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Hyperuniform states generated by a critical friction field
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Hyperuniform states are an efficient way to fill up space for disordered systems. In these states the particle
distribution is disordered at the short scale but becomes increasingly uniform when looked at large scales.
Hyperuniformity appears in several systems, in static or quasistatic regimes, as well as close to transitions to
absorbing states. Here, we show that a vibrated granular layer, at the critical point of the liquid-to-solid transition,
displays dynamic hyperuniformity. Prior to the transition, patches of the solid phase form, with length scales and
mean lifetimes that diverge critically at the transition point. When reducing the wave number, density fluctuations
encounter increasingly more patches that block their propagation, resulting in a static structure factor that tends
to zero for small wave numbers at the critical point, which is a signature of hyperuniformity. A simple model
demonstrates that this coupling of a density field to a highly fluctuating scalar friction field gives rise to dynamic
hyperuniform states. Finally, we show that the structure factor detects better the emergence of hyperuniformity,

compared to the particle number variance.
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I. INTRODUCTION

Recently, hyperuniform systems have been identified as an
efficient way to fill up space for disordered configurations.
These exotic particle distributions are disordered at short
distances, as liquids, and more and more uniform when looked
at large scales, just as regular, ordered lattices. Hyperuniform
states have been observed in jammed granular [1,2] and
colloidal packings [3], in block-copolymer assemblies [4], in
quasicrystals [5], active circle swimmers [6], and even in the
patterns of photoreceptive cells in chicken eyes [7]. Recently,
these states have been obtained in systems showing nonequi-
librium transitions to absorbing states, were hyperuniformity
is observed both in the absorbing and fluid phases, close to
the transition [8—11]. For a recent review, see Ref. [12]. Here,
we show that a vibrated granular layer, when approaching
the liquid-to-solid transition from the liquid phase, displays
hyperuniform states, which are dynamically generated. A
simple model demonstrates that it results from coupling the
density to a highly fluctuating friction field.

It is possible to characterize the decay of particle correla-
tions by measuring the average number of particles (N) and
its variance o,\z, = (N?) — (N)? in boxes of different sizes.
In condensed matter, under normal conditions, correlations
decay rapidly and above a certain length, 0§ oc (N). This is
not always the case. For example, in regular lattices, fluctua-
tions take place only at the boundaries. But also in disordered
systems it has been reported that for large sizes o3 o< (N)P/2,
with 8 # 2. When 8 > 2, the system presents giant density
fluctuations, which have been observed in several dynamic
nonequilibrium systems as in vibrated nematic granular layers
[13] or in active matter swarms [14]. The opposite case,
B < 2, corresponds to hyperuniformity. As the system grows,
number fluctuations increase slower than the usual linear
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behavior, o7 oc (N), and density fluctuations become sup-
pressed at the very large wavelength limit. Indeed, another
way to characterize particle spatial distributions is via the
static structure factor, S(k) = ({|px|*>) — |(Px)|>)/N, which
quantifies the amplitude of the density fluctuations in Fourier
space [15,16]. If for small wave vectors it follows a power law
Skk)~k*, then =2 —aforO<a<landB=1forl <
o. Hence hyperuniformity is obtained when o > 0, that is,
when density fluctuations become smaller when reducing the
wave number k [17]. In other systems, showing stealthy hyper-
uniformity, S(k) vanishes in a whole range of small wave vec-
tors [18,19]. Here we show that, for finite systems, the number
variance can give misleading information to detect hyper-
uniformity. On the contrary, the structure factor works well
on finite systems, even in the presence of boundary-induced
inhomogeneities, and allows to determine the critical value of
the control parameters when hyperuniformity is attained.

II. EXPERIMENTS AND SIMULATIONS OF THE
GRANULAR SYSTEM

The experimental setup where we observe dynamical hy-
peruniformity is the same one reported previously [20,21].
It consists of a rigid shallow box, where N = 11704 stain-
less steel monodisperse spheres are placed inside, with di-
ameter a = 1 mm. The box transverse dimensions are L, =
L, = L = 100a. Its height is L, = 1.94a 4= 0.02a, such that
the projected 2D filling fraction is ¢ = Nmwa?/4L* = 0.919.
The whole setup is forced sinusoidally with an electrome-
chanical shaker, with vertical displacement z(#) = A sin(wt)
[Fig. 1(a)]. Top view images are obtained with a high-speed
camera [Fig. 1(b)]. The frame rate is either 10 or 500 fps,
depending on the quantity to be measured. The control pa-
rameter is the dimensionless acceleration I' = Aw?/g, which

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.032902&domain=pdf&date_stamp=2019-09-06
https://doi.org/10.1103/PhysRevE.100.032902

GUSTAVO CASTILLO et al.

