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Role of Gaussian curvature on local equilibrium and dynamics of smectic-isotropic interfaces
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Recent research on interfacial instabilities of smectic films has shown unexpected morphologies that are
not fully explained by classical local equilibrium thermodynamics. Annealing focal conic domains can lead
to conical pyramids, changing the sign of the Gaussian curvature and exposing smectic layers at the interface.
In order to explore the role of the Gaussian curvature on the stability and evolution of the film-vapor interface,
we introduce a phase-field model of a smectic-isotropic system as a first step in the study. Through asymptotic
analysis of the model, we generalize the classical condition of local equilibrium, the Gibbs-Thomson equation, to
include contributions from surface bending and torsion and a dependence on the layer orientation at the interface.
A full numerical solution of the phase-field model is then used to study the evolution of focal conic structures
in smectic domains in contact with the isotropic phase via local evaporation and condensation of smectic layers.
As in experiments, numerical solutions show that pyramidal structures emerge near the center of the focal conic
owing to evaporation of adjacent smectic planes and to their orientation relative to the interface. Near the center
of the focal conic domain, a correct description of the motion of the interface requires the additional curvature
terms obtained in the asymptotic analysis, thus clarifying the limitations in modeling motion of hyperbolic
surfaces solely driven by mean curvature.
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I. INTRODUCTION

Deviations in local intensive thermodynamic variables at
curved surfaces determine the forces that govern their motion
outside of thermodynamic equilibrium. Equilibrium at curved
surfaces [1], initially studied to address capillary phenomena
at fluid interfaces, has subsequently played a key role in broad
classes of moving boundary problems. Notable examples in-
clude nucleation theory and curvature-driven growth in phase
transformations [2]; grain growth [3]; sintering of ceramics
[4]; and crystal growth in metal alloys, semiconductor, and
high-temperature superconducting materials [5,6], including
dendritic growth [7], polymer [8] and protein crystal growth
[9], or the related field of pattern formation in geochemical
systems [10]. More recently, attention has shifted to more
complex physicochemical and biological systems in which
interfaces and the phases they bound include complex con-
stituents and interactions and often spontaneously broken
symmetries. The interplay between microscopic processes
and mesoscopic shape is much richer and difficult to elucidate.

Interfacial curvature effects, and in particular those related
to the Gaussian curvature, are under active investigation in the
emerging field of shape engineering of surfaces and interfaces.
The goal is to leverage interfacial curvature distributions to
affect controllable and reversible changes in surface mor-
phology or to use curved substrates to control crystalization,
defect formation, and motion. Examples include shape control
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through the application of external stimuli [11], the use of
curvature to localize defects and control hierarchical bend-
ing, buckling or folding of multilayered surfaces [12,13], the
control of fracture by constraining elastic sheets to adopt fixed
curvature distributions [14], or nucleation and growth [15] and
elastic instabilities [16] on curved surfaces.

Interfacial geometry, and hence interfacial energy, are de-
scribed by the local mean and Gaussian curvatures, H and
G, respectively. The mean curvature has been the quantity of
primary physical interest in expressing interfacial energy, as it
is directly related to the change in interfacial area for a small
displacement of the interface. The classical manifestation
of this result is the Gibbs-Thomson equation, which relates
the change in chemical potential δμ relative to planarity to
the mean curvature as δμ = 2Hσh, where σh is the ther-
modynamic excess free energy (surface tension for a fluid
interface). Indeed, this equation has been central to all studies
of equilibrium morphology and interfacial motion. If the inter-
face is endowed with its own elasticity, the additional energy
is described by the Canham-Helfrich free-energy functional
[17], with dependence on H2 and G, and coefficients given by
the so-called bending moduli. The simpler case in which the
Gaussian curvature term is omitted is known as the Willmore
problem [18].

Phase-field models have been introduced as a convenient
and versatile mathematical description of complex interfacial
morphologies. The use of phase fields or Ginzburg-Landau-
type equations in the study of interfacial motion originates
from the pioneering work of Cahn and Hilliard [19] of a
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two-phase interface described by an assumed gradient free-
energy functional. This work was later extended by Allen
and Cahn [20], who showed that the method could be used
to study the unstable motion of a two-phase interface outside
of thermodynamic equilibrium. The classical result involving
motion driven by mean interfacial curvature emerges from the
Allen-Cahn equation as the singular limit in which the width
of the initially diffuse interface is taken to zero [21]. The
methodology has been subsequently generalized to the case
of a conserved order parameter [22], to interfaces separating
fluid phases [23,24], and to interfaces bounding phases that
are modulated in equilibrium [25]. We introduce a phase-field
description of a two-phase interface separating a modulated
and a disordered phase and examine the resulting thermody-
namic relations in the macroscopic limit of a thin interface.
Our results lead to an extended Gibbs-Thomson relation gov-
erning local equilibrium at a distorted interface that depends
not only on its mean curvature but also on interfacial bending
and torsion and on the alignment of the modulated phase with
respect to the interface.

