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Shear-banding instability in arbitrarily inelastic granular shear flows
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One prototypical instability in granular flows is the shear-banding instability, in which a uniform granular
shear flow breaks into alternating bands of dense and dilute clusters of particles having low and high shear (shear
stress or shear rate), respectively. In this work, the shear-banding instability in an arbitrarily inelastic granular
shear flow is analyzed through the linear stability analysis of granular hydrodynamic equations closed with
Navier–Stokes-level constitutive relations. It is shown that the choice of appropriate constitutive relations plays
an important role in predicting the shear-banding instability. A parametric study is carried out to study the effect
of the restitution coefficient, channel width, and mean density. Two global criteria relating the control parameters
are found for the onset of the shear-banding instability.
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I. INTRODUCTION

Granular materials in the so-called rapid flow regime [1,2]
exhibit various nonuniform structures, such as granular vor-
tices, density waves, clustering, shear banding, etc. [3–6].
Among all the nonuniform structures exhibited by granular
flows, the shear banding in granular flows—in particular—has
received tremendous attention mainly due to its analogy with
the shear banding in soft matters, e.g., foams, emulsions,
colloidal suspensions, etc. [7]. The shear banding is man-
ifested even in a granular shear flow, one of the simplest
types of flows, which serves as a prototype for the rheol-
ogy and pattern formation [8–15]. Several experimental (see,
e.g., Refs. [16–23]) as well as theoretical studies (see, e.g.,
Refs. [12–15,21,24–28]) have confirmed the shear-banding
phenomenon in granular shear flows. The theoretical studies
based on the linear and nonlinear stability analyses [13–15,24]
show that a granular shear flow admits stationary and traveling
instabilities leading to clustering and shear banding—with the
latter being the focus of the present work. In the phenomenon
of the shear banding, a homogeneous flow transforms into an
inhomogeneous flow characterized by the coexisting bands
of different rheological properties due to the shearing mo-
tion. Shearing along the streamwise direction renders inho-
mogeneities in the other two directions—commonly referred
to as the gradient (or transverse) direction and the vorticity
(or spanwise) direction. Consequently, shearing along the
streamwise direction leads to two different banding instabil-
ities, namely, the gradient banding instability and the vorticity
banding instability. In the former, bands of high and low
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shear rate form along the gradient direction while bands of
high and low shear stress appear along the vorticity direc-
tion in the latter. The localized high- and low-shear (shear
rate or shear stress) regions correspond to the low- and
high-density regions, respectively. Both types of the shear-
banding instabilities have also been observed in experiments
[16–18,21,25] conducted by shearing a granular material in
a shear cell, wherein shearing remains localized within the
narrow regions leaving behind bands of unsheared regions.
For more details, the reader is referred to the articles [29,30],
which provide comprehensive details of the shear-banding
phenomenon.

To investigate such a vast variety of phenomena exhibited
by granular flows through hydrodynamic theory is one of the
most challenging tasks among the granular community. The
hydrodynamic modeling of granular fluids is more involved in
comparison to regular fluids since interactions among granular
particles are inherently inelastic; this very nature of granular
materials poses some undesirable complexities, e.g., micro-
scopic irreversibility, lack of scale separation, mesoscopic
flow behavior, strong nonlinearities in the momentum and
energy balance equations [1,2]. Notwithstanding, hydrody-
namic models for dilute/dense granular flows can be derived
from the (inelastic) Boltzmann/Enskog–Boltzmann equation
within the framework of kinetic theory. Similarly to the well-
established Navier–Stokes and Fourier (NSF) equations for
regular fluids, a hydrodynamic model for granular fluids con-
sists of the mass, momentum and energy balance equations,
and the pressure tensor and heat flux appear as additional
unknowns in the momentum and energy balance equations.
However, unlike the NSF equations for regular fluids, the en-
ergy balance equation in the case of granular fluids contains an
additional term, referred to as the collisional dissipation, that
accounts for the energy loss due to inelastic collisions among
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granular particles, and the constitutive relations for the pres-
sure tensor and heat flux are, in general, quite different from
the Navier–Stokes’ and Fourier’s laws for regular fluids. For
granular fluids, the constitutive relations for the pressure ten-
sor, heat flux, and collisional dissipation are typically derived
from the Boltzmann equation (in the dilute case) or from the
Enskog–Boltzmann equation (in the dense case) by means of
the Chapman–Enskog expansion at first-order of expansion;
see, e.g., Refs. [10,31–34]. Alternatively, these constitutive
relations can also be derived from the moment equations; see,
e.g., Refs. [9,35–39]. It is worthwhile to note that determining
the constitutive relations from the moment equations is not
only much simpler than that by the Chapman–Enskog expan-
sion performed on the full Boltzmann equation but can also
yield more accurate constitutive relations on considering more
moments [39]. The mass, momentum, and energy balance
equations for granular flows closed with the first-order consti-
tutive relations are referred to as the granular NSF equations.
The validity of the granular NSF equations—even for rapid
granular flows [1,2]—depends on the conditions under which
the constitutive relations for the pressure tensor, heat flux,
and collisional dissipation are derived. Hence, the constitu-
tive relations involved in the granular NSF equations ought
to be chosen carefully, especially while dealing with dense
granular flows for which the “molecular chaos” assumption is
inadequate.

The papers [9,35] by Jenkins and Richman (JR) may be
regarded as the pioneering works which derive the balance
equations and the associated constitutive relations for dense
granular gases of identical rough circular disks and spheres,
respectively, based on the revised Enskog theory. It is im-
portant to note that the restitution coefficient e in the JR
model enters only the energy balance equation through the
collisional dissipation, while the pressure tensor and heat flux
do not depend on e due to the approximations made in their
theories. Consequently, the NSF transport coefficients—that
appear in the constitutive relations for the pressure tensor and
heat flux—from the JR model are essentially the same as those
for regular (elastic) fluids. Furthermore, the JR model was
derived for nearly elastic (e ≈ 1) granular fluids. Despite these
limitations, the JR model has been widely exploited since its
derivation and has been validated against particle simulations
[40] as well as against experiments [41] for nearly elastic
granular flows. The JR model has also been employed in
analyzing various instabilities in granular flows. For instance,
Alam et al. [42] investigated the shear-banding instability in
two-dimensional dilute and dense granular shear flows using
different variants of the JR model. In Ref. [42], the authors
essentially considered different models for the global equation
of state (i.e., for pressure) and for the shear viscosity (with and
without a viscosity divergence term in its expression) while
keeping the other transport coefficients the same as those in
the original JR model, and they showed that some of their
models underpin the shear banding while the others do not.
Moreover, they also established that the onset of the shear-
banding instabilities could be predicted with the knowledge
of the pressure and shear viscosity of the system. This result
indicates that the emergence of the shear banding is linked to
the transport properties and, hence, to the choice of constitu-
tive relations. Therefore, the selection of constitutive relations

is crucial in describing instabilities and patterns in granular
flows.

In another study on the shear banding, Khain and Meerson
[12] substantiated that the experimentally observed shear-
banding instabilities could not be perceived with the usual
constitutive relations for dense granular gases; however, shear
bands, miraculously, appear on slightly changing the coeffi-
cient of the shear viscosity since the shear viscosity diverges
at a lower density than the other transport properties. Note
that the shear-banding instability predictions of both Alam
et al. [42] and Khain and Meerson [12] are valid only for
the nearly elastic (or quasielastic) granular flows. However, to
understand instability induced patterns in arbitrarily inelastic
granular flows correctly, one must utilize proper constitutive
relations which incorporate all the microscopic features of
granular materials [1,2,43].

