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Foldable cones as a framework for nonrigid origami
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The study of origami-based mechanical metamaterials usually focuses on the kinematics of deployable
structures made of an assembly of rigid flat plates connected by hinges. When the elastic response of each
panel is taken into account, novel behaviors take place, as in the case of foldable cones ( f -cones): circular
sheets decorated by radial creases around which they can fold. These structures exhibit bistability, in the sense
that they can snap through from one metastable configuration to another. In this work, we study the elastic
behavior of isometric f -cones for any deflection and crease mechanics, which introduce nonlinear corrections to
a linear model studied previously. Furthermore, we test the inextensibility hypothesis by means of a continuous
numerical model that includes both the extended nature of the creases, stretching and bending deformations of
the panels. The results show that this phase-field-like model could become an efficient numerical tool for the
study of realistic origami structures.

DOI: 10.1103/PhysRevE.100.033003

I. INTRODUCTION

The basic premise of origami, the ancient Japanese art of
paper folding, is to obtain a complex three-dimensional struc-
ture starting from a two-dimensional (2D) sheet to which a
network of creases is imprinted. Despite the simplicity of this
idea, in recent years, the field of mechanical metamaterials
has sought inspiration from origami [1,2] in the search of
smart materials with a vast range of functionality such as de-
ployability of large membranes [3], shape changing structures
[4,5], and tunable mechanical and thermal properties [6–9],
just to name a few. In practice, many of these applications are
constrained to situations which origami structures are made
from assemblies of flat rigid plates connected by hingelike
creases. In such situations, the geometrically accessible con-
figurations are fully determined by the crease network, while
the structural response is a result of the crease network and
the crease mechanics [10–12]. By contrast, when the elastic
response of the plates (mainly bending) is taken into account,
a variety of new behaviors may emerge. In this case, the elastic
response of the structure is determined by the competition
between the flexural stiffness of the panels B and the torsional
rigidity of the creases k. The length L∗ ≡ B/k, called origami
length, determines whether the deformation of a nonrigid
origami is bending or crease dominated [13]. If l is the typical
size of the facets, when l � L∗, then the deformation is
governed by the change on the folding angles, while if l � L∗,
then the deformation is governed by the bending of the panels.

However, suitable analytical models capturing the elastic
regime of nonrigid origami still remain for the most part
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unexplored. Foldable cones [14], or f -cones, are the simplest
single-vertex nonrigid origami in which the elasticity of the
plates is relevant. f -cones are elastic sheets decorated by
straight creases meeting at a single vertex around which they
are folded. As a first approximation, these sheets are assumed
to be inextensible. This results in a family of various umbrella-
like motifs whose equilibrium shapes depend on the crease
pattern imprinted in the flat configuration of the sheet and the
mechanical response of the creases. Regardless of the initial
crease pattern, these structures exhibit bistability in the sense
that they can mechanically snap through from one metastable
configuration to another of higher elastic energy.

The f -cone belongs to a larger family of singularities
emerging on sheets subjected to isometrical deformations
[15–17]. In many situations, the elastic energy in a thin elastic
sheet can localize in a single point leading to conical disloca-
tion. The most fundamental example is the so-called d-cone
[18,19], a conical singularity observed when crumpling an
elastic thin sheet. The bending energy of the defect diverges
logarithmically as one gets closer to the vertex. In a more
realistic situation, these divergencies are regularized if the
inextensibility constraint is relaxed, thus leading to stretching
and plastic deformations close to the vertex [20].

The bistable behavior of f -cones was investigated in
Ref. [14] and a model was proposed to describe their equilib-
rium shapes in the limit of small deflection and infinitely stiff
creases. We will refer to their model as the linear model for
f -cones, as it relies on the approximation of small deflections
which allows us to write the curvature of the surface as a
linear function of the vertical component of the displacement.
This system has motivated the study of other similar problems
such as the bistable behavior of creased strips [21]. In this
last work, the authors proposed a discrete model based on
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the Gauss map of several creases meeting at the vertex. In
the limit of infinite creases, the linear version of an f -cone
with two creases is recovered. The discrete model that is
based on the Gauss map has limitations, as it only predicts
the final shape of real sheets well for small deflections,
while important discrepancies with experiments are observed
for large deflections. Although these discrepancies may be
attributed to the existence of stretching in real sheets, which
in turn invalidates the inextensibility hypothesis, the inherent
nonlinear nature of the system may also have a significant
contribution to interpret the experimental observations. In the
present work we propose an alternative model for f -cones
that encompasses the full geometric nonlinear contributions,
thus capturing any deflections—this model describes the equi-
librium shapes as function of the folding (dihedral) angle
of the creases. Also, the effect of crease mechanics with
hingelike behaviors is incorporated into the model. Then we
corroborate the predictions of the model with the aid of finite
element simulations. From the numerical model we are able
to quantify the stretching on the system in order to test the
validity of the inextensibility hypothesis during the entire
indentation process.

The manuscript is organized as follows. In Sec. II the
system under study and its geometry are presented in detail.
Then, in Sec. III, we present our elastic model for f -cones
and the main results. The results presented here complement
the predictions of the linear version of the model [14]. Sub-
sequently, in Sec. IV, a numerical model that simulate an
f -cone of four creases is proposed to study the snapping
process in a finite element analysis. Then, in Sec. V the
results of the numerical study are compared with the theory.
The details of the analytical calculations can be found in the
Appendix.

II. KINEMATICAL DESCRIPTION OF NONRIGID
SINGLE VERTEX ORIGAMI

Foldable cones, or f -cones, are made from a circular
elastic sheet decorated by one or more straight radial creases
meeting at a single vertex [14]. These surfaces resemble those
of d-cones [18], except that they can fold around the creases.
When the elastic sheet is inextensible, the only possible equi-
librium shapes are developable surfaces and, in this particular
geometry, developable cones. This implies that the deformed
shape can always be isometrically mapped to the initial flat
state. The equilibrium shape of the cone will be developable
anywhere except at the tip of the cone and the creases, where
the curvature is not defined. In this section, we first introduce
the parametrization of a general conical shape, and then we
describe in detail the geometry of an f -cone.