PHYSICAL REVIEW E 100, 032902 (2019)

|Qu
L(d)

FIG. 1. (a) Schematic of the experimental setup. (left) Top view of the quasi-2D cell, with L, = L, = 100a. (right) Side view of the setup.
The vertical height in the cell is L, = (1.94 £ 0.02)a. The cell is illuminated from below with a 2D array of light emitting diodes, where
light is diffused with a white acrylic sheet. (1) Camera, (2) quasi-2D cell, (3) electromechanical shaker, (4) accelerometer. (b) Raw image for
I' = 4.5. (c) Color map of the absolute value of the fourfold bond-orientational order parameter in real space, |Q£|, for the image in panel (b).
For a better visualization, particles are plotted at 85% of their diameter. (d) Schematic representation of the density wave interactions with the

crystalline patches shown in panel (c).

is varied in the range 1-6, where w = 2w f is the angular
frequency and g the gravitational acceleration.

The box consists of two 10-mm-thick glass plates separated
by a square metallic frame. Each inner glass surface has an
indium tin oxide (ITO) coating, which dissipates electrostatic
charges generated by collisions of particles with the walls.
A piezoelectric accelerometer is fixed to the base, allowing
the measurement of the imposed forcing acceleration with
a resolution of 0.01g. For each I', three videos of 3000
images were acquired, two at 10 fps for the computation of
S(k) and one at 500 fps to obtain the diffusion coefficients.
The acquired images have a resolution of 1600 x 1600 pix>.
Particle positions are determined at sub-pixel accuracy. The
particle detection is done by using a modified open source
Matlab code, which uses a least-square algorithm [22]. Our
modified version in C++ and CUDA allows faster computation
for a large number of particles [23,24]. The algorithm allows
us to detect both layers of particles in a dense solid cluster,
where the top-layer particles are placed in the valleys that the
bottom particles form.

The box height L, < 2a allows an efficient vertical to
horizontal collisional energy transfer mechanism, producing
liquidlike states but, at the same time, avoids particles to
jump over another. We can then track all particles in the
projected two-dimensional motion and therefore analyze si-
multaneously the microscopic and global dynamics. One of
the most remarkable features of this system is the existence
of a liquid-to-solid transition [25,26]. When the vibration
amplitude increases above a certain threshold, stable crys-
talline clusters are formed, coexisting with a liquid phase.
Notably, this transition can be either continuous or discontin-
uous depending on the box height. For the former, before the
transition, patches of the solid phase form, with length scales
and mean lifetimes that diverge critically at the transition point
[Fig. 1(c)] [20,21,27].

Experiments are performed at fixed vibration frequency,
f = 80 Hz, and for a box height where the transition is
continuous. For these parameters, the critical acceleration is
I'. =4.73 £0.15. The vibration amplitude A is varied in a
range below the transition, where the system remains in a
stable fluid phase and the solid patches have finite lifetime.

Particle positions are obtained from the images, from which it
is direct to obtain the two-dimensional structure factor. For
intermediate wavelengths ka ~ 0.2, a prepeak is observed
with a height that grows when approaching the transition,
although no critical divergence is observed [20]. For smaller
wave numbers, S(k) decreases when k — 0 as for hyperuni-
form states (see Fig. 2). To characterize the emergence of
hyperuniformity, the structure factor is fitted to the expression
S(k) = So + Si(ka)* [see Fig. 3(a)], where we fix the expo-
nent to « = 1.12, according to the theoretical model described
below. Consistent with the increase in height of the pre-peak,
the slope S; also increases when approaching the transition.
Notably, the scaled offset Sy/S;, shown in Fig. 3(b), vanishes
at the critical acceleration, resulting in a hyperuniform state.
To analyze larger systems, we employ molecular dynamic
simulations using the frictional inelastic hard sphere model
[28,29] with identical spherical grains and periodic bound-
ary conditions. We ran the simulations for N = 355500
particles in a 600a x 600a x 1.84a system. The parameters
are chosen to present the same critical liquid-to-solid phase
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FIG. 2. Experimental static structure factor, S(k), in the large
wavelength limit for different accelerations I' € [2.0, 4.7].
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FIG. 3. (a) Experimental static structure factor, S(k), scaled with the slope S; of the fit S(k) = Sy + Si(ka)*, with @ = 1.12, in the large
wavelength limit for different reduced accelerations, ¢ = (I'. — I')/I".. The solid lines are the results of the fits performed in the range ka =
[0, 0.65kp, ], where k,;, is the position of the pre-peak (maximum in S(k)). (b) Scaled offset Sy/S; as a function of &. The solid line is a linear