To overcome the “nearly elastic” limitation of the JR
model, Garzó and Dufty [32] performed the Chapman–
Enskog expansion on the Enskog–Boltzmann equation and, in
contrast to the JR model, obtained the restitution coefficient-
dependent NSF-level constitutive relations for dense granular
gases of hard spheres. Subsequently, the results of Garzó
and Dufty [32] were generalized to an arbitrary dimension
d by Lutsko [44]. We shall refer to the constitutive relations
obtained in Refs. [32,44] by the GDL model. The main
differences between the JR and GDL models are as follows:
(i) the heat flux in the latter contains an additional term
proportional to the density gradient that vanishes identically
for elastic particles; this term is absent in the former and (ii) all
the transport coefficients depend on the restitution coefficient
e in the latter while only the collisional dissipation depends
on e in the former. As a consequence, the GDL model is not
limited to nearly elastic granular fluids. Recently, Almazán
et al. [45] conducted a comparative study of the Faraday
instability in granular flows through the JR and GDL models
and through the event-driven simulations, and also concluded
that the choice of appropriate constitutive relations is crucial
for analyzing granular patterns.

There have been several theoretical studies on the shear-
banding instability in a granular uniform shear flow (USF)
for quasielastic particles, and thus all of them are valid only
for nearly elastic granular fluids. Nonetheless, to the best of
authors’ knowledge, the shear-banding instability in arbitrar-
ily inelastic dense granular flows has never been addressed
theoretically. One of the reasons—among others—is that the
granular NSF equations are valid strictly for processes involv-
ing small spatial gradients, and moreover since the (reduced)
shear rate in the granular USF is inversely proportional to the
collision frequency, small spatial gradients (the validity region
of the NSF equations) would again mean large restitution
coefficient (or nearly elastic particles) [46,47]. Furthermore,
the granular USF state is inherently anisotropic and, hence,
requires the generalized transport coefficients for predicting
the instabilities in the USF correctly [47]. The generalized
transport coefficients depend on the shear rate and have
tensorial form. For dilute granular flows, the generalized
transport coefficients were independently obtained by Lutsko
[46] and Garzó [47], and have been utilized by Garzó [47]
to analyze the linear stability of the USF. From his linear
stability analysis, Garzó [47] showed significant discrepancies
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between the results obtained with the generalized transport
coefficients and with the usual NSF transport coefficients;
nonetheless, the unavailability of the numerical/experimental
results thwarted quantitative comparisons in Ref. [47]. On
the other hand, the derivation of such generalized transport
coefficients in the case of dense granular flows is extremely
involved and is beyond the scope of the present paper. Hence,
the NSF equations along with the GDL model [32,44] for
transport coefficients, which is the best known NSF-level
hydrodynamic model for describing dense granular flows, can
be considered as an intermediate way of investigating the
linear stability of the USF.

In this context, the goal of the present work is to analyze the
shear-banding instability in arbitrarily inelastic dense granular
flows of hard disks by using the GDL constitutive relations.
By means of the linear stability analysis of the USF, the onset
of the shear-banding instability is predicted. In contrast to
previous studies [12,42], the present stability results are valid
for dilute-to-dense arbitrarily inelastic particles with the only
assumption that the restitution coefficient is constant, i.e., it
does not depend on the impact velocity. It is emphasized that
the focus of the present work is to determine the control
parameters for the onset of the shear-banding instability but
not the shape and location of a shear band, for which a
theory, based on the principle of minimum energy dissipation,
developed, e.g., in Refs. [48,49], may be needed.

The rest of the paper is organized as follows. The prob-
lem description and the governing equations are presented
in Sec. II. The nondimensionalization and the base state
flow whose stability is to be investigated are demonstrated
in Sec. III. The linear stability of the base state flow is
analyzed in Sec. IV. The results and discussion are elucidated
in Sec. V. The paper ends with conclusions and outlook in
Sec. VI.

II. GRANULAR HYDRODYNAMIC EQUATIONS

A granular flow of monodisperse smooth identical in-
elastic hard disks of diameter dp can be described by
the mass, momentum and energy balance equations, which
read [33,43]

(
∂

∂ t̄
+ Ū · ∇̄

)
ρ̄ + ρ̄ ∇̄ · Ū = 0,

ρ̄

(
∂

∂ t̄
+ Ū · ∇̄

)
Ū + ∇̄ · P̄ = 0,

ρ̄

(
∂

∂ t̄
+ Ū · ∇̄

)
T̄ + P̄ : ∇̄Ū + ∇̄ · q̄ = −D̄.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Here, ρ̄ = ρp φ is the mass density with ρp being the material
density and φ being the volume fraction of grains; Ū =
(ū, v̄, w̄) is the coarse-grained velocity with ū, v̄, and w̄ being
its components in the x̄, ȳ, and z̄ directions, respectively;
T̄ is the granular temperature; P̄ is the pressure tensor; q̄
is the (granular) heat flux; D̄ is the collisional dissipation
due to inelastic collisions among grains; and d denotes the
dimension of the problem, and takes value two for hard-disk
flows and three for hard-sphere flows.

Clearly, system (1) is not closed due to the presence of
the additional unknowns: P̄, q̄, and D̄. These unknowns are
typically expressed in terms of the hydrodynamic variables ρ̄,
Ū , T̄ and their spatial gradients by means of the Chapman–
Enskog expansion; see, e.g., Refs. [10,31–34,50]. To first
order in spatial gradients of the hydrodynamic variables, these
unknowns are expressed as [10,50]

P̄ = ( p̄ − γ̄ ∇̄ · Ū ) Ī − 2η̄ S̄

= ( p̄ − λ̄ ∇̄ · Ū ) Ī − η̄[∇̄Ū + (∇̄Ū )T], (2)

q̄ = −κ̄ ∇̄T̄ − μ̄ ∇̄φ, (3)

D̄ = D̄0 + D̄1 ∇̄ · Ū , (4)

where λ̄ = γ̄ − η̄; Ī is the identity tensor; and S̄ = 1
2 [∇̄Ū +

(∇̄Ū )T] − (∇̄ · Ū ) Ī is the deviatoric strain rate tensor; the
quantities p̄, η̄, γ̄ , κ̄ , μ̄, D̄0, and D̄1 are the pressure, shear
viscosity, bulk viscosity, pseudothermal conductivity, Dufour-
like coefficient (which identically vanishes for ordinary flu-
ids), zeroth- and first-order contributions to the collisional dis-
sipation, respectively, and are given in the form of constitutive
relations:

p̄(φ, T̄ , e) = f1(φ, e)ρpT̄ ,

η̄(φ, T̄ , e) = f2(φ, e) ρpdp

√
T̄ ,

γ̄ (φ, T̄ , e) = f3(φ, e) ρpdp

√
T̄ ,

κ̄ (φ, T̄ , e) = f4(φ, e) ρpdp

√
T̄ ,

μ̄(φ, T̄ , e) = f4h(φ, e) ρpdpT̄
√

T̄ ,

D̄0(φ, T̄ , e) = f5(φ, e)
ρp

dp
T̄
√

T̄ ,

D̄1(φ, T̄ , e) = f5u(φ, e) ρpT̄ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Here all the fi’s are the dimensionless functions of the volume
fraction φ and restitution coefficient e only. It is worthwhile
to note that the values of fi’s are different for different models
for the constitutive relations. From the GDL model, fi’s in the
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case of hard-disk flows (d = 2) read [43,44]

f1(φ, e) = φ
[
1 + (1 + e) G(φ)

]
,

f3(φ, e) = 1√
π

(1 + e)
(

1 − c

32

)
φ G(φ),

f2(φ, e) =
√

π

8

[
1 − 1

4 (1 + e)(1 − 3e) G(φ)
][

1 + 1
2 (1 + e) G(φ)

]
ν∗

η − 1
2ζ ∗

0

+ 1

2
f3(φ),

f4(φ, e) =
√

π

2

[
1 + 3

4
(1 + e) G(φ)

]
κ∗

k + 1√
π

(1 + e)

(
1 + 7c

32

)
φ G(φ),

f4h(φ, e) =
√

π

2φ

[
1 + 3

4
(1 + e) G(φ)

]
μ∗

k ,

f5(φ, e) = 4√
π

(1 − e2)

(
1 + 3c

32

)
φ G(φ),

f5u(φ, e) = 3

2
(1 − e2)

[
3

32

1
8ω∗ − c

3 (1 + e)(1 − 3e)

ν∗
ζ − 3

4 (1 − e2)
− 1

]
φ G(φ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

where c, the fourth cumulant estimating the lowest order correction to the Gaussian distribution function, is given by [51]

c = 32(1 − e)(1 − 2e2)

57 − 25e + 30e2 − 30e3
, (7)

and G(φ) = φ χ (φ) with χ (φ) being the pair correlation function adopted from Ref. [52]:

χ (φ) =
{ 1−7φ/16

(1−φ)2 for 0 � φ < φ f ,

1−7φ f /16
(1−φ f )2

(φc−φ f

φc−φ

)
for φ f � φ � φc.

