
PHYSICAL REVIEW E 100, 033101 (2019)

Confinement effect on electrically induced dynamics of a droplet in shear flow
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Deformation and breakup of droplets in confined shear flows have been attracting increasing attention from the
research community over the past few years, as attributable to their implications in microfluidics and emulsion
processing. Reported results in this regard have demonstrated that the primary effect of confinement happens
to be the inception of complex oscillating transients, monotonic variation of droplet deformation, and droplet
stabilization against breakup, as attributable to wall-induced distortion of the flow field. In sharp contrast to these
reported findings, here, we show that a nonintuitive nonmonotonic droplet deformation may occur in a confined
shear flow, under the influence of an external electric field. In addition, we demonstrate that the orientation angle
of a droplet may either increase or decrease with the domain confinement under the influence of an electric
field, whereas the same trivially decreases with the increase in degree of confinement in the absence of any
electrical effects. Unlike the typical oscillatory transients observed in microconfined shear flows, we further bring
out the possibility of an electrohydrodynamically induced dampening effect in the oscillation characteristics,
as governed by a specific regime of the relevant dimensionless electrical parameters. Our results reveal that
instead of arresting droplet deformation, the unique hydrodynamics of microconfined shear flow may augment
the tendency of droplet breakup, and is likely to alter the droplet breakup mode from midpoint pinching to edge
pinching at high electric field strength. These results may bear far reaching implications in a wide variety of
applications ranging from the processing of emulsions to droplet based microfluidic technology.
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I. INTRODUCTION

Deformation and breakup of droplets in a confined mi-
crofluidic environment have emerged to be of growing in-
terest to the research community over the past few years,
as attributable to a plethora of critical applications ranging
from droplet based microfluidics and oil recovery to emulsion
processing [1–5]. Further, with the advent of microfabrication
technology, the external electric field has been progressively
used as a novel means of manipulating the morphology of
liquid droplets [6–8]. Despite such outstanding relevance, the
current understanding of the interplay of electric-field- and
confinement-induced hydrodynamic interactions on droplet
deformation and dynamical evolution is rather limited, so that
the design issues concerning the control of morphodynamics
of droplets in a confined medium are often addressed on an
empirical basis [9].

When a spherical droplet is subjected to background sim-
ple shear flow, the droplet experiences mainly two types
of stresses: (a) distorting viscous stress that always tries to
deform the droplet toward the flow direction; (b) restoring
capillary stress that helps the droplet to retain its spherical
configuration. The relative strength of viscous stress over cap-
illary stress is denoted by the capillary number (Ca). For lower
values of Ca (Ca � 1), the droplet deforms into an ellipsoidal
shape and the major axis of the ellipsoid aligns with the
extension axis. With a rise in Ca, the deformation enhances
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and the droplet becomes more aligned in the direction of flow.
The droplet deforms into nonellipsoidal shapes in the high
Ca regime and beyond a critical point the droplet experiences
breakup into smaller droplets. In addition to capillary number,
the viscosity ratio λ (the ratio of viscosity of the droplet and
suspending fluid) of the system also has a significant role in
regulating the deformation dynamics of the droplet.

The interest in deformation dynamics of the droplet in
shear flow originated from the classical study of Taylor [10]
who constructed an analytical solution for the steady state
droplet deformation as a function of capillary number and
viscosity ratio. After the pioneering work of Taylor [10],
several researchers studied the deformation and breakup of
the droplets in a weakly confined domain [11–19]. However,
there are physical situations in which the droplet length scale
turns out to be of comparable order as that of the channel
dimension. In such scenarios, along with the capillary num-
ber and viscosity ratio, the confinement ratio (the ratio of
droplet diameter to channel height) also plays a crucial role
in deformation dynamics of the droplet [5,20–25]. Sibillo
et al. [22] have experimentally shown the effect of domain
confinement on deformation and breakup of the droplets in
the presence of simple shear flow. They have demonstrated a
transient oscillatory dynamics in the morphodynamic evolu-
tion of the droplet, which is normally absent in an unconfined
domain. Furthermore, they demonstrated that the steady state
deformation also increases with the enhancement of degree of
confinement. However, possibly the most interesting aspect
of the influence of confinement captured by them is that
highly elongated droplets that are otherwise unstable in an

2470-0045/2019/100(3)/033101(19) 033101-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.033101&domain=pdf&date_stamp=2019-09-03
https://doi.org/10.1103/PhysRevE.100.033101


SANTRA, MANDAL, AND CHAKRABORTY PHYSICAL REVIEW E 100, 033101 (2019)

FIG. 1. Schematic illustration of the present problem setup,
where a liquid droplet having radius ā is placed in another liquid
medium in a confined domain experiencing both the uniform electric
field and simple shear flow. The upper and lower walls move in
opposite directions with speed Ū . Positive and negative electrodes
are attached to the upper and lower walls, respectively. The walls are
separated by a distance 2H̄ and Ē∞ denotes the magnitude of the
imposed electric field. The orientation angle of the droplet between
the major semiaxis and the horizontal axis is denoted by θd .

unbounded domain may be capable of retaining their equi-
librium shape in a confined microenvironment.

With the advent of microelectromechanical systems, elec-
tric field has emerged to be a potential governing parameter
dictating the dynamical evolution of droplets in a microfluidic
environment [26–34]. In a weakly confined domain, a perfect
dielectric droplet and a conducting droplet always deform
into a prolate configuration (the major axis of the ellipsoidal
droplet oriented toward the direction of electric field) [35]. On
the other hand, a leaky dielectric droplet (droplet having small
but finite electrical conductivity) can deform into an oblate
(the major axis of the elliptically deformed droplet oriented
perpendicular to the direction of electric field) or prolate con-
figuration depending on the relevant dimensionless electrical
properties (conductivity and permittivity ratios) [36].

Here, we bring out unique deformation and breakup dy-
namics of a leaky and a perfect dielectric droplet in confined
shear flow under the action of a transverse uniform elec-
tric field. Our investigations exclusively focus on unveiling
the interplay of electromechanics- and confinement-induced
hydrodynamic interactions toward influencing the following
in a manner that is potentially nontrivial as compared to
the case of a simple microconfined shear flow: (i) steady
state deformation; (ii) transient evolution; (iii) droplet breakup
phenomenon.

II. PROBLEM FORMULATION

A. System description

For the present analysis, we have considered a physical
system as shown in Fig. 1, where a dielectric liquid droplet
is placed in another dielectric fluid medium in a confined
domain. The system is subjected to simple shear flow, where
the two walls of the domain are moved in opposite directions

with speed Ū and a uniform electric field of magnitude
Ē∞ is also applied in the transverse direction. The physical
properties of the droplet and the ambient fluid are density ρi,
ρe; the viscosity, μi, μe; the electric permittivity, εi, εe; and
the electric conductivity, σi, σe. The surface tension is denoted
by �. The radius of the undeformed droplet is ā. The sub-
scripts i and e depict the physical parameters at the inside
and outside of the droplet, respectively. Due to the application
of electric field as well as imposed shear flow, the droplet
deforms to a nonspherical shape and the domain confine-
ment also affects the deformation by altering the strength of
viscous and electrical stresses. For analyzing the system, a
two-dimensional (2D) Cartesian coordinate system has been
considered and the origin is fixed at the center of the droplet.

B. Assumptions

For simplifying the present mathematical model, we have
considered the following assumptions:

(i) The viscous force and pressure force are more signifi-
cant as compared to fluid inertia in regulating the flow prob-
lem. This necessarily means that the value of the Reynolds
number, Re = ρ ¯̇γ ā2/μe (which stands for the relative strength
of inertial stress as compared with viscous stress) is negligible
[Re ∼ O(10–4)].

(ii) The system is neutrally buoyant (ρr = ρ1/ρ2 = 1).
(iii) The effect of charge convection has been neglected

which implies that the magnitude of the electric Reynolds
number, ReE = ε2

2Ē2
∞/μ2σ2 (it denotes the relative strength

of charge convection over Ohmic conduction) is much smaller
than unity.

(iv) For the present leaky dielectric model, the charge
relaxation timescale is much smaller as compared to the
charge convection timescale (denoted by lower values of
ReE ). Thus the charges present at the bulk fluid move to the
fluid-fluid interface, relax instantaneously, and the bulk fluids
remain charge free. Therefore, we have neglected the effect
of transient charging (time derivative of the charge density)
[21,37–39].