fit passing through zero. (c) Experimental number particle variance

as a function of the box size ¢ for three different I'. Note that in the

available experimental range, o2 does not follow the classical exponent 8 = 2, neither the hyperuniform exponent 8 = 1. (d—f) same as the
first row, from the molecular dynamic simulations. (g—i) same as the first row, from the from the numerical solution of the model when b = 4
in 2D for different values of v. The fits are S(k) = Sy + S14%, for small wave vectors. In panels (e) and (h), the intercept of the linear fit is let

free.

transition as in the experiments, being therefore suitable to
analyze the existence of hyperuniformity. The grain-grain and
grain-wall friction coefficients are fixed to u = 0.03, and
the restitution coefficient to a = 0.998, which were chosen
by inspection to ensure the liquid-to-solid phase transition
[27]. The friction coefficients are one order of magnitude
smaller than the experimental values. This artifact is used
to map the simulations with perfectly spherical grains and
flat walls to the experiments that present small imperfections
in roughness and flatness. While a quantitative comparison
with the experiments would require to take into account these

details [30], our simulations reveal the same phenomenology
as the experiments, namely, a critical transition. The oscilla-
tion frequency is fixed to w = 5./g/a, where g is the gravity
acceleration, and the oscillation amplitudes where varied in
the range A € (0.06a, 0.1a). The critical amplitude was found
tobe A, = 0.092a £+ 0.001, giving ', = A.w?/g =2.23.

In this case, thanks to the use of periodic boundary con-
ditions, statistically homogeneous configurations are obtained
and, hence, the structure factor is simply computed as S(k) =
(|p|?)/N. The structure factor can be fitted to the same
expression used for the experimental results, and the scaled

032902-3



GUSTAVO CASTILLO et al.

PHYSICAL REVIEW E 100, 032902 (2019)

offset vanishes also at the critical acceleration [see Figs. 3(d)
and 3(e)].

III. PARTICLE NUMBER VARIANCE

For boxes of lateral sizes ¢, a typical landmark of hyperuni-
formity is the existence of a sublinear growth of the particle
number variance with £2. To quantify the spatial correlations,
the average number of particles (N) and its variance o =
(N?) — (N)? in boxes of different sizes are measured. From
each image we compute the number of particles in subsystems
of different size, defined by square windows ranging in size
from a x a to 80a x 80a. Due to the presence of some spatial
heterogeneities, each square window of size £ is displaced
throughout the entire image (excluding 10a at each border),
which gives us a spatial average of N. Then, for the set of
images at a fixed I' we determine, for each subsystem size, the
average (N) over all images and thus, its standard deviation,
oy (£).

Figure 3(c) shows the results of the experiments, which
contrary to the what is displayed by the structure factor, does
not present any clear tendency. In fact, the variance looks
closer to £ as for a nonhyperuniform material. This apparent
contradiction results from the use of a finite system. Indeed,
to observe any effect on 01\2,, we need to have a full scale
separation between the system size and the wavelength above
which the structure factor displays the power law S(k) ~
k*. In our experiments L = 100a, with a structure factor
peak located at ka ~ 0.2, leaving a limited range to observe
the sublinear behavior [see Fig. 3(a)]. Furthermore, by con-
struction, the variance must vanish for a box equal to the
system size, limiting even more the range of box sizes where
hyperuniformity can be observed. Using the relation between
the structure factor and the particle number variance [31], we
generate synthetic values of o7 using the experimental values
of S(k) for other system sizes (see Appendix A for details).
It is found that the sublinear growth in o would only be
observed for large system sizes, L 2 1000a [Fig. 4(a)].