A. Geometry of developable cones

The most general parametrization of a conical shape is
given by r(r, s) = ru(s), where r is the distance to the tip,
u(s) is a unit vector, and s ∈ [0, 2π ] is the arc-length of the
curve � : s → u(s) on the unit sphere. The tangent vectors
adapted to the surface of the cone are u and t = u′, where
the prime denotes derivative with respect to s. As s is the arc-
length of the curve, the tangent vector t is a unit vector. Note
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FIG. 1. (a) Imprinted crease pattern on a flat plate. (b) Deformed
state of the ith panel of a f -cone. The curve �, the material frame,
and the Euler-like angles are defined.

that u · t = 0 and that the normal of the surface is given by
n = u × t. Therefore, the triad {u, t, n} forms a right-handed
basis that satisfies the following equations [22,23]:

u′ = t, (1a)

t′ = −κn − u, (1b)

n′ = κt, (1c)

where κ (s) = t(s) · n′(s). The metric tensor of the conical
surface is given by gab = ∂ar · ∂br, where the indices a, b =
r, s. Hence, for conical geometries, the metric components are
grr = 1, grs = 0, and gss = r2. The extrinsic curvature ten-
sor is defined as Kab = ∂ar · ∂bn and its single nonvanishing
component is Kss = rκ . Therefore, the surface curvature is
K = gabKab = κ/r. Once κ (s) is known, the final shape of the
cone can be reconstructed by integrating Eqs. (1).

B. Geometry of foldable cones

We consider an f -cone of n creases made from a flat
circular sheet of radius R which is parceled out in n circular
sectors (panels) delimited by the creases [see Fig. 1(a)]. A
hole of radius r0 � R is cut out at the center in order to
avoid a divergence in the elastic energy. Let αi denote the
sector angle of the ith panel in the flat configuration, with∑n

i=1 αi = 2π . The value of the arc-length at the ith crease
is denoted by si, so that, through the inextensibility condition,
αi = si+1 − si in the deformed configuration. Hereinafter, for
any scalar or vector field of the form bi(s), the subscript
i specifies that the domain of the function corresponds to
the i]rmth sector, where the periodic convention bi±n ≡ bi

is assumed. Moreover, we introduce the following notation:
b−

i ≡ bi−1(si) and b+
i ≡ bi(si ).

In the deformed configuration, each crease has a folding
angle (dihedral angle) ψi, which we call it mountain if ψi ∈
[0, π ] or a valley if ψi ∈ [π, 2π ]. For mountain and valley
creases, Fig. 2 shows how the folding angle is defined by t+

i
and t−

i in the plane perpendicular to the crease. In terms of
spherical coordinates, the final shape is given by a polar angle
θ (s) and an azimuthal angle ϕ(s) which are functions of the
arc-length [Fig. 1(b)]. Each angular sector will span an az-
imuthal angle 
ϕi ≡ ϕ(si+1) − ϕ(si ). The closure condition
can be written as

n∑
i=1


ϕi =
{±2π if � encloses the z axis

0 if not
, (2)
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FIG. 2. Definition of (a) mountain and (b) valley creases. The
vectors t±

i , n±
i and the crease angle ψ are defined.

where ± indicates that ϕi could increase clockwise or coun-
terclockwise in the x − y plane. Notice that in principle 
ϕi

and αi are not necessarily equal in the deformed configuration.
However, they coincide in certain symmetrical cases: f -cones
with an arbitrary number of evenly distributed mountain
creases or an even number of evenly distributed alternating
mountain-valley creases where all the creases are identical. In
such cases, in the following sections we say that the f -cone is
symmetrical.

III. ELASTIC THEORY OF FOLDABLE CONES

Our model is based on a generalization of the functional
introduced in Ref. [24]. The total energy of an f -cone with
n creases is the sum of the elastic energy over all the panels
plus the mechanical energy stored in the creases. Thus, the
principle of virtual work is equivalent to minimizing the
following functional:

Fn[u, t] = a
n∑

i=1

∫ si+1

si

[
1

2
(ui · ti × t′

i )
2 + λi

2

(
u2

i − 1
)

+ �i

2

(
t2
i − 1

) + fi · (ti − u′
i )

]
ds

+
n∑

i=1

gi[t−
i , t+

i , u+
i ]. (3)

Here a = B ln (R/r0), where B is the flexural stiffness (bend-
ing modulus) of the sheet. The first term inside the brackets
accounts for the bending energy of the facets, where ui(s) ·
[ti(s) × t′

i(s)] = κi(s) is the dimensionless curvature of the
ith panel. The above augmented energy functional contains
3n local Lagrange multipliers, namely λi(s), �i(s), and fi(s),
which correspond to the following kinematical constraints,
respectively: λi(s) enforces ui to be a unit vector, thus con-
straining the final trajectories to the unit sphere; �i(s) en-
forces the parameter s to be the arc-length of the curve �;
and, finally, f (s) is a force (normalized by a) that anchors
the tangent vector to the embedding. The functions gi, which
depend on the frame vectors at both sides of the crease,
account for the elastic energy stored in the ith crease. For
simplicity, we consider pointlike creases, although the model
can be generalized to extended creases where a crease is a
localized regions with a given natural curvature, as shown in
Ref. [25]. The variation of functional (3) yields a set of n
ordinary differential equations given by (see Appendix A)

κ ′′
i + (1 + ci )κi + κ3

i

2
= 0, (4)

where {ci}n
i=1 is a set of n integration constants. The above

equation describes the equilibrium shapes of Euler’s elastica.
In the present work we assume that all the panels have the
same constant, namely ci = c for i = 1, . . . , n. By comparing
with the linear model of f -cones, one notices that in the
limit of small deflections −c ∝ σϕϕ , where σϕϕ is the hoop
stress [14,23]. The hypothesis of equal constants holds
provided that there are no external forces acting on the
creases introducing additional stresses in different panels, so
that σϕϕ is continuous across the panels. From varying Eq. (3)
one also obtains boundary terms that combine with terms
coming from the variation of the energy stored in the creases.
These boundary terms give the natural boundary conditions
to solve Eq. (4) for each panel. In absence of external forces,
these terms must satisfy

a
n∑

i=1

[−(fi · δui ) + (κini · δti )]|si+1
si

+
n∑

i=1

δgi = 0, (5)

where fi = κ ′
i ni − (κ2

i /2 + ci )ti, which can be interpreted as
a normalized force per unit-length along a ray of fixed r [24].