(8)

In Eq. (8), φ f and φc are the freezing packing fraction and the random close-packing fraction, respectively. For hard-disk flows
(d = 2), φ f ≈ 0.69 and φc ≈ 0.82 [52]. The other variables in Eqs. (6) for hard-disk flows (d = 2) are given by [53]

ζ ∗
0 = 1

2
(1 − e2)

(
1 + 3c

32

)
χ (φ),

ν∗
η = 1

8
(1 + e)(7 − 3e)

(
1 + 7c

32

)
χ (φ),

κ∗
k = 1 + c + 3

8 (1 + e)2
[
2e − 1 + c

2 (1 + e)
]
G(φ)

2
(
ν∗

κ − 2ζ ∗
0

) ,

μ∗
k = ζ ∗

0 κ∗
k (1 + φ ∂φ ln χ ) + c

4 + 3
8 (1 + e)

(
1 + 1

2φ ∂φ ln χ
)[

e(e − 1) + c
12 (14 − 3e + 3e2)

]
G(φ)

ν∗
κ − 3

2ζ ∗
0

,

ν∗
κ = 1

4
(1 + e)

[
1 + 15

4
(1 − e) + 365 − 273e

128
c

]
χ (φ),

ω∗ = (1 + e)
[
(1 − e2)(5e − 1) + c

12
(41 − 69e + 3e2 − 15e3)

]
,

ν∗
ζ = 1

192
(1 + e)(185 − 153e + 30e2 − 30e3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

The quantities in Eqs. (9) emanate from the so-called mod-
ified Sonine approximation introduced by Garzó et al. [54],
and have been presented in a more coherent form—for an
arbitrary dimension d—by Garzó [53] (see also Ref. [43]).
All the quantities, except μ∗

k , in Eqs. (9) are also given in
Ref. [45] for hard-disk flows (d = 2). The μ∗

k in the present
work is twice of that of Ref. [45] but is the same as that in

Ref. [53] for d = 2 in order to keep the standard form of the
reduced Dufour-like coefficient [μ∗ = nμ/(κ0T )] given, e.g.,
in Refs. [31,39,43,53].

Notably, the physical properties in a granular flow are
transported via two mechanisms, namely, the kinetic and
collisional. The former is attributed to streaming, i.e., to the
movement of particles from one place to another, while the
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latter to collisions among grains. Needless to say, the former is
dominant in dilute flows while the latter in dense flows. Owing
to these transport mechanisms, the pressure tensor P̄ and heat
flux q̄ for a (dense) granular flow can be decomposed into
their kinetic and collisional contributions, i.e., P̄ = P̄k + P̄c

and q̄ = q̄k + q̄c, where the superscripts “k” and “c” denote
the kinetic and collisional contributions, respectively; see,
e.g., Refs. [32,44,54] and references therein. Accordingly, the
pressure p̄ and the transport coefficients η̄, γ̄ , κ̄, μ̄ and, hence,
the dimensionless functions fi’s for i ∈ {1, 2, 3, 4, 4h}, can
be decomposed into their kinetic and collisional parts, i.e.,
fi = f k

i + f c
i . From the expressions of P̄k , P̄c, q̄k , and q̄c given

in Refs. [44,53], it is straightforward to determine the kinetic
and collisional parts of fi’s, which read

f k
1 (φ, e) = φ,

f k
3 (φ, e) = 0,

f k
2 (φ, e) =

√
π

8

1 − 1
4 (1 + e)(1 − 3e) G(φ)(

ν∗
η − 1

2ζ ∗
0

) ,

f k
4 (φ, e) =

√
π

2
κ∗

k

f k
4h(φ, e) =

√
π

2φ
μ∗

k ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

and

f c
1 (φ, e) = (1 + e) φ G(φ),

f c
3 (φ, e) = 1√

π
(1 + e)

(
1 − c

32

)
φ G(φ),

f c
2 (φ, e) = 1

2
(1 + e) G(φ) f k

2 + 1

2
f3(φ),

f c
4 (φ, e) = 3

√
π

8
(1 + e) G(φ)κ∗

k

+ 1√
π

(1 + e)

(
1 + 7c

32

)
φ G(φ),

f c
4h(φ, e) = 3

√
π

8
(1 + e) χ (φ)μ∗

k .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

Indeed, as expected, the collisional contributions to the pres-
sure tensor (P̄c) and heat flux (q̄c) for dilute granular flows
(φ → 0) vanish and, hence, the pressure tensor and heat flux
for dilute granular flows are given by P̄ = P̄k and q̄ = q̄k

[37,43]. Consequently, f k
i ’s in Eqs. (10) can be referred to as

the dilute limit of fi’s for i ∈ {1, 2, 3, 4, 4h}. The collisional
dissipation D̄ in a (dilute or dense) granular flow, on the other
hand, is attributed only to inelastic collisions among grains.
Interestingly, the first-order contribution (in spatial gradients)
to the collisional dissipation, D̄1, is zero for dilute granular
flows [37,43], and the zeroth-order contribution (in spatial
gradients) to the collisional dissipation, D̄0, for dilute granular
flows can be obtained from its dense counterpart given, e.g., in
Refs. [37,43,44,53] by taking χ (φ → 0) = 1. Consequently,
the dimensionless functions f5 and f5u for dilute granular

FIG. 1. Schematic of the uniform shear flow of granular hard
disks confined in a channel.

hard-disk flow (d = 2) are given by

f5(φ → 0, e) = 4√
π

(1 − e2)

(
1 + 3c

32

)
φ2,

f5u(φ → 0, e) = 0.

⎫⎪⎬
⎪⎭ (12)

In what follows, constitutive relations (5) obtained using
fi ≈ f k

i for i ∈ {1, 2, 3, 4, 4h} with f k
i from Eqs. (10) and

f5, f5u from Eqs. (12) will be referred to as the dilute limit of
the GDL model. Similarly, constitutive relations (5) obtained
using fi ≈ f c

i for i ∈ {1, 2, 3, 4, 4h} with f c
i from Eqs. (11)

and f5, f5u from Eqs. (6) will be referred to as the collisional
limit of the GDL model.

III. NONDIMENSIONALIZATION AND THE BASE STATE

We shall investigate a plane shear flow of granular hard
disks confined in a two-dimensional channel of width h.
The flow is driven by the two oppositely moving walls
(of the channel)—placed at ȳ = ±h/2—with a speed Uw/2
along the streamwise (x̄) direction; hence, the overall shear
rate is Uw/h, see Fig. 1.