Although our results apply generally to modulated-
isotropic interfaces, the particular geometries that we inves-
tigate numerically are motivated by recent experiments on
smectic-A (SmA) films [26,27]. In SmA liquid crystals, rodlike
molecules are organized in planes with a distinct interlayer
spacing. When thin films of a liquid crystal in its smectic
phase are deposited on substrate, antagonistic boundary con-
ditions (the smectic layers align perpendicularly to the sub-
strate but parallel to the air interface) induce the liquid layers
to bend into conical defects, which forms a periodic array
of toroidal focal conic domains (FCDs) on the film surface.
Sintering (i.e., reshaping of a SmA at elevated temperatures
for an amount of time, with subsequent cooling) of FCDs have
shown that the curvature-driven evaporation-condensation of
smectic layers results in a variety of transient film structures,
including conical pyramids, concentric rings, and domes. The
interplay between mean and Gaussian curvatures in the FCD
is key to the complex instabilities and film morphologies
under heat treatment that are observed in the experiments.

Smectic films displaying arrays of FCDs constitute a po-
tential platform for surface engineering through heat treat-
ment. Indeed, arrays of focal conics are being investigated as
building blocks for soft lithography patterning [28,29], base
structures for the fabrication of superhydrophobic films [30],
guides for the self-assembly of nanoparticles [31,32], and op-
tically selective microlens photomasks [33], which make for
an efficient way to produce patterns through photolithography.
However, there is very limited understanding at present of
the role of curvatures on the thermal processes and stability
of these arrays, which would be fundamental to fine-tune the
morphology and properties of resulting patterns.

A complete transport model of an isothermal smectic film
of the type described above requires consideration of an
appropriate smectic order parameter, as well as mass and
momentum conservation relations. We will focus here on the
simpler case of an smectic-isotropic interface, which is suffi-
cient to obtain equilibrium conditions at a distorted interface,
and the kinetic equation for the interface that follows from the
relaxation of smectic fluctuations. Direct isotropic to smectic

transitions are predicted in systems with sufficiently large
intermolecular anisotropic interactions [34] and have been
observed in a number of systems, including virus-polymer
mixtures, liquid crystalline polymers, and elastomers [35,36].
Similarly to a smectic-air interface, the smectic-isotropic in-
terface involves smectic layers that are parallel to the inter-
face, and we will choose boundary conditions on a substrate
so that smectic layers are perpendicular to it. Therefore, our
model system also presents stationary toroidal focal conic
configurations.

In Sec. II we briefly summarize the phase-field model
used and its relation to the more common description based
on the smectic layer displacement field. Section III studies
weakly nonlinear solutions of the model, including the one-
dimensional, stationary smectic-isotropic profile at coexis-
tence, and the amplitude equation for weakly distorted smectic
layers. The amplitude equation helps us to derive analytic
equations for the interface without dealing with the oscillatory
nature of the smectic layering, and through it we construct
a front solution connecting smectic and isotropic phases.
With this result we derive a generalized Gibbs-Thomson and
interface velocity equations and find that these equations are
different depending on whether the smectic planes are paral-
lel to the interface or perpendicular (as in exposed smectic
layers). In Sec. IV, we present our numerical results for a
three-dimensional configuration in order to verify both sta-
tionary solutions and our asymptotic results. We also examine
kinetic phenomena that are not restricted to weak interfacial
curvatures. Starting from a toroidal focal domain, we show
how curvature-induced evaporation and condensation of SmA
planes leads to morphological change and the formation of
conical pyramids. Away from regions of large curvature or
interfacial cusps, surface evolution is well described by the
generalized Gibbs-Thomson equation. In some cases mean
curvature-driven growth is sufficient to describe interface mo-
tion, whereas in others, Gaussian and mean curvature terms
are both needed to fully describe interfacial motion.

II. MODEL

The smectic phase of a liquid crystal has uniaxial sym-
metry: a layered structure along one direction and liquidlike
properties along the two transverse directions. We describe
such a phase [37] with a scalar order parameter ψ (x, t ), a
function of the three-dimensional space x and time t , that
also accounts for an isotropic phase when its value is zero.
At a microscopic scale on the order of the smectic layer
separation, the two-phase interface is not sharp but rather has
a finite characteristic width which is larger than the smectic
layer wavelength. The free energy associated with the order
parameter is [38,39]

Fs =
∫

dx
1

2

{
εψ2 + α

[(
q2

0 + ∇2
)
ψ

]2 − β

2
ψ4 + γ

3
ψ6

}
.