At this point, it is convenient to introduce the vector J ≡
−u × f + κu which is a conserved quantity associated with
the rotational invariance of the system and can be interpreted
as a torque about the vertex [24]. It can be shown that the
quantity J2 − c2 corresponds to the first integral of Eq. (4).
One can use the vector J to obtain the equilibrium shape of the
f -cone by first setting it parallel to the z axis and projecting
it onto the frame (u, n), obtaining J · u = J cos θ = κ and
J · n = Jϕ′ sin2 θ = κ2/2 + c.

A. Infinitely stiff creases

In this section, we solve the case of infinitely stiff creases,
so that δgi = 0. This means that the set of folding angles
{ψi}n

i=1 is an input of the problem and that the final solutions
are parameterized by these angles. In Appendix B, we show
that the boundary terms (5), together with the condition δψi =
0, imply the following:

κ+
i = κ−

i , (6)

which means that the curvature is continuous through the
crease. Also, the transversal force f is continuous, which can
be written as

f+
i = f−

i . (7)

The continuity conditions (6) and (7) imply that J+
i = J−

i ,
and thus the entire structure is characterized by a single
vector J.

Solving the system (4) with the assumption of equal con-
stants, ci = c, requires 2n + 1 boundary conditions. Combin-
ing Eqs. (6) and (7), one can show that

κ ′+
i = −κ ′−

i , (8)

κ ′+
i = − cot

(
ψi

2

)(
κ+

i
2

2
+ c

)
, (9)

thus, yielding 2n boundary conditions. Adding the closure
condition (2) makes the problem well posed.
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Integration of Eq. (4) for each panel gives two possible
solutions:

κi(s) =
⎧⎨
⎩

κ0i cn
(

κ0i

2
√

mR
i

s − S0i

∣∣mR
i

)
, if J2 > c2,

κ0i dn
(

κ0i
2 s − S0i

∣∣mS
i

)
, if J2 < c2,

(10)

where cn(·|·) and dn(·|·) are the cosine and delta amplitude
Jacobian elliptic functions [26], with parameters mR

i and mS
i

given by

mR
i = 1

mS
i

= κ2
0i

2κ2
0i + 4(1 + c)

. (11)

Here κ0i, S0i, and c are 2n + 1 unknown parameters that must
be fixed such that the boundary conditions and the closure
conditions are satisfied. Without loss of generality, one can
define the cosine and delta amplitude functions such that
0 < mS

i < 1 and 0 < mR
i < 1 [26]. Therefore, Eq. (11) shows

that there exists two families of solutions. We identify as
the rest configuration (thus the superscript R) the solutions
for which J2 > c2 and the snapped configuration (superscript
S) with J2 < c2. This choice is in agreement with the fact
that we find a posteriori that the bending energy of the rest
configuration is the lower one. As the quantity J2 − c2 is
defined for the entire structure, all the panels will be in either a
rest state or a snapped state, and therefore there is no mixture
of states (provided that there is a single constant c). Notice
that the present nonlinear approach allows us to justify the
existence of two families of solutions for a given set of folding
angles, regardless of whether the cone is symmetrical or not,
a property that is difficult to prove in the linear model.

The equilibrium shapes of the f -cones can be computed
using the coordinates θ (s), ϕ(s). As long as the concern is the
geometric features, these functions are universal in the sense
that they depend only on the folding angles ψi. Nevertheless,
changing the bending modulus or the dimensions of the cone
will modify the stresses and torques supported by the system
as well as its elastic response. From this point forward, we
consider a simplified situation of symmetrical f -cones made
of all-mountain creases with same folding angle ψ (we shall
also omit the subscripts i labeling the panels). We denote nR

(respectively, nS) as the all-mountain f -cones with n-creases
in a rest (respectively, snapped) state. We shall here discuss
the solutions for the most relevant cases, which are a semi-
infinite crease (1R,S), a single infinite crease (2R,S), and two
perpendicular mountain creases (4R,S).

For these symmetric configurations, it is sufficient to solve
Eq. (4) in a single panel where −α/2 � s � α/2 and α =
2π/n. For both rest and snapped states, we proceed to find
numerically the parameters κ0, S0, and c that satisfy the
closure condition (2) and the boundary conditions (8) and (9).
The closure condition (2) reads now 
ϕ = ±α or 0. For each
state, the quantity 
ϕ is an integral that can be computed
analytically (see Appendix C). Then, for a given S0, the clo-
sure condition defines a curve in the parameter space {κ0, c}
for each state. As the f -cone is symmetrical, the solutions
given by Eq. (10) should be even functions with respect to
s = 0. Therefore, one has S0 = 0 for the rest state and for the
snapped state there are two possibilities, either S0 = 0 or S0 =
K (ms)K (·) is the complete elliptic integral of the first kind
and corresponds to the half period of the function dn(·|m)]

FIG. 3. The integration constant c as function of the folding
angle ψ for (a) rest states and (b) snapped states for all-mountain
f -cones with one, two, and four creases.

[26]. We only found solutions for S0 = K (ms) that satisfy the
closure condition. Equation (8) is automatically satisfied by
the symmetry of the solutions. Then Eq. (9) defines a second
curve in the parameter space {κ0, c} (one for each state).
Hence, the solution for a given folding angle ψ corresponds to
the intersection between these two curves, so that the values
of κ0(ψ ) and c(ψ ) are obtained. This procedure is done for all
ψ ∈ [0, π ] (ψ > π would correspond to equivalent states but
vertically flipped).