In the case of the simulations, where the system is larger,
the sublinear growth of 01\2, is indeed observed [Fig. 3(f)].
However, to our surprise, the hyperuniform behavior appears
also for finite distances to the critical point, for which the
offset Sp/S; does nor vanish. Figure 4(b) presents oy /¢ with
synthetic generated values of the number variance using the
simulation form of S(k) at different distances to the critical
point. As expected, at the critical point 6,%/62 ~ ¢l At
finite distances to the critical point, o2 /¢> first decays with
£ to finally attain a constant value, consistent with the finite
value of Sy/S;. Notably, the crossover £* ~ 2w a(Sy/S;)~"/
between the two regimes, takes place at quite large values of
£, which can be larger than L. Hence, for finite system sizes,
the decay in o7 /¢> can give the erroneous indication that the
system presents hyperuniformity. On the contrary, the analysis
of S(k) is robust to detect the critical value of the control
parameters where hyperuniformity is attained.

IV. MODEL

The observed hyperuniformity is closely linked to the
existence of the intermittent solid patches near the critical
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FIG. 4. (a) Number particle variance o3 obtained from synthetic
data using the experimental values of S(k), for two different system
sizes L. The dashed line shows the expected law for @ = 1. (b) Nor-
malized number particle variance o2 /¢2 in the thermodynamic limit,
L — o0, obtained from synthetic data using the simulation values of
S(k), for different values of Sy/S;. See Appendix A for details.

point, as we argue here. In Ref. [20] we demonstrate that the
relevant fields to describe the system close to the transition are
the particle density p, which is conserved, and the four-fold
order parameter Q4, which measures the fraction of particles
in the solid phase and their degree of order. For each particle,
we compute

N,
. 1 < 0o
Q=2 M

I s=1

where N; is the number of nearest neighbors of particle j
and @/ is the angle between the neighbor s of particle j and
the x axis. For a particle in a square lattice, |Qj| =1 and the
complex phase measures the square lattice orientation. A map
of |Q£| forI' = 4.5 < I'; is shown in Fig. 1(c). Below the tran-
sition, the structure factor of Q4 presents an Ornstein-Zernike
form, S4(k) = S4(0)/[1 + (&4k)?], where the amplitude S4(0)
and correlation length &4 diverge at the critical point. Friction
with the top and bottom walls is always present implying
that the lateral momentum is rapidly dissipated [32]. As a
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FIG. 5. Measured mean-square displacement versus time for
I' € [2.0,5.8]. Liquid particles obey a diffusive behavior, with a
diffusion constant that increases with acceleration; on the contrary,
solid particles are subdiffusive, presenting an increasing amount of
subdiffusivity for increasing I'.

consequence, in the slow large-scale dynamics, particle den-
sity evolves diffusively. Through Qﬁ, particles can be clas-
sified to belong to the liquid or the solid phase. We have
previously shown that the stationary distribution of |Q£| is
bimodal, with a wide maximum around |Q;{| =0.3, and a

much narrower one at |Q;| &~ 0.95 (details in the Supplemen-
tal Material of Ref. [33]). The local minimum between the
two peaks is at |Q4| = 0.7. To determine the diffusive nature
of particles in each phase we track them for a period of time
T, = 0.4s, large compared to the fast time scale of energy
injection and dissipation (vibration period 1/f = 12 ms). To
compute the mean-square displacement of particles in each
phase, we impose that the time average (|Q£|)TO, computed
for the observation time 7,, must be < 0.4 or > 0.7 to
be classified as liquid or solid particles, respectively (see
Appendix B for details). Next, the mean-square displacement
of the ensemble of particles that satisfy the previous con-
ditions is computed using the tracked trajectories. We find
that the behavior is radically different for the liquid and solid
phases (see Fig. 5). The former exhibits diffusion, while the
later shows subdiffusive dynamics. This subdiffusion can be
modeled by a very small diffusion coefficient, a property
that is a result of caging and the enhanced friction from the
repeated rapid collisions with the top and bottom walls. The
solid patches and the liquid phase do not differ substantially in
density but, as a result of order, present important differences
in their diffusive dynamics. Note, however, that the system is
not frozen in a glassy state as patches form and disappear con-
tinuously, and the subdiffusive dynamics is observed only for
times comparable to their lifetime. Density fluctuations with
wave vector k interact with these patches of reduced mobility,
disturbing their propagation. At the critical point, the patches
are scale free, with an intensity and lifetime that increases
when decreasing k [20], blocking efficiently the density fluc-
tuations at large scales, resulting in an hyperuniform state
[Fig. 1(d)]. To put this hypothesis into test, we build a simple