An example of such a microfluidic system is described
as follows: a droplet with radius 4 mm is suspended in
another carrier fluid medium in the combined presence of a
transverse electric field (Ē∞ = 1 × 105 V/m) and background
shear flow. The suspending fluid phase is silicon oil (having
ε = 2.44 × 10−11 F/m, σ = 3.33 × 10−11 S/m, μ = 12 Pa s,
and ρ = 980 kg/m3) and the droplet phase is oxidized castor
oil (having ε = 10−9 F/m, σ = 5.57 × 10−11 S/m, μ = 6.5
Pa s, and ρ = 980 kg/m3). The magnitude of the interfacial
tension is 5.5 mN/m. The electrophysical properties of the
fluids have been obtained from the experimental analysis of
Torza et al. [40]. The values of the nondimensional parameters
are calculated as ReE ∼ O(10–2), Re ∼ O(10–4), and ρr = 1.

C. Governing equation with phase field method

1. Governing equations for electric potential and the
expression of electric force in terms of phase field parameter

In the present analysis, it is assumed that the electric field
(Ē) is irrotational (∇̄ × Ē = 0) [41]. Therefore, it can be
expressed as a gradient in electric potential (φ̄), Ē = − ∇̄φ̄.
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In the presence of an electric field, the total electric force that
acts on a fluid element in a finite domain (�) is read as

F̄E =
∫

∀
(∇̄ · T̄M )dx̄3, ∇̄ · T̄M = qvĒ − 1

2
(Ē · Ē) · ∇̄ε̄.

(1)

Here T̄M and qv are the Maxwell stress tensor and bulk free
charge density, respectively. The first term of the expression
of ∇̄ · T̄M

in Eq. (1) stands for the electric force due to
free charges (Coulomb force) and the second term stands
for the dielectrophoretic force. In our present study, we have
considered two different systems for effective comparison:
(a) a leaky dielectric system, where the two interacting fluids
(droplet and suspending medium) are leaky dielectric (hav-
ing small but finite electircal conductivity) in nature, and
(b) a perfect dielectric system, where both fluids are perefect
dielectric in nature. According to Gauss’s law, the volume
density of free charges (q̄v) in a dielectric fluid medim of
permittivity ε̄ can be expressed as

∇̄ · (ε̄∇̄φ̄) = q̄v. (2)

In the phase field formalism, ε̄ is expressed as ε̄ = 1−ϕ

2 εi +
1+ϕ

2 εe, where ϕ is the phase field parameter. ϕ = 1 in the
suspending fluid region, whereas ϕ = –1 in the inner region
of the droplet. The interfacial region is constituted by a
diffuse zone, defined by the bounds –1 < ϕ < 1. The transient
evolution of ϕ is represented by the Cahn-Hilliard equation:

∂ϕ

∂ t̄
+ ū · ∇̄ϕ = ∇̄ · (M̄ϕ∇̄Ḡ), (3)

where M̄ϕ stands for the interface mobility factor. The chem-
ical potential is denoted by Ḡ = �(ϕ3 − ϕ)/ζ̄ − �ζ̄ ∇̄2ϕ.
The thickness of the diffuse interface is regulated by the
parameter ζ̄ .

For a perfect dielectric sytem, the volume density of free
charges is zero. Therefore, the distribution of electric potential
is obtained by solving the following govening equation:

∇̄ · (ε̄∇̄φ̄) = 0. (4)

Similarly, for a leaky dielectric system, the distribution of
electric potential takes the following form [21,29,42]:

∇̄ · (σ̄ ∇̄φ̄) = 0, (5)

where σ̄ for the two fluid system is expressed as σ̄ = 1−ϕ

2 σi +
1+ϕ

2 σe and the electric force on the fluids is calculated by using
Eq. (1). On the other hand, for a perfect dielectric system, the
electric force on the interacting fluid is simplified to

F̄E =
∫

∀

[
−1

2
(Ē · Ē)∇̄ε̄

]
dx̄3, (6)

where the contribution of free charges on the electric force
is dropped out. It is important to mention that the electric
potential φ̄ is periodic in the horizontal direction and, at the
two walls it satisfies the following boundary condititon:

upper wall :φ̄e = H̄ Ē∞ at ȳ = H̄

lower wall :φ̄e = −H̄ Ē∞ at ȳ = −H̄

}
. (7)

2. Coupling between phase field and electrohydrodynamics

For getting the pressure and velocity field, the continuity
equation and the Cahn-Hilliard Navier-Stokes equation have
to be solved. It is important to mention that the latter equation
couples the phase field formalism with the electrohydrody-
namic (EHD). In dimensional form, the continuity equation
and Cahn-Hilliard Navier-Stokes equation are expressed as
follows:

∇̄ · ū = 0, (8)

ρ̄

[
∂ū
∂ t̄

+ ∇̄ · (ūū)

]

= −∇̄ p̄ + ∇̄ · [μ̄{∇̄ū + (∇̄ūT )}] + Ḡ∇̄ϕ + F̄E . (9)

Here F̄E is the electric body force as mentioned in Eqs. (1)
and (6) and Ḡ∇̄ϕ denotes the phase field dependent interfa-
cial tension force. Physical properties of fluids μ and ρ are
expressed in terms of phase field parameter, which are μ̄ =
1−ϕ

2 μi + 1+ϕ

2 μe and ρ̄ = 1−ϕ

2 ρi + 1+ϕ

2 ρe.The velocity field
satisfies the no-slip and no-penetration boundary condition at
the two walls that are expressed in the following form (ns is
the unit normal vector at the solid interface):

upper wall : ū · ns = 0, ū − (ū · ns)ns = +Ūex at ȳ = H̄

lower wall : ū · ns = 0, ū − (ū · ns)ns = −Ūex at ȳ = −H̄

}
. (10)

where ex is the unit vector along the x direction. Furthermore,
the periodic boundary condition has been used in the horizon-
tal direction for velocity field and pressure fields.

3. Governing equations in nondimensional format

To nondimensionalize the governing equation, we have
used the following nondimensional scheme: length is nondi-
mensionalized by ā, velocity by ¯̇γ ā (where ¯̇γ is the shear
rate), electric field by Ē∞, electric stress by εeĒ2

∞, and viscous
stress by μe ¯̇γ . From the above nondimensional scheme, we
have fixed some nondimensional numbers, which are capillary

number Ca = μe ¯̇γ ā/� (it stands for relative magnitude of
viscous over capillary stresses), electric capillary number
CaE = εeĒ2

∞ā/� (which stands for the relative strength of
electric stress over capillary stress), Masson number M =
εeĒ2

∞/μe ¯̇γ (which symbolizes the relative strength of elec-
tric stress over viscous stresses), Reynolds number Re =
ρ ¯̇γ ā2/μe, and domain confinement ratio Wc = 2ā/2H̄ (the
ratio of droplet diameter and channel height). Furthermore,
we have also identified some nondimensional property ratios:
viscosity ratio λ = μi/μe, permittivity ratio S = εi/εe, and
conductivity ratio R = σi/σe. In the nondimensional form, the
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Cahn-Hilliard equation can be expressed as
∂ϕ

∂t
+ u · ∇ϕ = 1

Pe
(∇2G), where

G = 1

Cn
(ϕ3 − ϕ) − Cn∇2ϕ, (11)

where Pe = (ā3 ¯̇γ /M̄ϕ �) denotes the Péclet number and
Cn = ζ̄ /ā denotes the Cahn number. Throughout our numeri-
cal analysis, we have used a very high value of Péclet number
(Pe = 1800) [43]. The Péclet number independence test is
given in Appendix D. For obtaining the electric potential, we
have to solve the following governing equation:

Leaky dielectric system : ∇ · (σ∇φ) = 0
Perfect dielectric system : ∇ · (ε∇φ) = 0

}
. (12)

Similarly, Eqs. (8) and (9) are represented in the following
format:

∇ · u = 0, (13)

Re

[
∂u
∂t

+ ∇ · (uu)

]
= −∇p + ∇ · [μ{∇u + (∇u)T }]

+ 1

Ca
G∇ϕ + MFE . (14)

In the paradigm of the phase field formalism, the fluid proper-
ties are characterized in the following manner:

ρ = (1−ϕ)
2 ρr + (1+ϕ)

2 , μ = (1−ϕ)
2 λ + (1+ϕ)

2

ε = (1−ϕ)
2 S + (1+ϕ)

2 , σ = (1−ϕ)
2 R + (1+ϕ)

2

}
. (15)

For solving the governing equations (11)–(14), we have used
finite element solver COMSOL MULTIPHYSICS.