Figure 3 summarizes our findings regarding the integration
constants as functions of the folding angle, c(ψ ), and, since
c(ψ ) relates to the hoop stress, we shall next highlight a few
key observations concerning this quantity. We notice that,
except for the trivial case 2R, one has c � 0 as ψ → π ,
suggesting the existence of a residual hoop stress as one
approaches the flat state. We attribute this residual stress to
a critical load needed to observe buckling of the facets as
happens in Euler-Bernoulli beam buckling. In the configura-
tion 4R, c changes sign as ψ → 0, suggesting at first sight a
modification of the hoop stress from compressive to tensile
as the folding angle gets sharper. However, this could be
misleading because the interpretation of c as a hoop stress is
valid only for small deformations [23].

Figure 4 shows the deviations of the structure from the
flat state. To quantify such deviations, we use the angle

FIG. 4. (a) Schematic definition of the polar angle θc for nR,S

f -cones (n > 1). (b) Case 1R,S: The angle β(ψ ) = π − cos−1[u(0) ·
u(π )] that describes the deviation from the flat configuration.
(c) Case 2R,S: The polar angle θc(ψ ) at the creases compared with
the prediction of the linear model for the snapped state. (d) Case
4R,S: The polar angle θc(ψ ) at the creases.
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β = π − cos−1[u(0) · u(π )] for a 1R,S f -cone and the polar
angle θc = cos−1[z · u(α/2)] for nR,S f -cones (n > 1). The
choice of ψ , instead of θc (or β for a 1R,S f -cone) as a con-
trol parameter prevents finding unphysical self-intersecting
solutions. A generic feature revealed by Fig. 4 is that the
polar angle at the crease varies quasilinearly with the fold-
ing angle for the whole range 0 < ψ < π . This result is
independent of the number of folds and holds for both rest
and snapped configurations. In Fig. 4(c), we compare θc(ψ )
for 2S configuration with the prediction of the linear model
θc = π/2 + 0.4386(ψ − π ) [14,21], which is by definition
valid in the limit of flat folding angles only, that is, for
ψ → π . These results show that polar and folding angles of
the crease are related by a quasigeometrical relation that is
weakly dependent on nonlinearities. However, the comparison
between the linear model and the exact one should be made by
considering both the polar angle and the integration constant.
The fact that both these parameters deviate from the linear
model as the folding angle becomes sharper yields different
equilibrium shapes of the whole structure.

B. Crease mechanics

The mechanical energy of a single pointlike crease can be
written as a function of invariants built from the three unit
vectors that define the crease geometry: the crease vector and
two vectors tangent to each facet [11]. Such invariants are t−

i ·
t+
i and (t−

i × t+
i ) · u+

i . At leading order, the elastic energy of
the ith crease takes the form [11]

gi = L [σi t−
i · t+

i + τi(t−
i × t+

i ) · u+
i ], (12)

where L = R − r0, σi, and τi are material constants associated
to the crease. The crease energy can be rewritten in terms of

the folding angle ψi, defined as the oriented angle (−̂t−
i , t+

i )
(see Fig. 2). Introducing the constants ki and ψ0

i , such that

σi = ki cos ψ0
i , τi = ki sin ψ0

i , (13)

allows us to rewrite (12) as gi(ψi ) = −L ki cos (ψi − ψ0
i ).

Thus the crease energy gi = gi(ψi ) is a function of the folding
angle which is now an unknown variable. If ψi ≈ ψ0

i , then the
crease energy approximates to the energy of an elastic hinge
gi ≈ L ki (ψi − ψ0

i )2/2 + E0, where E0 is a constant, ki is
the crease stiffness, and ψ0

i is the rest angle of the crease. The
conical geometry implies that the folding angle is constant
along the crease. One can show that taking into account the
terms coming from the variation of the crease energy, we
obtain an additional boundary condition (see Appendix B),

κ+
i = 1

a

dgi

dψi
. (14)

Equation (14) states that the value of the curvature at the
crease is given by the moment imposed by its mechanical
response. For a crease energy given by Eq. (12), one has
κ+

i = k̄i sin (ψi − ψ0
i ), where k̄i = Lki/a is the normalized

crease stiffness.
We study again configurations with equally spaced moun-

tain creases that have the same mechanical properties, such
that k̄i = k̄ and ψ0

i = ψ0. The control parameters are then the
crease stiffness k̄ and the rest angle ψ0. The boundary condi-
tions are those of the infinitely stiff creases case supplemented

10 310 210 1 100 101 102 103
0.5
0.6
0.7
0.8
0.9
1.0

ψ0 = π/2

(a)

(d)

(b)

(c)

k̄

ψ
/
π

4R 4S

1S1R 2R 2S

FIG. 5. [(a)–(c)] Equilibrium shapes for k̄ = 1 and ψ0 = π/2.
(d) Final crease angles ψ as function of k̄ for ψ0 = π/2. Rest (blue
lines) and snapped (red lines) states for all-mountain f -cones with
one, two, and four creases (respectively dashed, dotted, and plain
lines).

by Eq. (14). Therefore, one can use the solutions found for
the infinitely stiff creases and search the value of ψ such that
Eq. (14) is satisfied.

Figures 5(a)–5(c) show typical shapes for the cases
1R,S, 2R,S, 4R,S . Figure 5(d) shows the final folding angle ψ as
function of k̄ for a fixed rest angle ψ0 of the crease. Notice that
ψ → π as k̄ → 0 and that ψ → ψ0 as k̄ → ∞. For a given
k̄, the snapped state always displays a larger ψ than the rest
state. This observation is explained by the fact that the hoop
stress of the snapped state is always larger than its respective
rest state.