model which retains the principal exposed features, namely,

the existence of an order parameter with critical dynamics,

which controls the diffusion of the conserved density field.
With these elements, we propose the model

ap

i =V .-(DVp+n). 2)
Here, n is a fluctuating mass flux, which is modeled as a
white noise satisfying (n(r, 1)) = 0 and (n;(r, ) (x', ")) =
C18i8(t —t')8(r —r’), where i, k = {1, 2} are the Cartesian
coordinates. The diffusion coefficient D depends on a local
order field v, related to Q4, which is described by the critical
equation

— = uViy — vy + g, 3)

where & is a white noise satisfying (£(r,7)) =0 and
(Er,H)EM, 1)) = C8( —t')8(r —r’). The constant u ac-
counts for the spatial coupling of i, while v measures the
distance to the critical point. The order parameter i presents
fluctuations that grow when approaching the transition and,
hence, we identify large values of i as being representative
of the solid phase. Then, the diffusion coefficient is modeled
as D = Dye V", taking finite values in the liquid phase, while
vanishing asymptotically in the solid phase. Other expressions
for D with the same asymptotic limits generate similar prop-
erties. To fix the exponent b, we require that the 1-p coupling
becomes relevant, in the renormalization group sense, at large
scales. Considering the scaling r — sr, t — s¢ and ¥ —
s*1r, the different parameters scale as yu — §5b w, v — s,
and C, — s972XC,, where d is the spatial dimensionality.
Units are fixed by choosing that u and C, are not modified
when the spatial scale s is changed, resultinginz = band x =
(b — d)/2. For the ¥-p coupling to become relevant, { must
take large values close to the critical point at increasingly large
spatial scales. This is obtained when x > O or, equivalently,
b > d. That means that for d = 1 and b = 2 (normal spatial
coupling for ) it is possible to observe large scale structures
close to the critical point while for d = 2, a larger exponent
is needed, for example b = 4 to keep analyticity. The need of
a large exponent suggests that this is an effective description
of other microscopic fields obeying normal diffusion. For the
purpose of this paper, it is not necessary to investigate further
into these eventual underlying dynamics.

The numerical solution of the model (see Appendix C
for details) shows that the structure factor of Y displays
an Ornstein-Zernike form. The density field static structure
factor indeed presents a notorious decrease when reducing
the wave vector, which is well fitted as S(k) = Sy + S1k“.
Imposing that « is the same for all values of v, we obtain
o =1.58 £0.10 in 1D, independent of the spatial coupling
exponent b, and in 2D we geta = 1.12 = 0.15, for b = 4 [see
Fig. 3(g) and Appendix D]. As in experiments, varying v the
scaled offset Sy/S; vanishes and hyperuniformity is obtained
[Fig. 3(h)]. Hyperuniformity appears at a small but finite value
of v, probably due to renormalization of the bare critical point.
Within the measurement precision, in experiments and simu-
lations, hyperuniformity takes place at the critical amplitude
[Figs. 3(b) and 3(e)].
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V. DISCUSSION AND CONCLUSIONS

We have shown that hyperuniformity can be dynamically
generated in fluid-like states if friction is highly heteroge-
neous. In our model density evolves by diffusion, with a
diffusion coefficient that can become very small in fluctuating
patches. In systems where momentum is conserved, a similar
behavior should be obtained if the viscosities are heteroge-
neous, with patches of high dissipation.

In small systems, the finite-size effects make it difficult to
identify hyperuniformity with the particle number variance.
In the analysis of density fluctuations the finite-size effects,
boundary inhomogeneities, and small inhomogeneities in the
setup do appear in both (|9x|?) and (px) (for example, there
are strong differences between odd and even modes), but
notably they cancel out in S(k). Indeed, the structure factor,
which describes the dynamics of the fluctuations [15,16], is
remarkably isotropic and smooth [21]. This feature makes
S(k) an ideal observable to identify hyperuniform states.