III. RESULTS AND DISCUSSIONS

A. Comparison between the numerical and analytical results

First of all, we compare the numerical result with the
analytical solution. The analytical solution is developed in
an unbounded domain by the implementation of the regular
perturbation method considering Ca as a perturbation variable
(shown in Appendix A). In the regular perturbation method,
the expansion of the droplet radius in asymptotic form can be
represented in the following shape [44,45]:

rs = 1 + f (θ ) = 1 + Ca f (Ca) + Ca2 f (Ca2 ) + O(Ca3). (16)

In Eq. (16), f (Ca) and f (Ca2 ) show the deviation in droplet
shape under the deformed condition and express it as

f (Ca) = [
L(Ca)

2,0 cos(2θ ) + L̂(Ca)
2,0 sin(2θ )

]
,

f (Ca2 ) = L(Ca2)
0,1 +

⎡
⎣L(Ca2)

2,1 cos (2θ ) + L̂(Ca2)
2,1 sin (2θ ) + L(Ca2)

3,1 cos (3θ )

+L̂(Ca2)
3,1 sin (3θ ) + L(Ca2)

4,1 cos (4θ ) + L̂(Ca2)
4,1 sin (4θ )

⎤
⎦. (17)

Here θ is the polar angle. The expression of L(Ca)
2,0 and L̂(Ca)

2,0
have been obtained as

L(Ca)
2,0 = −1

3
M

�

(R + 1)2 (1 − e− t
λ+1 ), L̂(Ca)

2,0 = (1 − e− t
λ+1 ).

(18)

The pattern of interface deformation due to the sole effect of
electric field depends on �, expressed as � = R2 + R − 3S +
1 [41]. The electric field will deform the droplet into a prolate
(or oblate) shape for � > 0 (or � < 0 ). The degree of droplet
deformation is measured by deformation parameter D and is
expressed as

D = max rs(θ ) − min rs(θ )

max rs(θ ) + min rs(θ )
. (19)

For a highly deformed droplet, when the droplet is no longer
elliptical, the deformation of the droplet is quantified through
the following expression:

L = max rs(θ ). (20)

Another important parameter related to droplet shape is the
droplet orientation angle (θd ) that is formed by the major axis
of the elliptical droplet with the direction of shear flow. A

simple mathematical expression of θd is

θd = 1

2
tan−1

(
L(Ca)

2,0

L̂(Ca)
2,0

)
, (21)

where O(Ca) deformation has been taken into consideration.
The droplet orientation angle considering O(Ca2) deformation
is obtained numerically.

For examining the effect of different governing parameters
on steady and transient deformation characteristics of the
droplet, both the perfect dielectric system (PD-PD system
considering both S > 1 and S < 1) and the leaky dielectric
system (LD-LD system considering both � > 0 as well as
� < 0) have been taken into consideration. The grid in-
dependence study of the numerical simulation is shown in
Appendix B. For checking the applicability of the present nu-
merical result, we also validated our numerical result with the
experimental results of Sibillo et al. [22], Tsukada et al. [46],
and Salipante and Vlahovska [47]. The details of the analysis
are shown in Appendix C. Furthermore, for confirming the
accuracy of the present numerical results, we have performed
a comparison between the analytical results and the result
obtained from numerical simulations. At first, we compare
the steady state deformation parameters of the droplet for dif-
ferent capillary numbers. Through numerical simulations, we
have also inferred that the presence of the wall has negligible
impact on the deformation of the droplet for Wc � 0.2. Thus,
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FIG. 2. Variation of D∞ with Ca for (a) a PD-PD system with S = 15, (b) a LD-LD system with (R, S) = (2, 0.5). Others parameters are
M = 1, λ = 1, Wc = 0.2, and Re = 0.01.

we compare the analytical solution (neglecting the presence of
the wall) with the numerical solution obtained at Wc = 0.2.
Figure 2(a) depicts the alteration of D∞ with Ca for PD-PD
system with S = 15. Similarly, Fig. 2(b) shows the alteration
of steady state droplet deformation (D∞) with Ca for the
LD-LD system with (R, S) = (2, 0.5). It is apparent from
Fig. 2 that the analytical solution [leading-order linear theory
corrected up to O(Ca) as well as the higher-order nonlinear
theory corrected up to O(Ca2)] and the numerical solution
show good agreement with each other for lower values of
Ca. However, the higher-order nonlinear theory offers better
prediction of the numerical results than the leading-order
linear theory for comparatively higher value of Ca.

B. Domain confinement-induced alteration
of steady state deformation

1. Perfect dielectric systems

Figures 3(a) and 3(b) illustrate the variation of steady state
deformation parameter (D∞) and orientation angle (θd,∞) of
the droplet with domain confinement for a PD-PD system
having S = 2. We have the varied confinement ratio (Wc)
from 0.2 (unbounded domain) to 0.8 (extremely confined
domain) by altering the height of the computational domain,
keeping other parameters intact. Figure 3(a) shows that the

steady state value of the deformation parameter enhances
with the enhancement of domain confinement in the absence
of an electric field. This finding has been mentioned in the
experimental observation of Sibillo et al. [22]. However,
this behavior is dramatically altered in the presence of an
electric field. In an electrohydrodynamic system, the value
of D∞ decreases with Wc up to Wc ≈ 0.30 and, above it,
the magnitude of D∞ again increases with Wc. Figure 3(b)
shows that the orientation angle of the droplet is higher for
the electrified system compared to the nonelectrified case in
a weakly confined domain. However, the orientation angle
of the droplet for both cases (electrified and nonelectrified)
decreases monotonically with the domain confinement. These
observations are valid for any PD-PD system having S > 1.

Before discussing the physical explanation behind the
above observed phenomenon, it is imperative to discuss dif-
ferent forces that cause the deformation of the droplet. In the
sole presence of background shear flow, the deformation of
the droplet is caused by flow-induced viscous stress and its
magnitude increases with the enhancement of channel con-
finement. On the other side, when a leaky dielectric droplet,
suspended in a leaky dielectric medium, is exposed to uniform
electric field, the fluids get polarized and the free charges are
instantaneously moved to the interface [41]. In the presence of
an electric field, the action of both the tangential and normal
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FIG. 3. Effect of confinement on the (a) D∞, (b) θd,∞ of a PD-PD system with S = 2. Others parameters are Ca = 0.1, λ = 1, and
Re = 0.01.
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FIG. 4. Variation of (a) shear rate, (b) E 2 with the vertical distance at the tip of the droplet (x = 0.85) for a PD-PD system with S = 2.
Other parameters are Re = 0.01, λ = 1, and M = 10.

components of electric field on the free charges generates
electric stress at the interface. Both the tangential and normal
components of the electric stresses are discontinuous across
the interface except for a few special cases. The imbalance
in the normal component of electric stress or the net normal
electric stress directly participates in the deformation of the
droplets. On the other hand, the imbalance in tangential
electric stress leads to a net hydrodynamic shear stress and
creates fluid flow circulation in and around the droplet in order
to balance the tangential component of hydrodynamic stress
at the interface. The normal component of hydrodynamic
stress, termed “normal hydrodynamic stress,” originates from
the fluid flow and plays a prime role in setting the interface
deformation. Based on leading-order asymptotic analysis,
Behjatian and Esmaeeli [48] have obtained the following form
of the normal hydrodynamic stress in a confined domain:

τ n
h = C2F

εoE2
∞(R − S)

(R + 1)2 sin(2θ ), (22)

where θ is the polar angle. C and F have appeared due
to the presence of a confined wall and are expressed as

C = R+1
(R+1)−Wc2(R−1)

, F = (Wc2−1)
2
λ−(Wc4+6Wc2−1)

(Wc2−1)
2
λ+(1−Wc4 )

. In the ex-

pressions of C and F, Wc denotes the confinement ratio.
For a perfect dielectric system, the net tangential electric

stress acting at the interface is zero, since the free charge
present at the interface is zero (the fluids have no free electron
at the outermost atomic shell). Due to that reason, there is no
fluid flow circulation in and around the droplet. Thus, there
is no normal hydrodynamic stress. For a perfect dielectric
system, the presence of the electric field polarizes fluids. The
polarization creates dipole moments which align themselves
in the direction of the electric field and generates polarization
stress (also called normal electric stress), which always acts
normal to the interface and is directed from the fluid having
higher electrical permittivity to lower electrical permittivity.

It was previously mentioned that, in the sole presence
of background shear flow, the deformation of the droplet
is caused by flow-induced viscous stress and its magnitude
increases with the enhancement of the degree of domain
confinement. Therefore, the deformation also increases.
However, in the presence of an electric field, one additional
electric normal stress also acts as mentioned earlier and

the deformation phenomenon relies on the interplay
between normal electric stress and viscous stress. It is
worth mentioning that the strength of the normal electric
stress depends on electric field strength as well as domain
confinement, whereas viscous stress is only governed by the
domain confinement for a given shear flow [20,22]. Another
important fact is that the normal electric stress always tries
to deform the droplet into a prolate configuration whereas
viscous stress tries to deform it along the direction of flow
and reduces the effect of normal electric stress.