It is worthwhile to note that the velocity slip at a rigid
wall is inherently present in granular flows. This has also
been verified through experiments and computer simulations
[18,21,25]. The velocity slip, in turn, leads to the generation
of the pseudothermal energy at the wall that competes with
the energy lost due to particle-wall collisions. Consequently,
energy flux at the wall is, in general, non zero. Nevertheless,
for simplicity, we choose the no-slip and zero heat flux (adi-
abatic) boundary conditions for the velocity and temperature,
respectively. These idealized boundary conditions have also
been used in previous studies, e.g., in Refs. [24,26,42,55,56],
pertaining to the stability of granular shear flows. The no-
slip and adiabatic boundary conditions for the problem under
consideration read

ū

(
±h

2

)
= ±Uw

2
and

∂T̄

∂ ȳ

∣∣∣∣
ȳ=±h/2

= 0. (13)

For the purpose of nondimensionalization, we choose h as
a reference length, Uw as a reference velocity, the inverse of
the shear rate h/Uw as a reference time, and ρp as the reference
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mass density. In the following, the quantities with overbar are
dimensional and their bare counterparts are dimensionless.
Let us define the dimensionless quantities (without bars) as
follows:

∇ = h∇̄, U = 1

Uw

Ū , t = Uw

h
t̄, ρ = ρ̄

ρp
, T = H2

U 2
w

T̄ ,

(14)

where H = h/d is referred to as the dimensionless gap be-
tween the walls or the channel width. With ρp as the scaling
for the density, the volume fraction φ also denotes the dimen-
sionless density. With these scales, governing equations (1)
along with constitutive relations (5) in the dimensionless form
read

(
∂

∂t
+ U · ∇

)
φ = −φ ∇ · U , (15a)

φ

(
∂

∂t
+ U · ∇

)
U = 1

H2
[−∇p + ∇(λ ∇ · U )

+∇ · {η (∇U + (∇U )T )}], (15b)

d

2
φ

(
∂

∂t
+ U · ∇

)
T = 1

H2
∇ · (κ ∇T + μ∇φ)

− p∇ · U + λ (∇ · U )2

+ η {∇U + (∇U )T} : ∇U

−D0 − D1 ∇ · U , (15c)

where

p(φ, T, e) = f1(φ, e)T,

η(φ, T, e) = f2(φ, e)
√

T ,

γ (φ, T, e) = f3(φ, e)
√

T ,

λ(φ, T, e) = γ (φ, T, e) − 2

d
η(φ, T, e),

κ (φ, T, e) = f4(φ, e)
√

T ,

μ(φ, T, e) = f4h(φ, e) T
√

T ,

D0(φ, T, e) = f5(φ, e) T
√

T ,

D1(φ, T, e) = f5u(φ, e) T .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

Boundary conditions (13) in the dimensionless form read

u

(
±1

2

)
= ±1

2
and

∂T

∂y

∣∣∣∣
y=±1/2

= 0. (17)

We shall investigate the shear banding in a two-
dimensional plane shear flow. Specifically, we shall focus
on the gradient banding due to which bands of dense and
dilute regions form along the gradient (i.e., y) direction. Such
instability arises from the perturbations having no variation in
the streamwise (i.e., x) direction. The streamwise independent
(i.e., ∂ (·)/∂x = 0) governing equations (15) in the dimension-

less form read

∂φ

∂t
+ v

∂φ

∂y
+ φ

∂v

∂y
= 0, (18a)

φ

(
∂u

∂t
+ v

∂u

∂y

)
= 1

H2

∂

∂y

(
η
∂u

∂y

)
, (18b)

φ

(
∂v

∂t
+ v

∂v

∂y

)
= 1

H2

[
−∂ p

∂y
+ ∂

∂y

{
(λ + 2η)

∂v

∂y

}]
,

(18c)

φ

(
∂T

∂t
+ v

∂T

∂y

)
= 1

H2

∂

∂y

(
κ

∂T

∂y
+ μ

∂φ

∂y

)
− p

∂v

∂y

+λ

(
∂v

∂y

)2

+ η

(
∂u

∂y

)2

+ 2η

(
∂v

∂y

)2

−D0 − D1
∂v

∂y
. (18d)

The base state: Uniform shear flow

The basic flow, whose stability is to be analyzed here,
is assumed to be a steady (∂ (·)/∂t ≡ 0), fully developed
(∂ (·)/∂x ≡ 0), plane shear flow of the following form:

φ = φ(y), u = u(y), v = 0, T = T (y). (19)

Hence, the mass balance equation (18a) is identically satisfied
for this flow, while the remaining equations in system (18)
reduce to

d

dy

(
η

du

dy

)
= 0, (20a)

−d p

dy
= 0, (20b)

1

H2

d

dy

(
κ

dT

dy
+ μ

dφ

dy

)
+ η

(
du

dy

)2

− D0 = 0. (20c)

Using Eqs. (16), the above equations, respectively, lead to

f2(φ, e)
√

T
∂u

∂y
= c1, (21a)

f1(φ, e) T = c2, (21b)

1

H2

d

dy

(
f4(φ, e)

√
T

dT

dy
+ f4h(φ, e) T

√
T

dφ

dy

)

+ f2(φ, e)
√

T

(
du

dy

)2

− f5(φ, e) T
√

T = 0, (21c)

where c1 and c2 are the integration constants. The above set
of equations with the no-slip and zero heat flux boundary
conditions (17) admits the following base state solution:

φ0(y) = φ0, u0(y) = y, v0(y) = 0, T 0(y) = f 0
2

f 0
5

= T0,

(22)
where the superscript “0” denotes the base state solutions, φ0

and T0 are constants, and f 0
2 = f2(φ0, e) and f 0

5 = f5(φ0, e).
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Note that the base flow velocity is linear, while the base flow
density and temperature are constants. Such a base state gives
constant or uniform shear rate, i.e., u0

y = 1, thus leading to
the USF. The base state density φ0, the channel width H and
the restitution coefficient e are the control parameters for the
problem.

IV. LINEAR STABILITY ANALYSIS

A. Perturbation equations

For the linear stability analysis of the USF, the field vari-
ables (φ, u, v, T ) are decomposed into the base state solution
plus the perturbation from the base state solution as follows:

φ(t, y) = φ0(y) + φ′(t, y),

u(t, y) = u0(y) + u′(t, y),

v(t, y) = v0(y) + v′(t, y),

T (t, y) = T 0(y) + T ′(t, y).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(23)

Here, the field variables with prime denote the perturbations
from their respective base states. These perturbations are
assumed to be small so that the linear theory remains valid.
Substituting the field variables from Eqs. (23) into governing
equations (18) and retaining only the linear terms of the

perturbed field variables, one obtains the governing equations
for the perturbed field variables:

∂φ′

∂t
= −φ0

∂v′

∂y
, (24a)

∂u′

∂t
= η0

φ

φ0H2

∂φ′

∂y
+ η0

φ0H2

∂2u′

∂y2
− v′ + η0

T

φ0H2

∂T ′

∂y
, (24b)

∂v′

∂t
= − p0

φ

φ0H2

∂φ′

∂y
+ λ0 + 2η0

φ0H2

∂2v′

∂y2
− p0

T

φ0H2

∂T ′

∂y
, (24c)

∂T ′

∂t
= 1

φ0

(
μ0

H2

∂2

∂y2
+ η0

φ − D0
0,φ

)
φ′ + 2η0

φ0

∂u′

∂y

− p0 + D0
1

φ0

∂v′

∂y
+ 1

φ0

(
κ0

H2

∂2

∂y2
+ η0

T − D0
0,T

)
T ′,

(24d)

where the subscripts “φ” and “T ” represent the partial deriva-
tives with respect to φ and T , respectively, and the superscript
“0” represents the variables calculated at the base state. The
above equations can be written as a matrix system:

∂X
∂t

= LX , (25)

where X = (φ′, u′, v′, T ′)T is the vector of perturbed fields
and L is the matrix of linear differential operators given by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −φ0
∂
∂y 0