Hyperuniformity is characterized by positive values of
the exponent «. Here we report the values 1.12 (experiment
and model in 2D) and 1.58 (model in 1D). This diversity is
consistent with a similar variability reported in the literature
by measuring the structure factor: 0.45 in critical absorbing
states [8], 0.5 in periodically driven emulsions [9], 1 in
jammed packings of polydisperse spheres [1,2], and 1 in the
photoreceptive cells of chicken eyes [7], or deducing it from
the measurement of the number variance exponent: 0.8 in
block-copolymer assemblies [4], 0.21 in jammed packings
of soft spheres [3], 1 in two-phase random media [34], and
2 in quasicrystals [5]. The case of systems with absorbing
states are related to the universality class of the Manna model
[8,10], where a field theory analysis suggests that it can
interpreted as a field-dependent diffusion coefficient [35]. The
field equations, however, are different to the model presented
here. It remains to be understood if this range of values is
a signature of different universality classes or if « is not an
universal exponent at all.
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APPENDIX A: SYNTHETIC NUMBER PARTICLE
VARIANCE

For a finite 2D system of size L x L, the density field, its
Fourier transform, and inverse transform are

N N
pr) =) Sr—r), D=
i=1 i=1

Py =LY Bue ™. (A1)
k

Here r; are the positions of the particles and the wave vectors
are k = 2nn,/L,2nny/L), with n,, € Z. In a subvolume
£ x £, the number of particles is
N = / p(r)d’r. (A2)
(234
Using the expression for the inverse transform and noting
that for a statistically homogeneous system, (px) = Ndk o, the

variance in the number of particles in the subvolume can be
computed in terms of the structure factor as [31]

2 ’
oy(t) = % > S)lwk, O, (A3)
k

where

w(k, ) = / e * gy (A4)
xt

is the Fourier transform of the subvolume indicatrix and the
prime indicates that k = 0 should be excluded from the sum.
For the square subvolumes considered here,

2sin(k,£/2) [ 2 sin(k,£/2)
P

2
wk, ) = [ } . (A9
It can be easily verified that the correct limiting values are
obtained: limy_.o 07 (£) = lim,—,; o5 (¢) = 0. For large box
sizes, the sum in Eq. (A3) can be casted into an integral
when (x, y) = (k.£, k,£) are quasicontinuous variables. If the
structure factor follows a power law, S(k) = S;(ka)*, then

S1a® 2nl/a,
0]\2,(6)= Lo 12 Ezfa\/‘ (x2+y2)a/2
4 27l/L

5 [4 sin(x/2) sin(y/2) (A6)

Xy

where a. is an ultraviolet cutoff that indicates when the
continuous description breaks down. The integral converges in
the thermodynamic limit and the lower integration limit can be
taken to zero. For « < 1, the integral converges for £ — oo,
resulting in o3 (€) ~ €>~*. For o = 1, the upper limit of the
integral must be considered, in which case 013(6) ~ {logt
[34].

To determine the effects of finite experimental sizes, we
fit the measured structure factor in the range ka < 0.6 to the
function

2
i| dxdy,

S[ka
1+ Sy(ka)"’

with S} =9.49, S, =727, n=2.4, which captures the
growth and the maximum at ka = 0.2. This is done for ' =
4.40 < I'.. Note that for simplicity we use o = 1, although
almost identical results are obtained for o« = 1.12. With this
function, the variance, Eq. (A3), is directly computed for
different system sizes [Fig. 4(a)]. In practice, the sum is done
for |n, y| < nmax and the sum converges using iy, = 100 for
L, = 100a and using ny,x = 600 for L, = 1000a.

For the analysis of the effect of a finite offset in the
prediction of the particle number variance, we consider for
simplicity the case of an infinitely large system, in which case

Sk) = (A7)
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FIG. 6. (a) Two representative |Q£| time series for particles in
the solid or liquid phase. (b) Standard deviation of |Q}], Opi)s Versus
. 4
(103) for ' = {2.5, 4, 6}. The quantities are computed over a time
series of 0.4 s, as those shown in (a). The shaded regions show the
classification of particles in the liquid and solid phases during the

analyzed time series, using |Q£| < 0.4 and |Q£| > 0.7, respectively.
Eq. (A3) reduces to [31]

2 d2k 2
oy(6) = ,00/ WS(k)Iw(lL O (A8)

We also take the windows to be circles of radius £. In that
case w(k, £) = 2w ¢Jy(k£)/k, which is isotropic, allowing to
make the integration in polar coordinates. Here J; is the Bessel
function. To model the effect of a small offset, we take the
simple expression for the structure factor