In Figs. 4(a) and 4(b), we have shown the variation of
nondimensional shear rate (γ̇ ) and the square of nondimen-
sional electric field strength (E2) with domain confinements at
the droplet tip, respectively. Shear rate measures the strength
of viscous drag, whereas the square of the electric field
strength measures the strength of normal electric stress. From
the figure, we obtain that in an unbounded domain, the normal
electric stress is dominating as the strength of viscous stress is
low (as the average magnitude of E2 is more than γ̇ ). Hence,
the orientation angle of the droplet is more and the droplet
aligns more toward the electrode. The figures also reveal
that both entities increase notably with domain confinement.
However, the enhancement of viscous stress is much higher
as compared to the normal electric stress for the considered
value of S. This can be confirmed from the droplet shape
in Fig. 3(a), where it is obtained that the droplet is aligned
more in the direction of flow in a highly confined domain.
This is only possible when the enhancement of viscous stress
is more compared to normal electric stress. This viscous
stress tries to reduce the deformation and orientation angle
via retarding the effect of normal electric stress and the net
effect is minimum at Wc = 0.3. Therefore, the deformation
parameter achieves its minimum value at Wc = 0.3. After
Wc = 0.3, the viscous stress becomes dominating. Hence, in
this regime, the deformation of the droplet increases with Wc
due to the enhancement of viscous stress and the orientation
angle of the droplet decreases.

Figures 5(a) and 5(b) show a similar variation in
deformation characteristic and orientation angle for a PD-PD
system having S = 0.1 (the same is valid for S < 1). For this
system, in the presence of an electric field, the magnitude of
D∞ decreases until the confinement ratio approaches 0.5 and,
above it, further increase in domain confinement results in the
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FIG. 5. Effect of confinement on the (a) D∞, (b) θd,∞ of a PD-PD system with S = 0.1. Others parameters are Ca = 0.1, λ = 1, and
Re = 0.01.

enhancement of the deformation parameter. From Fig. 5(b), it
is also observed that orientation angles for both the electrified
and nonelectrified case decrease with the enhancement of
domain confinement similar to the PD-PD system with S = 2
(S > 1). Like the previous PD-PD system (S > 1), a similar
interplay between normal electric stress and viscous stress
is responsible for the observed variation in deformation
characteristic and orientation angle of the present perfect
dielectric droplet.

2. Leaky dielectric systems

Figures 6(a) and 6(b) show the variation of steady state
deformation and orientation angle with domain confinement
for the LD-LD system having (R, S) = (2, 0.5). From
Fig. 6(a), another remarkable change is observed in the
deformation characteristic in the presence of an electric
field, where the droplet deformation reduces with increase
in the domain confinement and in a weakly confined domain
(Wc < 0.3), it experiences the breakup phenomenon. On the
other hand, the orientation angle of the droplet both for an
electrified and a nonelectrified system decreases with do-
main confinement. However, the orientation angle is much
higher in the electrified case as compared to the nonelectrified
case.

Here, we have provided the physical reason behind the
above observed behavior. For the leaky dielectric model, in
addition to normal electric stress and viscous stress, the nor-
mal hydrodynamic stress also acts. The normal hydrodynamic
stress is generated from the fluid flow in and around the
droplet caused by the mismatch in the tangential electric
stress. In an unbounded domain, the directions of both the
normal electric and hydrodynamic stress are the same. How-
ever, the latter one shows interesting behavior in the confined
domain, where its magnitude decreases with increase in the
domain confinement and beyond a particular domain confine-
ment ratio, its direction becomes opposite [21,48]. In this
regime, it tries to reduce the effect of normal electric stress.
For the present LD-LD system, at lower domain confinement,
both the normal electric and hydrodynamic stresses act in the
direction of electric field and attempt to deform the droplet
into a prolate shape. This occurs because of the positive value
of the deformation characteristic function (� > 0). On the
other hand, the viscous stress tries to deform it along the flow
direction though its magnitude is small due to low confine-
ment. In the presence of higher electric field strength (M =
20), the combined strength of normal electric and hydrody-
namic stress is more in a weakly confined domain that creates
higher deformation as well as the orientation angle of the
droplet. With the enhancement of domain confinement, both
normal electric stress and viscous stress increase similar to the
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FIG. 6. Effect of confinement on the (a) D∞, (b) θd,∞ of a LD-LD system with (R, S) = (2, 0.5). Other parameters are Ca = 0.1, λ = 1,
and Re = 0.01.
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FIG. 7. Effect of confinement on the (a) D∞, (b) θd,∞ of a LD-LD system with (R, S) = (10, 1). Other parameters are Ca = 0.1, λ = 1, and
Re = 0.01.

PD-PD system as depicted in Figs. 4(a) and 4(b), whereas the
magnitude of normal hydrodynamic stress decreases. After a
certain confinement ratio (for the present case, Wc ≈ 0.5), it
becomes reversed and acts in the direction of viscous stress.
Thus, in a confined domain, the strength of normal electric
stress is reduced by the integrated effect of viscous stress and
reversed normal hydrodynamic stress. Hence, the reduction in
the deformation as well as the orientation angle of the droplet
is observed.

Figures 7(a) and 7(b) depict the evolution of the steady
state deformation parameter and orientation angle for the LD-
LD system having (R, S) = (10, 1). For the present system,
one must acknowledge that the conductivity ratio is much
higher than the permittivity ratio (R � S) unlike the previous
LD-LD system. Because of that, in the presence of an electric
field, a significant alteration is observed in the deformation
characteristic, where the deformation increases with Wc until
the domain confinement reaches 0.6, and additional increase
in Wc creates reduction in the deformation as depicted in
Fig. 7(a). On the other hand, Fig. 7(b) shows that orientation
angle decreases monotonically with domain confinement.

The physical interpretation of the above observed phe-
nomenon is now provided. For the considered leaky dielectric
system, normal electric stress and hydrodynamic stress try
to deform the droplet toward the electrode in the unbounded
domain. This is due to the positive value of the deformation

characteristic function (� > 0). On the contrary, the viscous
stress tries to deform it toward the flow direction though its
strength is less compared to the former two stresses. There-
fore, the orientation angle of the droplet is more in a weakly
confined domain. With increase in the Wc, the strength of
normal electric stress and viscous stress increases, whereas
normal hydrodynamic stress decreases. Such enhancement of
viscous stress and reduction of normal hydrodynamic stress
are the main reasons behind the reduction of orientation angle
with domain confinement. For the present case, as the liquid
droplet is more conducting than the ambient fluid (R = 10),
the strength of normal electric stress is significantly high in
the confined domain. Hence, the deformation increases with
Wc up to Wc = 0.6 due to the dominating role of normal
electric stress. However, after Wc = 0.6, the integrated effect
of reversed normal hydrodynamic stress and viscous stress
becomes dominating, which lowers the deformation by di-
minishing the effect of normal electric stress and reduces the
orientation angle by aligning the droplet more toward the flow
direction.

Figures 8(a) and 8(b) show the variation of deformation
parameter with confinement ratio for a leaky dielectric system
having (R, S) = (0.033, 0.4397). For the present system,
Fig. 8(a) shows another striking change in the deformation
characteristic in the presence of an electric field, where the
steady state deformation value decreases with Wc up to
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FIG. 8. Effect of confinement on the (a) D∞, (b) θd,∞ of a LD-LD system with (R, S) = (0.033, 0.4397). Others parameters are Ca = 0.1,
λ = 1, and Re = 0.01.
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FIG. 9. Transient variation of deformation parameter (a) a PD-PD system with S = 15, (b) a LD-LD system with (R, S) = (2, 0.5). Others
parameters are M = 1, λ = 1, Wc = 0.2, and Re = 0.01.

Wc ≈ 0.5 and additional increase in Wc again enhances
the deformation. Another remarkable aspect of domain con-
finement in the presence of an electric field is reflected in
Fig. 8(b), where the orientation angle of the droplet increases
with domain confinement unlike the nonelectrified system.

The reason behind the observed droplet deformation phe-
nomenon is now presented. In the unbounded domain, for the
present leaky dielectric system, the normal electric stress and
normal hydrodynamic stress attempt to deform the droplet
along the flow direction similar to viscous stress. This hap-
pens due to the negative values of deformation characteristic
function (� < 0), where the electric field induces an oblate
deformation in droplet shape. In the presence of electric field
strength, their united strength is high, which causes higher
deformation and aligns the droplet toward the flow direction.
Hence the orientation angle is small. However, with increase
in the domain confinement, the normal hydrodynamic stress
reduces significantly. Because of that, the steady state de-
formation reduces and the orientation angle increases. At
Wc ≈ 0.5, the normal hydrodynamic stress becomes reversed.
Therefore, the deformation is minimum. For additional in-
crement in Wc above 0.5, the magnitude of reversed normal
hydrodynamic stress increases, which enhances the defor-
mation of the droplet and tries to align the droplet toward
the electrode. Due to that reason, the orientation angle is
maximum in a confined domain.