η0
φ

φ0H2
∂
∂y

η0

φ0H2
∂2

∂y2 −1 η0
T

φ0H2
∂
∂y

− p0
φ

φ0H2
∂
∂y 0 λ0+2η0

φ0H2
∂2

∂y2 − p0
T

φ0H2
∂
∂y

1
φ0

(
μ0

H2
∂2

∂y2 + η0
φ − D0

0,φ

) 2η0

φ0

∂
∂y − p0+D0

1
φ0

∂
∂y

1
φ0

(
κ0

H2
∂2

∂y2 + η0
T − D0

0,T

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

From boundary conditions (17), the boundary conditions for
the perturbed field variables read

u′
(

±1

2

)
= ∂T ′

∂y

∣∣∣∣
y=±1/2

= 0. (27)

B. Analytical solutions

We perform the standard linear stability analysis on the
USF by assuming a normal mode solution of the form
X (t, y) = X̂ (y) exp(ωt ), where X̂ = (φ̂, û, v̂, T̂ )T and ω =
ωr + i ωi is the complex frequency whose real part ωr repre-
sents growth or decay rate of the perturbations and imaginary
part ωi denotes the oscillation of the perturbation, with i being
the imaginary unit. Substituting this normal mode solution
into linearized perturbation equations (25)–(27), we get the

following matrix eigenvalue problem:

L̂X̂ = ωX̂ , û

(
±1

2

)
= dT̂

dy
= 0, (28)

where L̂ = L(∂/∂y → d/dy, ∂2/∂y2 → d2/dy2). It has been
verified that eigenvalue problem (28) has an analytical solu-
tion in terms of sine and cosine functions [24], as

(φ̂, T̂ )T = (φ1, T1)T cos [π β (y ± 1/2)],

(û, v̂)T = (u1, v1)T sin [π β (y ± 1/2)],

}
(29)

where β = 1, 2, 3, . . . are the mode numbers and
(φ1, u1, v1, T1)T is the constant amplitude of the normal
mode solution. For instance, β = 1 is the fundamental mode,
β = 2 is the second harmonic of the normal mode solution,
etc. With solution (29), problem (28)1 simplifies to

L1X 1 = ωX 1, (30)
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where X 1 = (φ1, u1, v1, T1)T and

L1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −π β φ0 0

−π β η0
φ

φ0H2 −π2β2η0

φ0H2 −1 −π β η0
T

φ0H2

π β p0
φ

φ0H2 0 −π2β2(λ0+2η0 )
φ0H2

π β p0
T

φ0H2

1
φ0

(− π2β2μ0

H2 + η0
φ − D0

0,φ

) 2π β η0

φ0
−π β (p0+D0

1 )
φ0

1
φ0

(− π2β2κ0

H2 + η0
T − D0

0,T

)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (31)

For the nontrivial solutions of Eq. (30) det(L1 − ωI ) = 0,
where I is the identity matrix of size 4. This condition is the
dispersion relation and can be written as

ω4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0, (32)

where

a0 = 1

H4
a04 + 1

H6
a06,

a1 = 1

H2
a12 + 1

H4
a14 + 1

H6
a16,

a2 = 1

H2
a22 + 1

H4
a24,

a3 = a30 + 1

H2
a32.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

Here, the coefficients ai j are the functions of the transport
coefficients evaluated at the base state. However, their explicit
expressions are relegated to the Appendix for better readabil-
ity. Dispersion relation (32) is a fourth-degree polynomial
in ω with real coefficients and, therefore, there are three
possibilities for four roots of Eq. (32): (i) all roots are real,
(ii) two complex conjugate pairs of roots, and (iii) two real
roots and one complex conjugate pair of roots.

C. Asymptotic analysis

With the help of the classical asymptotic analysis in powers
of H−1 with H−1 → 0, one can find the analytical expressions
of the eigenvalues [the roots of Eq. (32)], as follows. Let the
frequency ω be represented by

ω = ω0 + 1

H
ω1 + 1

H2
ω2 + 1

H3
ω3 + . . . , (34)

where ω0, ω1, ω2, . . . are unknown coefficients. Substituting
this ansatz along with coefficients (33) into Eq. (32), and
comparing each power of H on both sides of the resulting
equations, one obtains algebraic equations, which are solved
for the unknowns ωi’s in Eq. (34). Exploiting these values,
one obtains four roots ω = ω(1,2,3,4) from Eq. (32), which are
given by

ω(1) = − 1

H2

a04

a12
+ O(H−4), (35)

ω(2) = −a30 − 1

H2

a12 − a22a30 + a32a2
30

a2
30

+ O(H−4), (36)

ω(3,4) = ω(3,4)
r ± i ω(3,4)

i + O(H−4), (37)

where the subscripts “r” and “i” represent the real and imagi-
nary parts, respectively, of the roots and

ω(3,4)
r = 1

H2

a04 + (
a2

12

/
a2

30

)− (a12a22/a30)

2a12
, (38)

ω
(3,4)
i =

√
a12

a30

[
1

H
− 1

H3

(
1

2

a32

a30
− 3

4

a22

a2
30

+ 5

8

a12

a3
30

+ 1

8

2a04 + a2
22

a12a30
− 1

2

a14

a12
+ 1

4

a04a22

a2
12

− 3

8

a2
04a30

a3
12

)]
.

(39)

It is evident from Eqs. (35)–(37) that in the limit of large
H , dispersion relation (32) has two real roots ω(1,2) and a
complex conjugate pair of roots ω(3,4). In the limit of large H ,
it has been verified numerically that ω(2) and ω(3,4)

r are always
negative resulting into the least stable mode as ω(1). Figure 2
illustrates the four eigenvalues for large H obtained through
the asymptotic analysis of dispersion relation (32) (solid line)
and those obtained by solving Eq. (30) numerically (symbols)
for φ0 = 0.6, e = 0.5 and β = 1. It can be seen from the figure
that the eigenvalues from both the methods are in excellent
agreement for large H .

V. RESULTS

The linear stability of the USF of granular materials has
been studied previously for the case of nearly elastic particles
[24,42,56–58]. In this section, we analyze the linear stability
of the USF of arbitrary inelastic granular hard disks by appro-
priately choosing the GDL constitutive relations pertaining to
dense granular flows [32,44]. To perform the linear stability
analysis, eigenvalue problem (28) has been solved numeri-
cally using the Chebyshev spectral collocation method. In ad-
dition, eigenvalue problem (30), which was obtained using the
exact solutions (29), has also been solved analytically. It has
been verified that the eigenvalues obtained numerically using
the Chebyshev spectral collocation method and those obtained
analytically using the exact solutions (29) are in an excellent
agreement (figure is not shown for brevity). Therefore, in
the present analysis, the eigenvalues have been computed
by solving eigenvalue problem (30). All the computations
have been performed in MATLAB. For analyzing the stability
results, we define the least stable eigenvalue ωl as one of the
eigenvalues whose real part is maximum for a fixed mode
number, and the dominant eigenvalue ωd as one of the least
stable eigenvalues whose real part is maximum over all the
mode numbers β, i.e.,

ωl := max
ωr

ω and ωd := max
β

ωl . (40)
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FIG. 2. The eigenvalues of Eq. (30) for large H for parameters
φ0 = 0.6, e = 0.5 and β = 1. The solid lines denote the eigenvalues
from Eqs. (35)–(37), which were obtained through the asymptotic
analysis of Eq. (32), and the symbols delineate those obtained by
solving matrix eigenvalue problem (30) numerically.