The total energy of the structure can be computed by
summing the bending energy of the facets and the energy
of the creases. Figure 6(a) shows an example of the energy
landscape as function of the polar angle θc of the crease for
an all-mountain f -cone with four creases. While the bending
energy of the facets has an asymmetric parabolic shape, the
energy of the creases has a double-well potential shape whose
minima are at the same energy level. The resulting shape of
the total energy is an asymmetric double-well potential where
the two minima corresponds to the rest and the snap states.
By taking the derivative of the energy with respect to θc,
we calculate the correspondent moment M(θc) applied on the

FIG. 6. (a) Energy landscape of an all-mountain f -cone with four
creases as function of θc for k̄ = 1 and ψ0 = π/2. The blue and red
curves correspond to the bending energy of the facets for the rest
and snapped states, respectively. The plain gray curve is the crease
energy given by Eq. (12). The black curve is the total elastic energy.
(b) Normalized moment M(θc ) applied on the creases. The black dots
correspond to the rest and snapped states of the f -cone.
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creases and the particular case associated to the four-creases
case is shown in Fig. 6(b). Notice that the energy has a cusp
at θc = π/2 which leads to a discontinuity in the mechanical
response of the structure. This type of snap-through transition
has been found in similar systems such as the waterbomb
origami with rigid facets [10]. However, the snap-through
mechanisms of the f -cone and the waterbomb are different.
The former is mediated by the asymmetry in the bending
energy between the rest and snapped states and the latter by
the asymmetrical kinematical conditions imposed by the rigid
facets. For the waterbomb, the only relevant energy is the
mechanical energy stored in the creases which, in addition
to the kinematical constraints, accounts for an asymmetric
double-well-like potential.

IV. CONTINUOUS ELASTIC MODEL
OF ORIGAMI STRUCTURES

Commonly, the mechanical response of origami-based
metamaterials cannot be reduced to elastic hinges connected
to rigid or isometric panels [27]. The energy landscape of de-
formations depends generally on both bending and stretching
energies of the panels as well as on the inherent spatially
extended nature of the creases [25]. Therefore, one needs
to supplement the present analysis with a more accurate de-
scription that takes into account these different contributions.
When applied to the f -cone, such a description should be
validated by the bounds given by the analytical model.

In the following, we propose a mechanical model based on
a continuous description of origami structures that is suitable
for numerical implementation and test it on the f -cone by
performing finite element analysis (FEA). The simulations
were designed in the commercial FEA software COMSOL
Multiphysics 5.4. Within this software, the structural mechan-
ics module is equipped with quadratic shell elements, which
have been used to our purpose. All the simulations were
carried out with a linear elastic Hookean material model and
geometric nonlinear kinematic relations have been included.
The plate Young’s modulus is E = 3.5 GPa, the Poisson’s
ratio is ν = 0.39, and the plate thickness is h = 300 μm. We
searched for solutions with the default stationary solver, where
the nonlinear Newton method has been implemented. Mesh
refinement studies were undertaken to ensure convergence of
the results.

Temperature-induced hingelike creases

In our numerical model, we develop a method to create
creases that are able to reproduce the hingelike mechanical
response of commonly folded thin sheets. Inspired by the
experimental results of Ref. [25], we model creases as narrow
slices of the plate undergoing thermal expansion due to a
temperature gradient through the thickness of the plate, as it
is schematically shown in Fig. 7.

In order to test the mechanical response of these temper-
ature driven creases, we first perform a numerical test of a
single fold in a hingelike geometry consisting of two facets
and the crease in the middle. We consider a rectangular plate
of length L, width W , and thickness h. In the middle of the
plate, we take a transversal narrow slice of width b � W

FIG. 7. Transverse view of a plate with a narrow slice whose
thermal and mechanical properties differ from those of the rest
of the plate. (a) Reference configuration. (b) Curvature-induced
equilibrium configuration due to a linear thermal gradient across the
thickness.

across the width of the plate, dividing the plate into three parts.
The narrow slice corresponds to the crease while the other two
parts correspond to the facets. A linear temperature gradient

T is applied through the thickness of the plate. We let the
creased region of the plate to undergo thermal expansion by
defining an inhomogeneous coefficient of thermal expansion
αT (s) which is constant for |s| < b and zero elsewhere, where
s is the arc-length perpendicular to the creases. To simulate
a more realistic crease, we add a rigid connector made of an
infinitely stiff material of length W , thus preventing bending
deformation in the direction of the crease line. Moreover,
tuning the mechanical response of the crease is done by
varying the thickness hc and the Young’s modulus Ec of the
crease slice. The parameters hc, Ec, 
T , and b will define the
crease mechanical response.

Taking advantage of the two-plane symmetry of the single-
fold geometry, we solve only for one quarter of the plate
and then obtain the entire equilibrium shape by reflections.
We perform two different studies: a heating up test and a
mechanical response test. The first study consists in heating
the plate from the bottom while the ends of the two plates
parallel to the crease are constrained to move in the xy plane.
When heating, the crease bends toward the sense of lower
temperature (bottom), while the facets remain practically flat.
The resulting angle between the two facets corresponds to
the rest angle ψ0 of the crease. The second study consists
in a test of the mechanical response of the crease. We add
four additional rigid connectors to the sides of the facets that
are perpendicular to the fold line. Two moments of opposite
signs are applied respectively to each pair of rigid connectors
attached to the facets so that the hingelike system can open
or close. Through this mechanical test, we were able to verify
the hingelike behavior of the crease.

In the following, we employ the temperature-induced
creases in our numerical model of f -cones.

V. NUMERICAL ANALYSIS OF FOLDABLE CONES

We begin with a circular planar disk of external radius
R = 100 mm and a central hole of radius r0 = 1 mm. Then
n radial narrow slices of constant width b, that correspond to
the creases of the f -cone, are created. Rigid connectors along
the creases are added so as to prevent bending along the lon-
gitudinal direction of the creases. In order to take advantage
of the symmetries of the system, depending on the number
of creases, only the fundamental unit cells are numerically
solved and then the complete structure is reconstructed using
reflections through the symmetry planes. Because each plane
of symmetry cannot coincide with a rigid connector, the 1R,S
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M

M

M

Mθc

z

FIG. 8. Schematics of the indentation protocol. Equal moments
M are applied on each crease such that the center rim moves
vertically in the downward direction, while the end points of the
symmetry planes (denoted by red dots) are free to move in the xy
plane. The average displacement of the center rim is imposed and
the moment M is computed as a function of the polar angle θc.

case must be solved entirely. For 2R,S , only a half of the
disk is numerically solved so that the axis of symmetry is
perpendicular to both creases. For 4R,S , a quarter of the disk
is solved so that a single crease is at 45◦ from one plane of
symmetry.

