameters (not
shown in the text), and we have confirmed that this behavior
is always repeated. The next step is to find analytic proofs of
these observations.

It is important to note that Msing has a unique value, this
makes that we only need two branches of the solution to
describe the complete parameter space, one in the interval 1 <

Mi < Msing, and another one when Mi > Msing. When Mi =

Msing the solution is provided by one of the roots of the cubic
Eq. (63). Since the physical solution must be continuous, it is
clear that the left limit of the branch valid up to the singular
point must be equal to the correct root of the cubic equation
and to the right limit of the branch used beyond this point.

Therefore, our first task is to determine which branch is
valid in the first interval. As we said, the equation system
[Eqs. (22) and (26)] has not analytic solution for arbitrary
preshock parameters, but it does in some physical limits. In
fact, solutions for Mr in the form of a Taylor series expansion
was provided in Ref. [3] in the limits of weak incident shock
(Mi − 1 � 1), strong incident shock (Mi � 1), and large den-
sity ratio (R0 � 1) and low density ratio (R0 − Rtt

0 � 1). For
weak shocks, the solution is

Mr )Mi−1�1 = 1 +
√

R0γa − √
gb√

R0γa + √
gb

(Mi − 1) + O[(Mi − 1)2].

(71)

It is clear that weak shock limit of the branch valid when
M1 − 1 � 1 must match with Eq. (71). In fact, same power
coefficients in the small parameter Mi − 1 must coincide term
to term. If we take the weak shock limit to obtain the Taylor
expansions of the four branches of the solution, then we see
that only σ3 and σ4 has a constant term equal to 1. Actually,
these branches have the following weak shock expansions:

σ3)Mi−1�1 = 1 +
(

1 − 2

√
γaγbR0

(γb − γaR0)2 + 2γb

γaR0 − γb

)

× (Mi − 1) + O[(Mi − 1)2], (72)

σ4)Mi−1�1 = 1 +
(

1 + 2

√
γaγbR0

(γb − γaR0)2 + 2γb

γaR0 − γb

)

× (Mi − 1) + O[(Mi − 1)2]. (73)
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FIG. 3. Dependence of the numerical solution and the four inde-
pendent roots σ1, σ2, σ3, and σ4 of Eq. (49) as a function of Mi for
γa = 5/3, γb = 7/5, and R0 = 6. In this particular case, the interval
defined by Eq. (74) is 0.9 < R0 < 5.4, and, therefore, the physical
solution for every Mi is given by σ3. The branches σ1, σ2 and σ4 do
not correspond to physically realizable solutions of Mr .

We see that the linear coefficient in Mi − 1 of both expan-
sions depends on the sign of γb − γaR0. If ρa0γa > ρb0γb,
then the expression inside the square is negative and then√

(γb − γaR0)2 = −γb + γaR0. In this case, the fist term of
σ3 coincides with the first term of Eq. (71). However, if
ρa0γa > ρb0γb, then

√
(γb − γaR0)2 = γb − γaR0, and the fist

term of Eq. (71) is equal to the one provided by σ4. So, at
first sight, the solution can started with σ3 or σ4 depending on
the preshock parameter choice. Besides, there is another extra
condition for weak shocks. It is that the initial density ratio
across the interface R0 must be greater than some certain value
to get a shock reflected after the incident shock refraction.
This particular value is Rtt

0 written in Eq. (8). If we substitute
Mi = 1 in Eq. (8), then we obtain that ρa0γa > ρb0γb if we
want a shock reflected back in the first fluid. As a conse-
quence, the solution always starts with σ3.

It is important to note that Msing depends on γa, γb and R0

and it must be greater than unity. There are some combinations
of preshock parameters for which Msing < 1 or it goes to
infinity. In those cases, we have no singular point and σ3 is
the physical solution for any value of Mi. If we apply these
restrictions to Msing, then we obtain an interval for R0 as a
function of the isentropic exponents of the gases:

γb + 1

γa + 1
< R0 <

(γb + 1)2

(γa + 1)(γb − 1)
. (74)

When R0 < γb + 1/γa + 1, we have Msing < 1. For R0 �
(γb + 1)2/[(γa + 1)(γb − 1)], Msing → ∞. In Fig. 3, we show
the same combination of gases as in Fig. 2(a) but the param-
eter R0 has been chosen outside of the interval defined in

Eq. (74). In this case, σ3 is enough to describe the physical
solution for any value of Mi.

Next, we calculate the left limit of σ3 at Mi = Msing. We
obtain a Taylor series expansion where the small parameter
is Msing − Mi � 1, and we compare the constant term of the
expansion with the three roots of the cubic equation. We see
that the first root τ1 coincides with the constant term for every
choice of the preshock parameters. Explicit expressions are
not shown in the text because of its complexity and length.
A similar procedure has been used to determine the branch
valid in the interval Mi < Msing. We take the right limit of the
remaining branches, and obtain a Taylor series expansions in
powers of Mi − Msing. We compare their constant terms with
τ1, and realize that only σ4 matches. The explicit formulas are
not shown here for the same reasons explained before.

V. SUMMARY

We have presented an analytic solution to obtain the zero-
order profiles after a planar shock hits a planar contact surface
between two fluids valid for arbitrary preshock configurations
for the cases in which a shock is always reflected. Using
Rankine-Hugoniot conditions at the shock fronts, the quan-
tities behind the shocks can be obtained as analytic formulas
which are functions of the preshock parameters and the re-
flected and transmitted shock Mach numbers. Nevertheless,
both Mach numbers must be calculated from the equation
system formed by the continuity of the pressure and normal
velocity at the interface [Eqs. (22) and (26), respectively].
The key to find an analytic solution lays in obtaining a
polynomial equation of degree 6 for the reflected shock Mach
number [Eq. (27)]. After the elimination of a double spurious
root, it becomes a quartic equation [Eq. (49)] which can be
analytically solved. We have shown explicit formulas for the
four roots [Eqs. (50)–(53)] of the mentioned quartic equation
as function of the initial preshock parameters. In principle,
none of the branches of the mathematical solution can be
dismissed, and hence, a criterion to select the root which
corresponds with the physical solution has been also provided.
Studying any conceivable preshock configuration, we have
observed and demonstrated that only one or two branches of
the solution are needed to cover the whole preshock parameter
space. It depends on the possibility to find a singularity in
Eq. (49). In the interval 1 < Mi < Msing the physical solution
is given by σ3 [Eq. (52)], and for Mi > Msing the solution
is given by σ4 [Eq. (53)]. At the singular point Msing, the
equation for Mr is a polynomial of third degree [Eq. (63)],
and the solution is provided by its first root [Eq. (67)]. If, for
an initial preshock configuration, Msing is not feasible value,
then the branch σ3 provided the physical solution for all the
range.
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