To avoid the mode number and grid dependencies on the
stability predictions, the dominant modes have been analyzed
in the present work. The contours of positive, negative, and

0

0.0005

-0.0005

(a)

0 100 200

0.2

0.4

0.6

0.8

0 100 200
-5

0

5

10
10-4

(b)

FIG. 3. (a) Contours of the positive, negative and zero dominant
growth rates in the (H, φ0) plane, and (b) the variation of the
growth rate with the channel width H for φ0 = 0.5. The restitution
coefficient is set to e = 0.6.

zero dominant growth rates, ωd
r , are shown in the (H, φ0)

plane in Fig. 3(a) for the inelastic particles with the restitution
coefficient e = 0.6. The real part of the dominant mode is
positive (i.e., ωd

r > 0) inside the zero contour and negative
(i.e., ωd

r < 0) outside the zero contour; therefore, the flow is
unstable inside the zero contour and is stable outside. It has
also been verified that the instability depicted in Fig. 3(a)
is due to the stationary waves since the imaginary part of
the complex frequency ωd is always zero. This can also be
seen from the asymptotic analysis presented in Sec. IV C that
the least stable eigenvalue ωl is always real. Therefore, the
shear-banding instabilities in a granular shear flow are due to
the stationary waves.

We have also found that the lowest mode number, i.e.,
β = 1, is the first one to become unstable for a fixed restitution
coefficient. This is similar to the classical Rayleigh–Bénard
convection in which the first mode is the dominant mode
[59]. Figure 3(a) also illustrates that for a fixed restitution
coefficient, there exist a critical channel width Hc(φ0) and a
critical mean density φ0

c (H ) above which the USF is unstable
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and below which it is stable. That is to say, the USF becomes
unstable if either H > Hc(φ0) or φ0 > φ0

c (H ). In addition, it
can also be seen from Fig. 3(a) that the USF remains stable
for all densities and for all channel widths below an onset
value of the mean density, say φ0

onset (see Sec. V A for more
details). Note that the onset mean density φ0

onset depends only
on the restitution coefficient. In particular, for e = 0.6, the
flow is stable when φ0 < φ0

onset ≈ 0.38 for all values of H .
Figure 3(a) also reveals that the USF is stable in the dilute
limit (φ0 → 0).

To get more insight, the variation of the dominant growth
rate with the channel width for fixed values of the mean den-
sity and restitution coefficient is illustrated in Fig. 3(b). The
kinks (crests) in the figure correspond to the eigenmode cross-
ing from the mode number j to j + 1, where j = 1, 2, 3, . . . .
It is seen that the dominant mode number increases with
the channel width, i.e., β = 1 mode is the first one to lose
stability and remains unstable with increasing channel width
until it crosses β = 2 mode [first kink in Fig. 3(b)], thereafter
β = 2 mode becomes dominant mode until it crosses β = 3
mode [second kink in Fig. 3(b)], and so on. For parameter
values shown in Fig. 3(b), the USF becomes unstable for
H > Hc ≈ 10.446.

Figure 4 illustrates the density, temperature and velocity
eigenfunctions for three values of the channel width, H = 20,
40, 50, with other parameters being the same as those in
Fig. 3(b). The eigenfunctions displayed in the first row corre-
spond to β = 1 mode for which (φ̂, T̂ ) ∝ cos(πy ± π/2) =
sin(πy) that vanish once at y = 0 in the flow domain; there-
fore, the density and temperature solutions attain their mean
values φ0 and T 0 once in the flow domain. The second row
of Fig. 4 corresponds to β = 2 mode which gives eigenfunc-
tions (φ̂, T̂ ) ∝ cos(2yπ ± π ) = cos(2πy) that vanish twice
along the flow domain at y = ±1/4. Similarly, the third
row corresponds to β = 3 mode having the eigenfunctions
(φ̂, T̂ ) ∝ cos(3yπ ± 3π/2) = ± sin(3πy) that vanish thrice
at y = 0, ± 1/3. Consequently, the density and temperature
solutions attain its mean values once, twice and thrice in the
flow domain for H = 20, 40, and 60, respectively. By analyz-
ing the corresponding velocity components (second column
in Fig. 4), it is evident that while the horizontal component of
the velocity eigenfunction û varies significantly, its transverse
component v̂ varies only slightly.

Figure 5 exhibits the neutral stability curve obtained with
the dilute limit of the GDL model [i.e., by using fi ≈ f k

i for
i ∈ {1, 2, 3, 4, 4h} with f k

i from Eqs. (10) and f5, f5u from
Eqs. (12) in constitutive relations (5)]. It is evident from
the figure that the USF is always stable in the dilute limit
(φ0 → 0), which is also known from the previous studies
[21,25,42]. Therefore, the dilute limit of the GDL model is
able to capture the stability of dilute granular shear flows.
On the other hand, although the collisional mechanism is
dominant over the kinetic mechanism in dense granular flows,
the collisional limit of the GDL model [constitutive relations
(5) obtained using fi ≈ f c

i for i ∈ {1, 2, 3, 4, 4h} with f c
i from

Eqs. (11) and f5, f5u from Eqs. (6)] alone fails to capture
the shear-banding instability in dense granular shear flows
[21,25,60] correctly (phase diagram is not shown for brevity):
the collisional limit of the GDL model predicts that the USF
is stable for high densities whereas the full GDL model [i.e.,
constitutive relations (5) with fi’s from Eqs. (6)] (see Fig. 3)
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FIG. 4. Eigenfunctions (29) for three values of the channel width
H = 20 (first row), 40 (second row), and 50 (third row) correspond-
ing to β = 1, 2, and 3, respectively. The other parameter values are
the same as those in Fig. 3(b).

Unstable

Stable

0 100 200

0.2

0.4

0.6

0.8

FIG. 5. Neutral stability curve in the (H, φ0) plane obtained
with the dilute limit of the GDL model [i.e., by using fi ≈ f k

i for
i ∈ {1, 2, 3, 4, 4h} with f k

i from Eqs. (10) and f5, f5u from Eqs. (12)
in constitutive relations (5)]. The restitution coefficient is e = 0.6.
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FIG. 6. Qualitative comparison of the linear stability theory with
the molecular dynamics simulation for parameter values e = 0.8,
H = 80, φ0 = 0.6: (left) particle position plot of a shear band from
Ref. [21] and (right) density eigenfunction φ̂ for β = 2.

and molecular dynamics simulations [21,25,60] predict the
shear-banding instability for dense granular shear flows. By
analyzing three variants of the GDL model viz. the full model,
its dilute limit and its collisional limit, one can conclude
that the choice of constitutive relations plays an important
role in determining the shear-banding instability. For correct
instability predictions in dense granular flows, both the kinetic
and collisional mechanisms are important, and hence none of
them should be discarded. Therefore, in the following, we
focus on the effect of the inelasticity on the shear-banding
instability through the full GDL model.

Figure 6 compares qualitatively a typical result from
molecular dynamics simulation [21] with that from the present
linear stability theory for parameter values e = 0.8, H =
80, and φ0 = 0.6. The left panel in the figure shows two
parallel, high-density regions located on both sides of the
centerline [21]. The right panel in the figure exhibits the
density eigenfunction φ̂ for the same parameter values and
for β = 2. Similarly to the molecular dynamics simulation
result [21], the density eigenfunction shows minimum density
at the centerline (y = 0) of the channel and higher densities
on both sides of the centerline. For these parameter values, the
corresponding growth rate is positive showing the instability
of the USF.

A. Effect of the restitution coefficient and channel width on the
shear banding: A global criterion

Figure 7(a) illustrates the neutral stability curves in the
(H, φ0) plane for various restitution coefficients ranging from
moderately inelastic to quasielastic limit. For a fixed restitu-
tion coefficient, the USF is unstable inside each contour and
stable outside. Similarly to Fig. 3(a), Fig. 7(a) also shows
that the USF is stable in the dilute limit (φ0 → 0) for all
values of the restitution coefficient, which is in agreement
with previous studies, e.g., [24,42,47]. We see that the neutral
stability curve shifts towards right as the restitution coefficient
increases thereby leading to more stable region behind it.