S(k) = So + Si(ka)*. (A9)
Figure 4(b) is produced substituting Eq. (A9) into Eq. (AS8).
APPENDIX B: CLASSIFICATION OF PARTICLES IN

LIQUID AND SOLID PHASES FOR COMPUTING THE
MEAN-SQUARE DISPLACEMENT

In Fig. 6(a) we present two typical time series of |Q£|, for
a particle in the solid phase and one in the liquid phase for a

FIG. 7. Static structure factor S(k) obtained from the numerical
solution of the model in 1D and 2D for different values of the spatial
coupling exponent b. The control parameters are v = 0.0002 for 1D
and v = 0.0001 for 2D.

complete time duration of 0.4 s. The former has a high average
|04, whereas the later has a lower average; both realizations
show fluctuations. In Fig. 6(b) we present the standard devia-
tion of |Q;], 0\g)- versus (103]) for T = {2.5, 4, 6}. At lower
and intermediate forcing most particles are in the liquid phase,
with some particles that occasionally condense, temporally, in
small ordered solid clusters. Well above the transition there
are many particles that stay in the solid phase during the
complete time series. At intermediate and high accelerations
a large fraction of particles fluctuate between both phases
randomly, as manifested by the larger measured i} with
a maximum around |Q£| = 0.55. Thus, to compute a dynamic
quantity, such as the mean-square displacement, we choose
particle trajectories with small fluctuations (lower O’lQﬁ‘). In
practice, to do so, we select particle trajectories with well
defined averages: |Q£| < 0.4 for liquid particles and |Q£| >
0.7 for solid ones.

APPENDIX C: NUMERICAL SOLUTION OF THE MODEL

The parameters of the dimensional model are b, i, v, Cy, A,
(,, and the system length L. The dimensions of ¥ are arbitrary
then we choose to make it dimensionless. As the product A1>
must be also dimensionless, we can take A = 1. Considering
Eq. (3), the dimensions of the parameters are [u] = L?b and
[C] = %d It is then possible to fix length and time units such

that u = C, = 1. By Eq. (2), [C)] = YL As the unities of
p are arbitrary, it is possible to choose the units of p in such a
way that C; = 1. With these choices, the dimensionless model
has only b, v, and L as free parameters.

The integration of Eq. (3) was performed using the Crank-
Nicolson method [36], where the spatial part is computed
with spectral methods using the FFTW library [37]. (2) was
integrated with the alternating-direction implicit method [36].
The characteristic time and lengths scales are t, = 1/v and
£, =t!/%. Considering the spatial and temporal discretization
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FIG. 8. Numerical solution of the model in 1D. Top: Scaled structure factor S(k)/S; for different values of v. The solid lines are the results
of the fit S(k) = Sy + S;1k%, for small wave vectors, with &« = 1.58. Bottom: Scaled offset Sy/S; as a function of the distance to the critical
point. The solid lines are linear fits. At left (right) the value of the spatial coupling exponent is b = 2 (b = 4).

Ax and At, respectively, large structures will be well resolved
if Ax K €. « Land At < t, < T, where T is the total simu-
lation time. For both equations we used a time step ¢ = 0.05
(in 1D and 2D) and spatial grid éx = 0.25 (in 1D), 6x = 0.65
(in 2D), and the number of nodes for the discretization in 1D
was N, = 4096, and in 2D in both directions was Ny = N, =
512. Simulations were first relaxed for a time 7; = 5 x 10°
(1D) and T; = 2.5 x 10° (2D) and later configurations were
recorded every AT = 250 (1D) and AT = 50 (2D), for a total
simulation time 7> = 1 x 10’(ID) and 7> = 5 x 10° (2D).

APPENDIX D: STRUCTURE FACTOR OF THE MODEL

Figure 7 presents the nonscaled structure factor for differ-
ent values of the spatial coupling exponent bind = 1 andd =
2 spatial dimensions. As predicted by the scaling analysis,
a decrease in S(k) is obtained for b > d, namely, b = 2 and
b=4in 1D, and only for » =4 in 2D. Complementary to
the main results in the article, the structure factor is also
analyzed in detail in 1D. Again, hyperuniformity is obtained
when approaching the critical point, with an exponent o =
1.58 £ 0.10 both for b = 2 and b = 4 (see Fig. 8).
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