A. Indentation tests

Hereinafter, we focus only in the all-mountain f -cone with
four creases, anticipating that our general conclusions also
apply to more complex configurations. In order to test our
analytical predictions, we study the snapping of the system
through an indentation process from the rest state to the
snapped state, which is carried out in two steps. Initially, we
turn on the temperature to take the f -cone to its rest state
with a given folding angle ψ . The endpoints of the symmetry
planes are constrained to move only in the xy plane, so that
the points at the central rim rise up when the temperature
is activated. For all our simulations, we fix the temperature
gradient in the crease such that αT 
T = 0.2. We also choose
b = 1 mm, which is within the expected order of magnitude
with respect to h according to crease formation measurements
in thin sheets [28].

In a second step, the central rim is vertically lowered
quasistatically while constraining the endpoints of the sym-
metry planes to move freely in the xy plane. Each crease is
constrained to rotate only in the plane defined by its initial
direction and the z axis [as shown in Fig. 8]. Throughout
indentation, the vertical displacement of the central rim is
specified and a reaction moment M(θc) at the creases is
computed. Therefore, the mechanical response of the f -cone
to the indentation process consists in the determination of the
curve M(θc) (see movies available as supplemental material
of such indentation tests in Ref. [29]).

The folding angle ψ of the creases is also tracked during
indentation. To measure ψ from the numerical results, we
extract the tangent vector field of concentric curves initially
defined in the flat configuration. We evaluate this vector field
at each side of the crease and measure the resulting angle
between them. The local folding angle is found to be not
exactly constant along the crease but is a function of the radial
coordinate. For this reason, a representative measurement of

FIG. 9. [(a) and (b)] Indentation paths θc(ψ ) as computed by the
numerical model for hc/h = 1, 1/4 and Ec/E = 2, 1, 1/2, 1/10. The
theoretical curves θc(ψ ) for a 4R,S f -cone are reproduced from Fig. 4.
The dots correspond to the rest and snapped states of each indentation
path.

ψ is chosen to be the average between two local folding
angles measured at radial distances r0 + (R − r0)/3 and r0 +
2(R − r0)/3. In each indentation test, we extract a curve θc as
function of ψ which we call the indentation path.

The resulting curves M(θc) and θc(ψ ) will be discussed in
the following section.

B. Numerical results

Figure 9 shows the variation of θc(ψ ) obtained numerically
during the indentation test for different crease thicknesses and
Young moduli. These results are compared with the polar
angle θc(ψ ) given by analytical f -cone calculations shown
in Fig. 4(d). This parametric study allows us to highlight to
what extent the softness of the crease affects the indentation
path. Our results show that our continuous model of the crease
is more sensitive to variations of hc than those of Ec. We
notice that the indentation paths do not generally follow the
analytical solutions given by the isometric constraint, meaning
that the intermediate shapes throughout indentation are not
perfect developable cones. If the crease is too stiff, as in the
case of Fig. 9(a), then the indentation path follows a nearly
vertical line (i.e., approximately constant folding angle path)
connecting the two stable points. However, when the crease
is made softer [Fig. 9(b)], either by reducing its thickness or
its Young’s modulus, the indentation paths approach the one
predicted by the isometric constraint.

While the rest states are generally well predicted by the
isometric constraint, the snapped states depart from the ana-
lytical predictions when hc is decreased. This result could be
explained in terms of the crease stiffness. For a stiff crease, the
folding angle is roughly constant along the crease enforcing
the shape to be closer to a perfectly developable cone. On the
other hand, a 4S cone is characterized by an azimuthal tension
which favors stretching deformations of the panels and thus
tensile traction on the crease. This mechanism could induce
a varying folding angle along the crease and yield a structure
that can depart from a perfect developable cone, especially for
softer creases. To verify this analysis, we plot in Fig. 10 one
quadrant containing the lines of smallest principal curvature
for stiff and soft crease cases. In a perfect developable cone,
these lines coincide with the generators of a surface (i.e., lines
of zero curvature), however, we observe that the lines curve
significantly close to the vertex, where the stretching energy
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FIG. 10. Lines of smallest principal curvature of a symmetric
foldable cone with four creases. The upper (respectively, lower) row
corresponds to a stiff (respectively, soft) crease case. The equilibrium
rest (left column) and snapped (right column) states are shown. The
boxes show zoomed regions next to the vertex. Black dotted line
indicates the location of the crease and the color code corresponds
to the elastic energy density.

is concentrated. This effect is more pronounced for the soft
crease case than the stiff one.

Figure 11(a) shows typical curves for the moment as
function of the polar angle θc during indentation for both
stiff and soft crease. Notice that the unstable branch of the
stiffer crease is higher than that of the soft one, which in
a real experiment leads to more energy being released dur-
ing a snapping process. This observation can be attributed
to a larger stretching energy barrier that is required to be
overcome, which is evident from the energy plots shown in
Fig. 11(b). To compare with analytical predictions, one should
focus on the inset of Fig. 11(b), which shows the evolution

FIG. 11. (a) Moment M as function of θc during the indentation
of a stiff crease with hc = h, Ec = 2E ( ), and a soft crease, with
hc = h/4, Ec = E/2 ( ). (b) The corresponding total stretching
energy. Inset: Normalized bending energy of the facets compared to
the theoretical result of Fig. 6(a).

of the bending energy of the facets throughout indentation
and does not take into account the bending energy at the
creases. The predicted bending energy exhibits an asymmetric
parabolic shape, where the minimum corresponds to a flat
solution. It is obvious that the bending energy of a soft crease
follows closer the prediction than that of the stiff crease,
which has a pronounced convex shape in the middle. As for
the nature of the localization, Fig. 10 shows that stretching
mostly happens near the vertex, while bending spans over the
whole plate. Therefore, the comparison between bending and
stretching contributions is made through looking at the total
energies. Figure 11(b) indicates that during the indentation, as
the f -cone passes through the unstable region, the stretching
to bending ratio increases by about one order of magnitude.