C. Domain confinement-induced alteration in transient
droplet deformation characteristics

Figure 9 depicts the transient evolution of the deformation
parameter for different values of Ca. We have shown both the
analytical result obtained from higher-order nonlinear theory
corrected up to O(Ca2) (shown by line) and the numerical
result (shown by markers), and performed a comparison be-
tween them. The variation of D with time for a PD-PD system
having S = 15 has been shown in Fig. 9(a), whereas Fig. 9(b)
shows the variation for the LD-LD system having (R, S) =
(2, 0.5). From the figures, it is understood that the analytical
result shows good agreement with the numerical result for
smaller values of Ca. However, at larger values of Ca, the
deviation is seen to be higher for all the systems.

Next, we have analyzed the transient droplet deformation
characteristic in a confined domain under different electric
field strengths. For that, we have varied the Masson number
by changing the values of CaE while keeping the value of Ca
unaltered. First, we have shown the result for PD-PD systems
and, subsequently, the results have been shown for LD-LD
systems.

1. Perfect dielectric systems

Figures 10(a) and 10(b) show the transient variation of
the deformation parameter (L) and orientation angle (θd ),

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

t

L

 

 

M=15
M=10
M=2.5
M=0

0 10 20 30 40 50
0

10

20

30

40

t

θ d

 

 

 

 
M=15
M=10
M=2.5
M=0

M=15
M=0

(a) (b)

FIG. 10. Variation of (a) L and (b) θd with t for a PD-PD system with S = 2. Other parameters are Ca = 0.4, λ = 1, Re = 0.01, and
Wc = 0.909. The inset shows the contours of the droplet at steady state for M = 0 and M = 15.
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FIG. 11. Variation of (a) L and (b) θd with t for a PD-PD system with S = 0.1. Other parameters are Ca = 0.4, λ = 1, Re = 0.01, and
Wc = 0.909. The inset shows the contour of the droplet at steady state for M = 0 and M = 7.5

respectively, for the PD-PD system with S = 2 for different
values of M. It is observed that, in the absence of an electric
field (M = 0), the droplet deformation experiences maxima
and minima in a damped oscillatory manner as previously
reported by Sibillo et al. [22]. However, a striking difference
is observed in the deformation characteristic due to the
application of an electric field, where the presence of an
electric field induces additional oscillation in the deformation
and orientation of the droplet and the unsteadiness increases
with increase in the value of M. Therefore the time required
to reach the steady state configuration, termed “steady state
time,” also increases. On the other hand, from Fig. 10(a), it is
also obtained that the steady state deformation value reduces
with increase in the value of M (L∞ = 1.992 for M = 5 and
L∞ = 2.07 for M = 0). This observation is valid for any
PD-PD system having S > 1.

Figures 11(a) and 11(b) depict the variation of L and θd

with time, respectively, for a PD-PD system with S = 0.1. For
S = 0.1(the same is applicable for S < 1), Fig. 11(a) reveals
that the presence of an electric field reduces the value of
steady state deformation and it becomes lower with increase
in the value of M (L∞ = 1.617 for M = 7.5 and L∞ = 2.07
for M = 0), like S = 2. But the interesting fact is that the
oscillation observed in deformation and orientation in the
absence of an electric field (M = 0) gradually diminishes as
we increase electric field strength.

For the perfect dielectric systems in the presence of an
electric field, it is well established that the deformation of
droplet interface is governed by the normal electric stress
due to the electric field and the viscous stress due to the
shear flow. For a higher value of Ca (here Ca = 0.4) and
Wc, the viscous stress is significant and attempts to deform
the droplet along its direction. On the other hand, the electric
normal stress tries to deform it in the prolate shape that is
perpendicular to the shear plane. For both systems, in the
absence of an electric field, the viscous stress is higher due to
higher values of Ca, and it regulates the droplet deformation
phenomenon. In the presence of an electric field, the normal
electric stress comes into play. As we increase the value M
(or CaE ), the normal electric stress increases which reduces
the deformation via lowering the effect of viscous stress, and
it tries to deform the droplet along its direction. Therefore,
the droplets are aligned more in the direction of the electrode
as shown in Figs. 10(b) and 11(b). The unsteadiness in the
deformation behavior occurs due to continuous elongation and
relaxation of the droplet interface. It is necessary to state that
this elongation and relaxation are coupled with forward and
backward rotation of the droplet that is again governed by the
normal electric force, viscous stress force, and surface tension
force on the droplet. The interplay among these forces finally
determines the time at which the droplet achieves steady state
configuration.

0 20 40 60 80
1

1.5

2

2.5

3

3.5

4

t

L

 

 

M=0.75
M=0.25
M=0

0 10 20 30 40 50
0

10

20

30

40

50

t

θ d

 

 

M=0.75
M=0.25
M=0

 

 

M=0.75
M=0

(a) (b)

FIG. 12. Variation of (a) L and (b) θd with t for a LD-LD system with (R, S) = (0.5, 2). Other parameters are Ca = 0.4, λ = 1, Re = 0.01,
and Wc = 0.909. The inset shows the contour of the droplet at steady state for M = 0 and M = 0.75.
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and Wc = 0.909. The inset shows the contour of the droplet at steady state for M = 0 and M = 7.5.

2. Leaky dielectric systems

Figures 12(a) and 12(b) depict the transient evolution of
L and θd , respectively, for the LD-LD system with (R, S) =
(0.5, 2). From both figures, it is understood that the presence
of an electric field creates extra oscillation in the deformation
and orientation of the droplet and the unevenness in the
transient deformation characteristic increases with M which
creates a higher steady state time. Along with steady state
time, the steady state deformation also increases with increase
in the value of M (L∞ = 2.07 for M = 0 and L∞ = 2.301,
M = 0.75).

This deformation dynamics can be explained by consid-
ering the effect of normal hydrodynamic stress along with
normal electric stress and viscous stress. For the considered
values of (R, S), the combined action of viscous stress and
normal electric stress tries to deform the droplet into an oblate
shape (along the flow direction) whereas the hydrodynamic
normal stress tries to deform it into a prolate shape due to the
reversal of its direction in the confined domain. With increase
in the value of M, the combined magnitude of viscous stress
and electric normal stress has been increased which ultimately
increases the value of L and tries to align the droplet along the
flow direction as shown in Fig. 12(b). For the present case,
as deformation increases with M, the interface deforms more

for locally balancing the stresses which increases the time to
achieve steady state configuration.

Similarly, Figs. 13(a) and 13(b) also illustrate the transient
variation of L and θd , respectively, for different values of M
for the LD-LD system with (R, S) = (2, 0.5). For the present
case, the presence of an electric field suppresses the oscillation
in the deformation and orientation of the droplet unlike the
LD-LD system having � < 0. Therefore, the steady state
time decreases with increase in M. Furthermore, the value
of the deformation parameter also decreases with increase in
M (L∞ = 1.749 for M = 7.5 and L∞ = 2.07 for M = 0) as
shown in Fig. 13(a).

For the considered value of the permittivity and conduc-
tivity ratio, the magnitude of normal electric stress is much
higher (as it is quadratic in R) than the normal hydrodynamic
stress which acts in the opposite direction of normal electric
stress. Therefore, the net normal stress tries to deform the
droplet along the vertical direction (prolate shape), whereas
the viscous stress tries to deform it along the direction of flow.
In the absence of an electric field (M = 0), the higher viscous
stress creates a large droplet deformation along the flow direc-
tion at a higher value of Ca. As M increases, the net normal
stress also increases which lowers the deformation parameter
via reducing the effect of viscous stress and tries to align the
droplet along the vertical direction as shown in Fig. 13(b). For
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FIG. 14. Effect of confinement on droplet breakup for (a) a PD-PD system with S = 15 and (b) a LD-LD system with (R, S) = (0.5, 2).
Other parameters are Re = 0.01, λ = 1, and M = 1.
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FIG. 15. Variation of (a) E 2 and (b) shear rate with the vertical distance at the tip of the droplet (x = 2.11) for a LD-LD system with
(R, S) = (0.5, 2). Other parameters are Re = 0.01, λ = 1, and M = 1.

that reason, the value of steady state deformation decreases
with increase in M and steady state configuration has been
reached quickly.