(a)

0 100 200 300 400 500
0.3

0.4

0.5

0.6

0.7

0.8

0.6 0.7 0.8 0.9 1
0.34

0.36

0.38

0.4

Unstable

(b)

Stable

onset

FIG. 7. (a) Neutral stability curves in the (H, φ0) plane for
increasing restitution coefficient e = 0.6, 0.7, 0.8, 0.9, 0.99; the flow
is stable outside each neutral stability curve and unstable inside it.
(b) Variation of φ0

onset with e; the flow is unstable for φ0 > φ0
onset.

In other words, the range of the channel width for which
the USF is unstable decreases with increasing the restitution
coefficient. Indeed, there exists a set of critical parameters
(φ0

c , Hc) corresponding to the boundary of a neutral stability
curve outside which the USF becomes unstable.

As discussed earlier, the lower branch of each neutral
stability curve in Fig. 7(a) asymptotically (as H → ∞)
approaches to a minimum mean density below which the flow
is always stable. We define this minimum critical density as
the onset density, i.e.,

φ0
onset(e) := min

H
φ0

c (H, e) as H → ∞, (41)

where the USF is stable for φ0 < φ0
onset and vice versa. The

onset mean density Eq. (41) as a function of the restitution co-
efficient has been plotted in Fig. 7(b). It is clear that the onset
density decreases with increasing the restitution coefficient,
which implies that the USF tends to lose stability at a lower
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FIG. 8. (a) Neutral stability curves in the (e, φ0) plane for in-
creasing channel width H = 20, 40, 80, and (b) variation of Honset

with e (main panel), and eonset with H (inset), where the solid line
and circles represent the values from relation (44) and those extracted
from the neutral stability curves in Fig. 7, respectively.

density in the elastic limit than that in the inelastic case. Note
that the above conclusion holds for very large channel widths.

It can also be noticed from Fig. 7(a) that there exists an
onset value of the channel width—associated with the nose of
each neutral stability curve—below which the USF is always
stable for all mean densities and above which it is unstable.
Let us define this onset value of the channel width as the
minimum of all critical channel widths:

Honset(e) := min
φ0

Hc(φ0, e). (42)

Note that φ0
c and Hc depend on both the mean density and

restitution coefficient, whereas φ0
onset and Honset are only func-

tions of the restitution coefficient and hence of the inelas-
ticity. It is evident from Fig. 7(a) that the value of Honset

increases with increasing the restitution coefficient implying
that the USF is more stable as e increases, which qualitatively
matches with the simulation results of Refs. [21,25]. Owing
to the functional dependence [see Eq. (42)], the shear band-

ing in granular shear flow starts to appear at small channel
widths when particles are more inelastic as compared to the
quasielastic ones. In contrast, the granular shear flow remains
uniform for large values of the channel widths.

To get further insight, the neutral stability curves in the
(e, φ0) plane are shown for three values of the channel width
in Fig. 8(a). The flow is stable outside (toward right) of each
contour and unstable inside the bounded region of the curve
(toward left). As the channel width increases, the neutral
stability curve shifts toward right such that it covers more
unstable region in the (e, φ0) plane, i.e., the flow becomes
more unstable with the increasing channel width. Therefore,
for a fixed density, the range of the restitution coefficient for
which the USF is unstable increases with increasing channel
width. Figure 8(a) also depicts that there is an onset restitution
coefficient below which the shear-banding instability persists
and above which the USF remains stable. We define this onset
restitution coefficient as

eonset(H ) := max
φ0

ec(φ0, H ). (43)

It can also be seen from the inset of Fig. 8(b) that eonset

increases with increasing the channel width.
Although the neutral stability curves shown in Figs. 7 and 8

depict the overall behavior of the instability, it still remains to
understand how the onset parameters Honset(e) and eonset(H )
vary and to discern if there exists any relation relating these
parameters. We shall now seek the onset of the shear-banding
instability in terms of these onset parameters. As mentioned
earlier, the USF is unstable for all H > Honset and for all e <

eonset, and these onset values correspond to the nose of each
neutral stability curve; see Fig. 8(a). The onset parameters
Honset(e) (main panel) and eonset(H ) (inset) are shown for some
points by circles in Fig. 8(b). By curve fitting, one can find a
functional relationship between the onset parameters eonset and
Honset, which reads

Honset = αeγ
onset + δ, (44)

where α = 115, γ = 17, and δ = 12.86. The solid line in
Fig. 8(b) represents the values obtained from relation (44). It
is important to note that relation (44) is a global criterion as
this does not depend on the spatial positions.

Let us now analyze the effect of the mean density on
the shear-banding instability. Figure 9 illustrates the neutral
stability curves in the (H, e) plane for various mean densities.
For a fixed mean density, the USF is unstable inside (toward
right of) each of the neutral stability curves. The neutral
stability curves for less dense flows look markedly different
from those of moderately-to-highly dense flows. It is also
seen that the unstable region increases with increasing the
mean density; therefore, the shear-banding instabilities are
more prone to the dense flows, in general. However, for
densities φ0 > φ f ≈ 0.69, the instability region decreases
with increasing densities; see Fig. 9.

B. Effect of the restitution coefficient and density on the shear
banding: Another global criterion

As discussed above, the shear-banding instability is sta-
tionary, which implies that the least stable mode, and hence
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FIG. 9. Neutral stability curves in the (H, e) plane for different
values of φ0. The flow is stable outside (left) of each contour and
unstable inside (right) it.

the dominant mode, is real. Therefore, the onset of the
shear-banding instability, where the growth rate is zero, can
be determined analytically from dispersion relation (32) by
substituting ω = 0, which gives a0 = 0. Using the expression
of a0 from Eq. (33)1 (see the Appendix), one obtains

π2β2

H2
= ξ 0

1

ξ 0
2

, (45)

where

ξ 0
1 =

(
f 0
5φ

f 0
5

+ f 0
2φ

f 0
2

)
f 0
1

f 0
1φ

− 2 and ξ 0
2 = 1

f 0
5

(
f 0
4 − f 0

1

f 0
1φ

f 0
4h

)
.

(46)
Thus, at the onset of the shear-banding instability, equality
(45) must be satisfied. Note that the left-hand side of Eq. (45)
is always positive and, therefore,

ξ 0
1

ξ 0
2

> 0 ⇒ ξ 0
1 > 0 (47)

because ξ 0
2 > 0. Following Refs. [42,56], the condition ξ 0

1 >

0 is equivalent to

∂

∂φ0

⎡
⎣
√

f 0
2 f 0

5

f 0
1

⎤
⎦ > 0 provided

∂ f 0
1

∂φ0
> 0, (48)

which must be satisfied at the onset of instability. Thus, con-
dition (48) leads to a necessary criterion for the shear-banding

instability. It is worth noticing that the term
√

f 0
2 f 0

5 / f 0
1 is none

other than the ratio of the shear stress to the pressure of the
USF. This further allows us to express the dynamic friction
coefficient, the ratio of sliding force Fs to normal force Fn, as

Cf ≡ Cf (φ0, e) = Fs

Fn
= η0u0

y

p0
=
√

f 0
2 f 0

5

f 0
1

. (49)

Here, we have used the definition of the base state granular
temperature T 0 = f 0

2 / f 0
5 and of the base state shear rate
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(b)

FIG. 10. Variation of (a) the dynamic friction coefficient Cf and
(b) ∂Cf /∂φ0 with the mean density φ0 for various values of the
restitution coefficient e: 0.5 (dotted line), 0.7 (dash-dotted line), 0.9
(dashed line), and 0.95 (solid line).

u0
y = 1; see Sec. III. From Eqs. (48) and (49), it can be

concluded that the existence of the shear-banding instability
requires the dynamic friction coefficient Cf to be an increasing
function of the mean density φ0, i.e., ∂Cf /∂φ0 > 0. In other
words, the condition for the onset of the shear-banding
instability is given by

lim
φ0→φ0+

onset

∂Cf

∂φ0
= 0. (50)

Note that condition (50) is also a global criterion for the onset
of the shear-banding instability as it also does not depend on
the spatial positions.