VI. CONCLUSION

Foldable cones are the simplest example of a single-vertex
origami whose facets can bend. In the present work, we
developed a theoretical model which allows us to obtain the
shape of f -cones for any deflection. The model shows that
the bistable behavior of these structures is robust, regardless
the specific properties of the creases. In particular, for sym-
metrical all-mountain f -cones we obtained the polar angle
at the crease as function of folding angle for both rest and
snapped states.

However, in more realistic situations, the geometry and
mechanical response of an f -cone are characterized by a
competition between the elasticity of the facets (both their
bending and stretching behavior) and the stiffness of the
creases. To this purpose, we have developed a continuous
numerical model accounting for both the elasticity of the
creases and facets. Applying this model to the particular case
of two perpendicular mountain creases, we numerically stud-
ied the role of crease stiffness and verified the snap-through
behavior through a series of indentation tests. We studied the
indentation paths in the θc(ψ ) diagram and showed that the
structures do not follow the shape of a perfect cone throughout
the indentation. For stiff creases, the path followed is that of
an approximately constant folding angle while the two stable
states lie closely to the theoretical prediction. When the crease
is made soft, the indentation paths follow closely the branches
given by the isometrical constraints; however, it is noted that
while the shape of the rest state is close to the theoretical
prediction, the snapped one deviates further from it. From
an energetic viewpoint, not only do stiffer creases lead to
indentation paths with higher stretching energy barriers, but
they also enforce the preferred angle more strongly. Hence,
it can be concluded that an f -cone made with stiffer creases
requires more stretching when passing through θc ∼ π/2. On
the other hand, while softer creases induce large deviations of
the preferred angles, they allow for low stretching during the
inversion, which explains why they follow the bounds set by
the analytical calculations more closely.

The present study validates our numerical model of
temperature-induced hingelike creases which can be applied
to origami structures with more complex extended networks.
In this case, a temperature-induced folding of the network
would work as a phase-field model where the sharp piecewise
energy landscape is replaced by a smooth curve. The choice of
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temperature field as a trigger for crease formation is arbitrary
as any other diffusion field, such as concentration [30] or
swelling [31], would play a similar role. The main sought
mechanism is to build up a reference configuration with a
non-Euclidean reference metric due to the presence of an
initially imprinted crease network [32]. This approach is ad-
vantageous since one does not need to track sharp boundaries
where the deformation fields are discontinuous. It renders
numerical implementation tractable and less time-consuming,
two important aspects when implementing the mechanical
behavior of complex origami or crumpled structures.
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APPENDIX A: DERIVATION OF THE
EULER ELASTICA EQUATION

The derivation of Euler’s elastica from the energy func-
tional given by Eq. (3) can be found in Ref. [24]. Is it
instructive to repeat the calculations here for the sake of
completeness. The variation of the functional (3) gives

δFn = a
n∑

i=1

∫ si+1

si

{( − κ2
i ui + κini + λiui + f ′

i

) · δui

+ [− (κini )
′ − κ2

i ti + �iti + fi
] · δti ds

}
+ a

n∑
i=1

(−fi · δui + κini · δti )|si+1
si

+
n∑

i=1

δgi, (A1)

where we have used the identities: u · t × δt′ = n · δt′ and
u · δt × t′ = −κt · δt. The term δgi contributes to boundary
terms only and will be treated below. Taking ui and ti as
independent variables, the terms proportional to δui yield

f ′
i = (

κ2
i − λi

)
ui − κini, (A2)

while the terms proportional to δti give

fi = κ ′ni + 2κ2
i ti − �iti. (A3)

Notice that

f ′
i · ti = 0, (A4)

fi · ui = 0. (A5)

Differentiating Eq. (A3) with respect to s and using (A4),
it follows that �′

i = 5κiκ
′
i . Integrating once, we obtain �i =

5κ2
i /2 + ci, where ci is an integration constant. Then, Eq. (A3)

can be written as follows:

fi = κ ′
i ni − (

1
2κ2

i + ci
)
ti. (A6)

Differentiating Eq. (A6) with respect to s and projecting onto
ui gives

f ′
i · ui = 1

2κ2
i + ci. (A7)

Projecting equation (A2) onto ui and equating with Eq. (A7),
one gets λi = κ2

i /2 − ci. Then, Eq. (A2) now reads

f ′
i =

(
κ2

i

2
+ ci

)
ui − κini. (A8)

On the other hand, one can differentiate once Eq. (A6) and
obtain

f ′
i =

[
κ ′′

i + κi

(
κ2

i

2
+ ci

)]
ni +

(
κ2

i

2
+ ci

)
ui. (A9)

Using Eqs. (A8) and (A9), one obtains the Euler’s elastica
equations given by Eq. (4). In the following, the boundary
terms will be treated.

APPENDIX B: BOUNDARY CONDITIONS

It is useful to compute the variation of the functional
(3) in terms of virtual rotations of the frame specified by
the Euler-like angles. To this purpose, we first introduce the
vectors eϕ = − sin ϕ x + cos ϕ y and nϕ ≡ u × eϕ which span
the plane containing the vectors t and n (for simplicity, we
omit subscripts here). If φ(s) is the angle between t and eϕ ,
then

t = cos φ eϕ + sin φ nϕ, (B1a)

n = − sin φ eϕ + cos φ nϕ. (B1b)

Defining eρ = cos ϕ x + sin ϕ y, one can write

u = sin θ eρ + cos θ z, (B2a)

nϕ = − cos θ eρ + sin θ z. (B2b)

Then, one can show the following relations:

δu = −δθ nϕ + sin θ δϕ eϕ, (B3)

δt = (δφ + cos θ δϕ)n + (sin φ δθ − sin θ cos φ δϕ)u.

(B4)

Notice that u · δu = 0 and t · δt = 0 as expected. The follow-
ing relations are useful:

n · δu = − cos φ δθ − sin θ sin φ δϕ,

t · δu = − sin φ δθ + sin θ cos φ δϕ, (B5)

n · δt = δφ + cos θ δϕ.