D. Domain confinement-induced alteration
in droplet breakup phenomenon

Figures 14(a) and 14(b) illustrate the influence of domain
confinement on the droplet breakup mechanism for the PD-PD
system with S = 15 and the LD-LD system with (R, S) =
(0.5, 2), respectively. In the absence of an electric field, the
study of Sibillo et al. [22] has revealed that the breakup
phenomenon of a droplet is suppressed in a highly confined
domain. However, the present analysis shows a completely
reversed phenomenon in the presence of an electric field. In
the presence of an electric field, a LD droplet achieves steady
state configuration in an unbounded domain (Wc = 0.2) at
CaE = 0.6 and it undergoes sudden elongation in a confined
domain (Wc = 0.909) for the same value of CaE that ulti-
mately leads the droplet to pinch off into daughter droplets. A
similar phenomenon is also observed for a PD droplet, where
it achieves steady state configuration in an unbounded domain
at CaE = 0.90. On the other hand, it undergoes breakup in a
confined domain for the same value of CaE .

A proper physical explanation of the observed behavior is
now provided. For a PD-PD system, the normal electric stress
tries to deform the droplet toward the electrode whereas the
viscous stress tries to resist its effect via deforming the droplet
along the flow direction. For a PD-PD system, the magnitude
of normal electric stress is high due to a higher value of S
(S = 15). Furthermore, domain confinement again strength-
ens its value, which finally leads the droplet to undergo the
breakup phenomenon. The reason behind the deformation
phenomenon observed in Fig. 14(b) is slightly different. For
the present LD-LD system, both the normal electric stress and
normal hydrodynamic stress attempt to deform the droplet
into an oblate shape in an unbounded domain. This is due to
the negative value of the deformation characteristic function
that is on the side of creating the oblate deformation. Likely,
the viscous stress also tries to deform the droplet along the
flow direction. However, as the effect of domain confinement
on the governing stresses is not pronounced, it creates lower
deformation and the droplet can succeed in achieving steady

state configuration. However, in a confined domain, the sce-
nario is changed a lot. For the selected values of (R, S), the
electric field strength in the confined domain is very high as
shown in Fig. 15(a). This necessarily stands for higher normal
electric stress (as normal electric stress is proportional to E2).
Furthermore, the shear rate is also significantly high as shown
in Fig. 15(b) which means the magnitude of viscous stress
is also high in the confined domain. Although the reversed
hydrodynamic stress tries to reduce the deformation in the
confined domain, the droplet breaks up due to the integrated
strength of normal electric stress and viscous stress.

Next, we discuss the effect of CaE (or electric field
strength) on the breakup mechanism of the droplet in the
confined domain. Figure 16 shows the transient evolution
of the droplet shape for the LD-LD system with (R, S) =
(2, 0.5). The figure shows that, in the absence of an elec-
tric field, the breakup of the droplet occurs from midpoint,
termed “midpoint pinching” and it produces three small and
two large droplets. In the presence of moderate electric field
strength, the number of daughter droplets produced increases,
but the breakup mode remains unaltered. However, the most
surprising aspect of droplet breakup dynamics is unveiled at
higher electric field strength (CaE = 16), where the breakup
mode transforms from midpoint pinching to edge pinching. In
the edge pinching mode, the droplets undergo breakup from
their edges. This phenomenon is caused due to the cumulative
effect of normal electric stress, hydrodynamic stress, and
viscous stress in a confined domain. In the absence of an
electric field, only viscous stress is present. This viscous
stress stretches the droplet toward the flow direction and
creates interfacial instability at the midsection of the droplet
which leads the droplet to split into daughter droplets. In the
presence of an electric field, normal electric stress and normal
hydrodynamic stress also act in addition to viscous stress. For
the considered values of (R, S), normal hydrodynamic stress
acts in the direction of viscous stress, whereas normal electric
stress acts toward the electrode. At moderate strength of elec-
tric field (CaE = 1.6), the combined strength of normal hydro-
dynamic stress and viscous stress is dominating which speeds
up the breakup phenomenon, creating interfacial instability
at the midpoint of the droplet. However, at higher electric
field, the strength of the normal electric stress increases, which
attempts to stretch the droplets toward the electrode, whereas
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FIG. 16. Transient evolution of droplet shape for (i) CaE = 0, (ii) CaE = 1.6, and (iii) CaE = 16 for a LD-LD system with (R, S) = (2,
0.5). Other parameters are Re = 0.01, λ = 1, Ca = 1.6, and Wc = 0.55.

viscous stress and normal hydrodynamic stress try to elongate
it toward the flow direction. Because of this interplay among
these forces, an interfacial mechanical instability is created
at the droplet’s edge and finally the daughter droplets are
produced from the edges of the droplets keeping the central
region intact.

Next, we have performed a large number of simulations
for constructing a regime diagram defined by CaE and Wc
as shown in Fig. 17. In the regime diagram, the blue-colored
circular marker points shows the values of (CaE , Wc), at
which no breakup is observed. On the other hand, the red-
colored diamond marker points denote the values of (CaE ,
Wc), at which the droplet experiences breakup. From the
regime diagram, it is also worth noting that the critical electric
capillary number, at which breakup takes place, first increases

FIG. 17. Regime diagram of breakup and nonbreakup mode in
CaE versus Wc space. Other parameters are Re = 0.01, λ = 1, Ca =
0.6, S = 2, and R = 0.5.

with domain confinement up to Wc ≈ 0.5 and then decreases.
This happens due to the variation of normal electric stress,
normal hydrodynamic stress, and viscous stress with the de-
gree of domain confinement.

E. Remarks on 2D analysis and its 3D counterparts

One major simplification of our current model is that the
computations are restricted to two-dimensional analysis. Due
to this limitation, an exact matching between the numeri-
cal results and experimental results is very hard to achieve.
However, the 2D numerical analysis can give a good pre-
diction of the phenomenon studied in a realistic microflu-
idic setup (Couette flow system), where the third dimension
(which is perpendicular to the plane of velocity gradient
and flow direction) is large enough to ignore any effect
of the boundary on fluid flow and deformation dynam-
ics. In this regard, it is worth mentioning that several re-
searchers [20,21,34,49–55,38,56–59] have used the 2D nu-
merical model in their analysis for capturing the essential
physics related to the dynamics of the droplet in a realistic
microfluidics setup. For example, Stan et al. have studied
the droplet migration characteristics in a pressure-driven flow
and found that the numerical simulation results in the 2D
domain are very similar to the 3D domain, and both results
compare well with the experiments [53]. Furthermore, we can
directly use the present numerical result for a confined liquid
column in a real microfluidic setup subjected to the combined
presence of background shear flow and transverse electric
field [60–63]. It is worth mentioning that, in the sole presence
of background shear flow, several similarities exist between
the 2D and 3D dynamics of the droplet, like the creation of the
regions of high interfacial curvature, tip streaming, formation
of reentrant cavities because of the local pressure gradient,
and migration of the droplet toward the region of minimal
shear. There are also several similarities between the 2D and
3D elctrohydrodynamics (EHD) of the droplets. In the sole
presence of a uniform electric field, the electric-field-induced
fluid flow (EHD flow) in a plane which is perpendicular to the
equator of the droplet and parallel to the direction of electric
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FIG. 18. (a) Variation of steady state deformation parameter with domain confinement for different values of Ca. Other parameters are
values are λ = 1 and Re = 0.05. (b) Variation of steady state deformation parameter with electric capillary number. Other properties are
R = 10, S = 1.37, λ = 0.874, and Re = 0.01.

field are exactly identical for 2D and 3D droplets. For both the
2D and 3D cases, the EHD flow contains four circulation rolls
in the inside region of the droplet, which are again matched
by their counterparts in the suspending fluid.

Another important thing is that the direction of the EHD
flow is exactly same for both the 2D and 3D droplets; the
EHD flow is directed from equators to poles for R > S and
poles to equators for S > R, where R and S denotes the ratios
of conductivity (σ ) and permittivity (ε ) of the droplet and
the carrier fluid. In this regard, we have made a comparison
between our 2D numerical result with the experimental results
of Sibillo et al. [22] as well as Ha and Yang [64] as depicted
in Figs. 18(a) and 18(b), respectively. Therefore, there is
enough reason to expect that the current two-dimensional
computational results will provide ample realistic insight into
the deformation characteristic of the droplet in a realistic
microfluidic setup and it will maintain a notable degree of
physical significance.

IV. CONCLUSIONS

We have analyzed the interplay of electromechanics and
hydrodynamics toward dictating the morphodynamic evolu-
tion of a droplet in a confined shear flow. The key findings
from our study are summarized below.

(i) The presence of a transverse electric field significantly
alters the monotonic variation of the droplet deformation
parameter with confinement ratio. For both the PD-PD and
LD-LD systems, we have obtained nonmonotonic variation of
droplet deformation parameter with the domain confinement.

(ii) In a highly confined domain, for both types of PD-PD
systems (S > 1 and S < 1), the steady state deformation re-
duces with increases in the electric field strength. On the other
hand, for the PD-PD system having S > 1, the presence of
an electric field amplifies the oscillatory dynamics. Therefore,
the droplet achieves steady state configuration very sluggishly.
On the contrary, for the S < 1 case, the oscillation diminishes
with increase in the electric field strength and the droplet
achieves steady state configuration very quickly.