Figure 10 shows the variation of the dynamic friction
coefficient Cf and its gradient with respect to the mean
density φ0 for various restitution coefficients. It is seen from
Fig. 10(a) that the dynamic friction coefficient Cf varies
nonmonotonically—it first decreases, attains a minimum, and
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FIG. 11. Variation of φ0
onset with e. The solid lines are the values

computed from Eq. (51) and circles represent the values obtained
from criterion (50).

increases thereafter with increasing density. A value of the
mean density φ0, where Cf attains its minimum is the same
as the onset density φ0

onset in Fig. 8(a) (for corresponding e),
which was extracted from the neutral stability curve. Clearly,
at φ0 = φ0

onset, the slope ∂Cf /∂φ0 is zero; see Fig. 10(b).
Similarly to Fig. 7(b), Fig. 11 also depicts the variation of

the onset mean density φ0
onset with the restitution coefficient

calculated using criterion (50) (solid line). Clearly, the on-
set mean density decreases monotonically with increasing e,
which implies that the onset of the shear-banding instability
in the elastic limit (e → 1) occurs at slightly lower mean
density than in the case of restitution coefficient e < 1. By
curve fitting, one can find a functional relationship between
φ0

onset and e, which reads

φ0
onset = α1e3 + α2e2 + α3e + α4, (51)

where α1 = −0.1350, α2 = 0.2144, α3 = −0.2208, and α4 =
0.4768. This implies that criterion (50) for the onset of the
shear-banding instability is equivalent to relation (51).

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have extended a previous study [42] and
investigated the shear-banding instability in an arbitrary in-
elastic granular shear flow. In particular, we have analyzed the
stability of the USF using granular hydrodynamic equations
closed with the Navier–Stokes-level constitutive relations pro-
posed by Garzó and Dufty [32] and Lutsko [44]. Two limiting
cases, namely, the dilute and collisional limits, of the full GDL
model have also been discussed. It has been shown that the
dilute limit of the GDL model is able to give correct prediction
about the stability of dilute granular shear flows. Surprisingly,
the collisional limit alone fails to give meaningful prediction
on the instability of dense granular shear flows. Thus, we have
shown that both the kinetic and collisional mechanisms are
important to capture the shear-banding instability in dense
granular shear flows correctly. Furthermore, by analyzing the
neutral stability curves for various parameters in different
planes, we have found that the USF is always stable in the

dilute limit and, therefore, nonuniformity in terms of shear
band does not appear in dilute granular flows. In contrast to
dilute granular shear flows, moderately-to-highly dense gran-
ular shear flows become unstable once the control parameters
exceed their critical values.

The influence of the restitution coefficient, channel
width and mean density on the shear banding has also been
explored. It has been found that the USF is more unstable
with: (i) decreasing the restitution coefficient (or increasing
the inelasticity) for any fixed mean density and fixed channel
width, (ii) increasing the channel width for any fixed mean
density and fixed restitution coefficient, and (iii) increasing
the mean density (in general) for any fixed channel width
and fixed restitution coefficient. These findings all together
lead to the fact that the shear banding is more prone to dense
flows of highly inelastic particles confined in channels having
large channel widths. This fact agrees qualitatively with the
simulation results of Conway and Glasser [21] and Conway
et al. [25], who showed that a pseudo-one-dimensional
cluster appears with increasing the restitution coefficient
or with increasing the channel width while fixing the other
parameters and, therefore, the intensity of the clustering
instability can be controlled with these parameters.

In the present study, the onset values of the density and
channel width as a function of the restitution coefficient have
been assessed. For this, we have defined three parameters: (i)
φ0

onset(e), the smallest mean density below which the USF is
always stable for all channel widths and above which it is
unstable, (ii) Honset(e), the critical channel width below which
the flow is stable for all mean densities and above which it
becomes unstable, and (iii) eonset(H ), the critical restitution
coefficient above which the flow is always stable for all
mean densities and below which it is unstable. Furthermore,
a relation between Honset and eonset has been obtained in a
power-law form. From this relation, one can easily find the
onset channel width for the shear-banding instability at a fixed
restitution coefficient and vice versa. This is a global criterion
(as it does not depend on spatial locations) for the onset of the
shear banding in terms of e and H—the shear banding appears
for H > Honset(e) or for e < eonset(H ).

It has been found that the onset of the shear-banding
instability in granular USF is tied to the increasing dynamic
friction coefficient, Cf (φ0, e) = η0u0

y/p0 with η0 and p0 being
the shear viscosity and pressure, respectively, in the USF. In
particular, the USF breaks into the dense and dilute regions
of low and high shear (shear stress or shear rate) along the
gradient direction when the dynamic friction coefficient in-
creases with the mean density. In other words, the USF cannot
sustain a higher friction with increasing the mean density and,
therefore, rearranges to a nonuniform shear-banded state of
lower dynamic friction. For a fixed restitution coefficient, we
have found that the gradient of the dynamic friction coefficient
with respect to the mean density takes values from negative
to positive and crosses zero at the onset mean density φ0

onset.
The onset mean density has been found to be a monotonically
decreasing function of the restitution coefficient satisfying
the cubic polynomial relation (51). Consequently, the USF
of nearly elastic particles reaches to the onset of the shear-
banding instability at a lower mean density as compared to
that of relatively more inelastic particles, which is in contrast
to Ref. [42] as the constitutive models employed in Ref. [42]
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are valid only for nearly elastic particles. Furthermore, the
onset of the shear banding has been found to follow two
global criteria relating (i) the channel width and restitution
coefficient and (ii) the mean density and restitution coefficient
(or the shear viscosity and pressure).

Within the framework of dense granular flows with arbi-
trary inelasticity, the present work provides the control param-
eters for the onset of the shear-banding instability. Functional
relationships relating the onset parameters have been obtained
that enables one to predict the existence of shear bands in a
granular shear flow by merely knowing the control parame-
ters. This could also be of much interest from an experimental
point of view as the onset of the shear-banding instability
becomes completely known from the present work in terms of
control parameters. It is important, however, to note that the
findings of the present paper are based on the NSF equations
closed with the GDL model that neglects the anisotropy of
the USF. To incorporate the effect of anisotropy of the USF,
the generalized transport coefficients for dense granular flows
are required. The linear stability analysis of the USF with
the generalized transport coefficients will be a topic of future
research. Notwithstanding, the present work paves the way
for simulations and experiments on granular shear flows of
arbitrarily inelastic particles.
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APPENDIX: COEFFICIENTS IN DISPERSION
RELATION (32)

The coefficients ai j in Eqs. (33) that enters dispersion
relation (32) are as follows:

a30 = 1

φ0

(
D0

0,T − η0
T

)
,

a32 = 1

φ0
(3η0 + κ0 + λ0)π2β2,

a22 = 1

φ2
0

[
2η0η

0
T + p0 p0

T + φ2
0 p0

φ + p0
T D0

1

+ (3η0 + λ0)
(
D0

0,T − η0
T

)]
π2β2,

a24 = 1

φ2
0

[(3η0 + λ0)κ0 + (2η0 + λ0)η0]π4β4,

a12 = 2p0
T η0

φ2
0

π2β2

+ 1

φ0

[
p0

φ

(
D0

0,T − η0
T

)− p0
T

(
D0

0,φ − η0
φ

)]
π2β2,

a14 = η0

φ3
0
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(
D0

0,T + η0
T

)+ p0 p0
T + p0

TD0
1

]
π4β4

+ 1
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φκ0 + p0
φη0 − p0

T μ0
)
π4β4,

a16 = η0

φ3
0

(2η0 + λ0)κ0π
6β6,

a04 = η0

φ2
0

[
p0

φ

(
D0

0,T + η0
T

)− p0
T

(
D0

0,φ + η0
φ

)]
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a06 = η0
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