Now we put the subscripts back and write some useful
relations. First, notice that in the plane perpendicular to a
crease, the frame {t, n} rotates by an angle ψi − π , which can
be expressed as follows:(

t+
i

n+
i

)
=

(− cos ψi sin ψi

− sin ψi − cos ψi

)(
t−
i

n−
i

)
. (B6)

Using the relations given by Eq. (B5) and Eq. (B6) one
obtains the following relations:

n+
i · δt+

i = δφ+
i + cos θ+

i δϕ+
i ,

n−
i · δt−

i = δφ−
i + cos θ+

i δϕ+
i ,

t+
i · δt−

i = − sin ψi(δφ
−
i + cos θ+

i δϕ+
i ),

t−
i · δt+

i = sin ψi(δφ
+
i + cos θ+

i δϕ+
i ),
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n+
i · δt−

i = − cos ψi(δφ
−
i + cos θ+

i δϕ+
i ),

n−
i · δt+

i = − cos ψi(δφ
+
i + cos θ+

i δϕ+
i ). (B7)

where φ±
i is the angle between t±

i and eθ . Notice that ψi =
π + φ+

i − φ−
i and then δψi = δφ+

i − δφ−
i . At this stage, we

distinguish two cases: infinitely stiff creases and finite crease
stiffness.

1. Infinitely stiff crease

By taking δgi = 0 and using the periodic convention in
Eq. (5), one can write

n∑
i=1

[(f+
i − f−

i ) · δu+
i + κ−

i n−
i · δt−

i − κ+
i n+

i · δt+
i ] = 0,

(B8)

where we have used u−
i = u+

i . Using Eqs. (B7), the condition
of infinitely stiff crease δψi = 0 is equivalent to imposing
n+

i · δt−
i = n−

i · δt+
i . Thus, imposing δψi = 0 and letting δu+

i
undergo independent virtual rotation imply the boundary con-
ditions (6) and (7). By projecting Eq. (7) onto n+

i and t+
i , one

obtains(
κ ′+

i

κ+2
i /2 + c

)
=

(− cos ψi − sin ψi

sin ψi − cos ψi

)(
κ ′−

i

κ−2
i /2 + c

)
,

(B9)

where we have assumed ci = c. Manipulating Eq. (B9) one
obtains Eqs. (8) and (9).

2. Finite crease stiffness

The variation of the crease energy given by Eq. (12) reads

δgi = L {σi(δt−
i · t+

i + t−
i · δt+

i ) + τi[(δt−
i × t+

i ) · u+
i

+ (t−
i × δt+

i ) · u+
i + (t−

i × t+
i ) · δu+

i ]}. (B10)

The last term in the right-hand side is zero because (t−
i ×

t+
i )|si is parallel to ui(si). Using the cyclic properties of the

triple product we can write

δgi = L [σi(t+
i · δt−

i + t−
i · δt+

i ) + τi(n−
i · δt+

i − n+
i · δt−

i )].

(B11)

Using the identities (B7), Eq. (B11) can be rewritten as
follows:

δgi = L[σi sin ψi(δφ
+
i − δφ−

i ) + τi cos ψi(δφ
+
i − δφ−

i )].

(B12)

Notice that the above equation has the form δgi =
(dgi/dψi )δψi.

Using the definition for the constants introduced in Eq. (13)
and recalling that θ+

i = θ−
i and ϕ+

i = ϕ−
i , we can rewrite

Eq. (5) as follows :

n∑
i=1

{[
−κ ′+

i cos φ+
i + κ ′−

i cos φ−
i +

(
1

2
κ+

i
2 + c

)
sin φ+

i −
(

1

2
κ−

i
2 + c

)
sin φ−

i

]
δθ+

i

+
[
−κ ′+

i sin φ+
i + κ ′−

i sin φ−
i −

(
1

2
κ+

i
2 + c

)
cos φ+

i +
(

1

2
κ−

i
2 + c

)
cos φ−

i

]
sin θ+

i δϕ+
i − (κ+

i − κ−
i ) cos θ+

i δϕ+
i

− [
κ+

i − k̄i sin
(
ψi − ψ0

i

)]
δφ+

i + [
κ−

i − k̄i sin
(
ψi − ψ0

i

)]
δφ−

i

}
= 0. (B13)

The infinitesimal variations of the frame vectors can
be translated to virtual rotations in terms of the
Euler angles δθ+

i , δϕ+
i , δφ+

i , and δφ−
i . Assuming that

all these virtual rotations are independent, one obtains
conditions (6), (7), and (14) with gi(ψi ) given by
Eq. (12).

APPENDIX C: CLOSURE CONDITION

In a symmetrical f -cone with n creases, the azimuthal angle spanned by a single panel is given by the integral


ϕ =
∫ α

2

− α
2

κ2/2 + c

J sin2 θ
ds =

∫ α
2

− α
2

J

2

(
J2 + 2c

J2 − κ2
− 1

)
ds, (C1)

where α = 2π/n. As the deformed state will also be symmetrical, the closure condition can be written as 
ϕ = ±α or 
ϕ = 0
according to Eq. (2). These integrals can be computed analytically for each state:


ϕR =
{

J (J2 + 2c)

κ0
(
J2 − κ2

0

)√
mr �

[
κ2

0

κ2
0 − J2

, am

(
κ0

2
√

mr
s
∣∣∣mr

)∣∣∣mr

]
− J

2
s

}∣∣∣∣
α
2

− α
2

(C2)

and


ϕS =
{

c

J
s − (J2 + 2c)κ0(ms − 1)

J
(
J2 + (ms − 1)κ2

0

) �

[
J2ms

J2 + (ms − 1)κ2
0

, am
(κ0

2
s
∣∣∣ms

)∣∣∣∣ms

]}∣∣∣∣
α
2

− α
2

, (C3)
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where the labels R, S stand, respectively, for the rest and snapped states. Also, �(·, ·|m) is the elliptic integral of third kind and
am(·|m) is the Jacobi amplitude with modulus m [26].
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