(iii) In a highly confined domain, the value of the steady
state deformation parameter increases with electric field

strength for the LD-LD system having � < 0. For this sys-
tem, the unsteadiness in the deformation and orientation of
the droplet also increases with the increase in electric field
strength. Hence, the droplet attains steady state configuration
very slowly. On the contrary, the magnitude of deformation
parameter as well as the oscillation in the deformation and
orientation of the droplet decrease with the enhancement of
electric field strength for the LD-LD system having � > 0.

(iv) For both the PD-PD system having S > 1 and the
LD-LD system having � < 0, the higher domain confinement
incites the droplet breakup phenomenon under electrohydro-
dynamic interactions. Another interesting fact is that, with
the augmentation of electric field strength in the confined
domain, the droplet breakup mode transforms from the mid-
point pinching mode to the edge pinching mode for a LD-LD
system having � > 0.

(v) For a LD-LD system having � < 0, the critical electric
capillary number shows a nonmonotonic dependence on the
channel confinement.
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APPENDIX A: ANALYTICAL SOLUTION FOR THE EHD
OF DROPLET IN UNCONFINED DOMAIN

Neglecting the influence of wall confinement, an analytical
solution for the present EHD problem has been developed
under the Stokes flow condition. In an unconfined domain,
at a lower value of Ca, the strength of the hydrodynamic
stress is low, which creates small deformation. Due to that,
the droplet shape deviates insignificantly from its spherical
nature. Again, M ∼ 1 implicates that the electric stress is
also less. This means that the deformation due to electric-
field-induced electric stress is also less, which allows us to
obtain an analytical solution of electric potential and velocity
field by using the regular perturbation method taking CaE
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or Ca as a perturbation variable. Here, we have consid-
ered Ca as a perturbation parameter for the sake of con-
venience. In the regular perturbation method, the expansion
of each dependent variable takes the following perturbation
form [44,45]:

χ = χ (0) + Caχ (Ca) + Ca2χ (Ca2 ) + O(Ca3), (A1)

where χ (0) depicts the leading-order term of χ without shape
deformation and χ (Ca) shows the correction term with the
shape deformation.

For an electrostatic problem, the electric potential should
satisfy the Laplace equation. The electric potential inner and
outer side of the droplet can be expressed in the following
form:

φi =
∞∑

n=1

rn
n∑

m=1

[an,m cos(mθ ) + ân,m sin(mθ )], (A2)

φe = −E∞ · r +
∞∑

n=1

1

rn

n∑
m=1

[bn,m cos(mφ) + b̂n,m sin(mφ)].

(A3)

The unknown coefficients at each order of perturbation are ob-
tained by applying the appropriate boundary condition at the
droplet interface (continuity of electric potential and normal
current density).

Under the Stokes flow condition, we can express the flow
field solely in terms of a fourth-order biharmonic equation for
the stream function. General solution of the stream function
for the inner and outer phases of the droplet can be expressed
in the following form:

ψi =
∞∑

n=2

rn
n∑

m =2

[An,m cos(mθ ) + Ân,m sin(mθ )

+ Bn,m(t )r2 cos(mθ ) + B̂n,m(t )r2 sin(mθ )], (A4)

ψe =
(

r2

4

)
−

[
r2

4
cos (2θ )

]

+
∞∑

n=2

r−n
n∑

m =2

[
Cn,m cos (mθ ) + Ĉn,m sin (mθ )
+En,mr2 cos (mθ ) + Ên,mr2 sin (mθ )

]
.

(A5)

Here also, we have calculated the unknown coefficient of
Eqs. (A4) and (A5) by using the appropriate interfacial bound-
ary condition (no-slip and no-penetration boundary condition
of the velocity and tangential stress boundary condition).
By applying the normal stress boundary condition, we have
calculated the droplet shape. This eventually leads to the
expressions of various terms in Eq. (17) in the following form:

L(Ca)
2,0 = −M(R2 + R − 3S + 1)

3(R + 1)2

[
1 − exp

(
− t

λ + 1

)]
,

L̂(Ca)
2,0 = 1 − exp

(
− t

λ + 1

)
,

L(Ca2 )
0,1 = −1

4
(L2,0)2 − 1

4
(L̂2,0)2,

L(Ca2 )
2,1 = −M(R − 1)(R2 + R − 3S + 1){l1 + l2 + l3}

72(1 + R)5 exp

(
− t

λ + 5

)
,

L̂(Ca2 )
2,1 = M(R − 1){l̂1 + l̂2 + l̂3}

24(R + 1)3 exp

(
− t

λ + 5

)
,

L(Ca2)
4,1 = {k1 + k2 + k3 + k4}

720(5λ + 13)(1 + λ)(λ + 2)(1 + R4)
exp

(
− 6t

11λ + 19

)
,

L̂(Ca2)
4,1 = − M{k̂1 + k̂2 + k̂3 + k̂4}

360(λ + 2)(5λ + 13)(λ + 1)(R + 1)2 exp

(
− 6t

11λ + 19

)
, (A6)

where

l1 = (R2λ + 13R2 − 2Rλ − 12Sλ + 38R − 28S + λ + 13) exp

[
− 4t

(λ + 1)(λ + 5)

]
,

l2 = 4(R2λ + 13R2 − 2Rλ − 12Sλ + 38R − 28S + λ + 13)

1+λ
exp

[
t

(λ + 5)

]
,

l3 = − (λ + 5)(R2λ + 13R2 − 2Rλ − 12Sλ + 38R − 28S + λ + 13)

1+λ
, (A7)

l̂1 = (R2λ + 13R2 − 2Rλ − 12Sλ + 38R − 28S + λ + 13) exp

[
− 4t

(λ + 5)(λ + 1)

]
,

l̂2 = 4(R2λ + 13R2 − 2Rλ − 12Sλ + 38R − 28S + λ + 13)

λ + 1
exp

(
t

λ + 5

)
,

l̂3 = − (R2λ + 13R2 − 2Rλ − 12Sλ + 38R − 28S + λ + 13)(λ + 5)

λ + 1
, (A8)
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k1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

700M2R4λ3 + 4400M2R4λ2 + 1200M2R3λ3 − 4000M2R2Sλ3

+9068M2R4λ + 7040M2R3λ2 − 24640M2R2Sλ2 + 1900M2R2λ3

−3400M2RSλ3 + 5700M2S2λ3 − 6180R4λ3 + 6136M2R4

+13232M2R3λ − 49504M2R2Sλ + 11440M2R2λ2 − 19360M2RSλ2

+1200M2Rλ3 + 34320M2S2λ2 − 4000M2Sλ3 − 37008R4λ2 − 24720R3λ3

+7904M2R3 − 32448M2R2S + 22300M2R2λ − 34792M2RSλ + 7040M2Rλ2

+66900M2S2λ − 24640M2Sλ2 + 700M2λ3 − 71604R4λ − 148032R3λ2−
37080R2λ3 + 14040M2R2 − 19344M2RS + 13232M2Rλ + 42120M2S2

−49504M2Sλ + 4400M2λ2 − 44616R4 − 286416R3λ − 222048R2λ2

−24720Rλ3 + 7904M2R − 32448M2S + 9068M2λ − 178464R3 − 429624R2λ

−148032Rλ2 − 6180λ3 + 6136M2 − 267696R2 − 286416Rλ − 37008λ2

−178464R − 71604λ − 44616

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

[
− 6t

(11λ + 19)

]

k2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

175M2R4λ3 + 965M2R4λ2 + 350M2R3λ3 − 1050M2R2Sλ3

+1661M2R4λ + 1930M2R3λ2 − 5790M2R2Sλ2 + 525M2R2λ3

−1050M2RSλ3 + 1575M2S2λ3 − 1575R4λ3 + 871M2R4

+3322M2R3λ − 9966M2R2Sλ + 2895M2R2λ2 − 5790M2RSλ2

+350M2Rλ3 + 8685M2S2λ2 − 1050M2Sλ3 − 8685R4λ2

−6300R3λ3 + 1742M2R3 − 5226M2R2S + 4983M2R2λ

−9966M2RSλ + 1930M2Rλ2 + 14949M2S2λ − 5790M2Sλ2

+175M2λ3 − 14949R4λ − 34740R3λ2 − 9450R2λ3 + 2613M2R2

−5226M2RS + 3322M2Rλ + 7839M2S2 − 9966M2Sλ

+965M2λ2 − 7839R4 − 59796R3λ − 52110R2λ2 − 6300Rλ3

+1742M2R − 5226M2S + 1661M2λ − 31356R3 − 89694R2λ

−34740Rλ2 − 1575λ3 + 871M2 − 47034R2 − 59796Rλ − 8685λ2

−31356R − 14949λ − 7839

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

(
−

[
16t (λ + 2)

(11λ + 9)(λ + 1)

])

k3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

280M2R4λ3 + 1184M2R4λ2 + 320M2R3λ3 − 1440M2R2Sλ3

+1592M2R4λ + 640M2R3λ2 − 5376M2R2Sλ2 + 600M2R2λ3

−720M2RSλ3 + 1800M2S2λ3 − 2376R4λ3 + 688M2R4 − 320M2R3λ

−6048M2R2Sλ + 1824M2R2λ2 − 192M2RSλ2 + 320M2Rλ3

+5472M2S2λ2 − 1440M2Sλ3 − 7776R4λ2 − 9504R3λ3 − 640M2R3

−2112∗M2R2S + 1272M2R2λ + 4464M2RSλ + 640M2Rλ2

+3816M2S2λ − 5376M2Sλ2 + 280M2λ3 − 6696R4λ − 31104R3λ2

−14256R2λ3 + 48M2R2 + 3936M2RS − 320M2Rλ + 144M2S2

−6048M2Sλ + 1184M2λ2 − 1296R4 − 26784R3λ − 46656R2λ2

−9504Rλ3 − 640M2R − 2112M2S + 1592M2λ − 5184R3

−40176R2λ − 31104Rλ2 − 2376λ3 + 688M2 − 7776R2

−26784Rλ − 7776λ2 − 5184R − 6696λ − 1296

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

(
−

[
t (5λ + 13)

(11λ + 9)(λ + 1)

])

k4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1155M2R4λ3 − 6549M2R4λ2 − 1870M2R3λ3 + 6490M2R2Sλ3 − 12321M2R4λ

−9610M2R3λ2 + 35806M2R2Sλ2 − 3025M2R2λ3 + 5170M2RSλ3 − 9075M2S2λ3

+10131R4λ3 − 7695M2R4 − 16234M2R3λ + 65518M2R2Sλ − 16159M2R2λ2

+25342M2RSλ2 − 1870M2Rλ3 − 48477M2S2λ2 + 6490M2Sλ3 + 53469R4λ2

+40524R3λ3 − 9006M2R3 + 39786M2R2S − 28555M2R2λ + 40294M2RSλ

−9610M2Rλ2 − 85665M2S2λ + 35806M2Sλ2 − 1155M2λ3 + 93249R4λ + 213876R3λ2

+60786R2λ3 − 16701M2R2 + 20634M2RS − 16234M2Rλ − 50103M2S2 + 65518M2Sλ

−6549M2λ2 + 53751R4 + 372996R3λ + 320814R2λ2 + 40524Rλ3 − 9006M2R
+39786M2S − 12321M2λ + 215004R3 + 559494R2λ + 213876Rλ2 + 10131λ3

−7695M2 + 322506R2 + 372996Rλ + 53469λ2 + 215004R + 93249λ + 53751

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A9)
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FIG. 19. Grid and Cn independence study. Deformation of the droplet interface in (a) simple shear flow with Ca = 0.1, Wc = 0.8;
(b) shear flow with electric field having S = 15, Ca = 0.14, M = 1, Wc = 0.2. (c) Breakup dynamics of the droplet in the combined presence
of shear flow and electric field. Other parameters are Re = 0.01, Wc = 0.9, λ = 1, Ca = 0.6, S = 2, R = 0.5, and CaE = 0.4.

k̂1 =
⎛
⎝2080R2λ3 + 12768R2λ2 + 1780Rλ3 − 5940Sλ3 + 25536R2λ

+10128Rλ2 − 35664Sλ2 + 2080λ3 + 16640R2 + 18180Rλ

−69252Sλ + 12768λ2 + 10088R − 43368S + 25536λ + 16640

⎞
⎠ exp

(
6t

11λ + 9

)
,

k̂2 =
⎛
⎝525R2λ3 + 2895R2λ2 + 525Rλ3 − 1575Sλ3 + 4983R2λ + 2895Rλ2

−8685Sλ2 + 525λ3 + 2613R2 + 4983Rλ − 14949Sλ + 2895λ2

+2613R − 7839S + 4983λ + 2613

⎞
⎠ exp

[
− 16t (λ + 2)

(11λ + 9)(λ + 1)

]
,

k̂3 =
⎛
⎝816R2λ3 + 3072R2λ2 + 456Rλ3 − 2088Sλ3 + 3504R2λ

+480Rλ2 − 6624Sλ2 + 816λ3 + 1248R2 − 1752Rλ − 5256Sλ

+3072λ2 − 1776R − 720S + 3504λ + 1248

⎞
⎠ exp

[
− t (5λ + 13)

(11λ + 9)(λ + 1)

]
,

k̂4 =
⎛
⎝−3421R2λ3 − 18735R2λ2 − 2761Rλ3 + 9603Sλ3 − 34023R2λ

−13503Rλ2 + 50973Sλ2 − 3421λ3 − 20501R2 − 21411Rλ + 89457Sλ

−18735λ2 − 10925R + 51927S − 34023λ − 20501

⎞
⎠. (A10)

APPENDIX B: GRID AND CAHN NUMBER
INDEPENDENCE STUDY

For assuring the correctness of the numerical simulation,
grid and Cn number independence studies are required. As
grid size and Cn number are equal near the interface, a correct
Cn independence study automatically satisfies a correct grid
size independence study [65].

For performing the Cn independence test, the deformation
parameter (D) has been evaluated for two cases: (a) The
droplet is suspended in a simple shear flow with Wc = 0.80,

Ca = 0.1, and Re = 0.01, and (b) the droplet is suspended
in simple shear flow under a transverse electric field with
Wc = 0.20, Ca = 0.14, M = 1, and Re = 0.01 as shown in
Figs. 19(a) and 19(b), respectively. For both cases, we have
considered three different Cahn numbers (Cn = 0.02, 0.01,
0.015). From the figures, a negligible variation in deformation
characteristic is observed for the selected Cn numbers. It is
also worth mentioning that the droplet breakup dynamics is
more sensitive to the spatial resolution. For confirming that
the droplet breakup dynamics is independent of the spatial
resolution, we have also performed a grid independence study
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FIG. 20. Comparison of present simulation result and the numer-
ical results of Halim and Esmaeeli [66].The parameters considered
are S = 0.5, λ = 1, Re = 1, ρ̄ = 0.5, M = 1, and CaE = 0.25.

(or Cahn number independence study) in Fig. 19(c). This
figure demonstrates that the breakup dynamics of the droplet
becomes independent of Cn below Cn = 0.015. Therefore,
we have chosen Cn = 0.015 for studying the deformation
dynamics as well as breakup dynamics of the droplet. In our
present study, all the figures obtained from numerical data
have been plotted for Cn = 0.015.

APPENDIX C: MODEL VALIDATION STUDY

In this section, we have validated our 2D numerical result
with the experimental result of Sibillo et al. [22] as shown in
Fig. 18(a), where a liquid droplet is suspended in another liq-
uid medium under confined shear flow condition. This study
clearly shows good matching between the numerical and
experimental result. Furthermore, we have performed another
comparison of our numerical result with the experimental
result of Ha and Yang [64] as shown in Fig. 18(b), where the
droplet is subjected to a uniform transverse electric field. This
comparison also shows good qualitative matching between
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Pe=900

FIG. 21. Transient variation of deformation parameter for differ-
ent values of Pe. Other parameters are Ca = 0.1, M = 10, R = 2,
S = 0.5, Cn = 0.01, λ = 1, and Re = 0.01.

our numerical result and the experimental results of Ha and
Yang [64], where the magnitude of deformation increases
with the enhancement of CaE for both the numerical and
experimental observations. Furthermore, we have compared
our numerical results with the numerical results of Halim and
Esmaeeli [66] for a relatively higher value of CaE , where we
have shown the transient evolution of the deformation of the
droplet under a uniform electric field for different values of
electrical conductivity as shown in Fig. 20. This figure shows
very good agreement between our numerical results and the
results of Halim and Esmaeeli [66].

APPENDIX D: PÉCLET NUMBER INDEPENDENCE STUDY

In phase field formalism, the Péclet number denotes the
ratio convective and diffusive transport of the phase field
order parameter. In phase field method, we have used a dif-
fused interface for tracking the fluid-fluid interface implicitly.
Therefore, the simulated results should be independent of the
Péclet number [67]. In order to ensure that, we have performed
a Péclet number independence study as shown in Fig. 21 and
we have found a negligible variation in the obtained results for
the considered values of the Péclet number. Finally, we have
used Pe = 1800 for the present numerical analysis [43].
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