(1)

A similar functional is found in Amundson and Helfand [40]
to study lamellar block copolymer microstructures, based
on the Hamiltonian derived by Leibler [41] for composition
patterns in weak segregation using mean-field theory. Such

032805-2



ROLE OF GAUSSIAN CURVATURE ON LOCAL … PHYSICAL REVIEW E 100, 032805 (2019)

polymers present the same translational and rotational sym-
metries as a SmA. The free energy in both cases will be
affected in an analogous way when the molecular planes are
distorted (by splay or elongation). The liquid crystal elastic
moduli are proportional to the coefficient α: The term asso-
ciated with α in the previous energy is the one influenced by
distortions, as it penalizes the energy when the SmA layers
move away from a parallel alignment with constant interlayer
spacing, where q0 is the layer wave number. The advantage
of adopting a phase-field model for interface problems in
modulated phases is the regularization it introduces, which
allows for topological changes to occur smoothly and to
dynamically deal with macroscopic singularities.

The coefficients α, β, and γ are three constant, positive
parameters, and ε is a small bifurcation parameter that de-
scribes the distance away from the SmA-isotropic transition
temperature. The constants β and γ are chosen to give a triple
well energy (smectic layers and isotropic phase). Although
the temperature does not explicitly show in this form of free
energy, it can be adjusted through β and γ in the sense
that they change the relative stability of the smectic and
isotropic phases. The term proportional to ψ6 is necessary for
coexistence between isotropic and smectic phases [39], which
occurs at the coexistence point εc = 27β2/160γ . For ε > εc,
the equilibrium phase is isotropic, ψ = 0, whereas for ε <

εc, the smectic phase ψ ≈ 1
2 [A eiq·x + c.c.] is in equilibrium.

Here ‖q‖ ≈ q0, where q has an arbitrary orientation.
Spatially localized and periodic states are found not only

exactly at εc, but in a neighborhood of εc that grows as εc

increases [39]. This is due to a frustration effect [42], as for
ε just above εc there is compression of the localized states
with respect to the wavelength at εc, while for ε just bellow
εc there is a stretching of the localized states. Beyond this
neighborhood, the front between the two solutions will move
toward either the isotropic or smectic phase.

We consider relaxational evolution of the order parameter
away from equilibrium to be solely driven by free-energy
minimization,

∂tψ = −δFs

δψ
= −ε ψ − α

(
q2

0 + ∇2)2
ψ + β ψ3 − γ ψ5.

(2)

The model defined by Eqs. (1) and (2) forms the basis of our
analytic and numerical analyses described below. It is rota-
tionally invariant and allows tracking of arbitrarily distorted
smectic planes, as well as smectic-isotropic fronts.

A more common description of weakly distorted smectic
phases is in terms of the layer displacement field away from
a reference planar configuration u(x, t ). The order parameter
and displacement-field descriptions coincide when there is a
preferred direction of the smectic planes and for weak distor-
tions away from planarity. This is accomplished by defining
smectic layers as the surfaces of constant phase of ψ . For
reference layers perpendicular to the z direction, a weakly
distorted smectic plane is ψ = 1

2 {Aeiq0[z−u(x,t )] + c.c.}. In this
limit, the free energy follows from the Oseen-Frank energy
and is given by [43–46]

Fd =
∫

dx
[

K

2
(c1 + c2)2 + K̄c1c2 + B

2
(∂zu)2

]
, (3)

where c1 and c2 are the two principal curvatures of the
layer surface characterized by a constant φ(x) = z − u(x) =
(π/q0)m, with m being an integer that orders the layering.
This surface has a normal n = (−∂xu,−∂yu, 1) to first order
in the distortion. The constant K is the splay modulus of the
liquid crystal, K̄ is the so-called saddle-splay modulus, and
B is the compressibility modulus. Note that the splay term is
associated with an energy contribution coming from the mean
curvature H = 1

2 (c1 + c2), while the saddle splay is connected
to the contribution from the Gaussian curvature G = c1c2 to
the energy.

It is possible to relate parameters in Eq. (1) to the Oseen-
Frank constants of Eq. (3) [40]. Consider a longitudinal
distortion field u(x) = δz, with δ � 1. From Eq. (3), the re-
sulting Oseen-Frank free-energy density is fd = 1

2 Bδ2. Then,
by computing the change in free energy through Eq. (1),
where we take f ′

s to be the free-energy density for a dis-
torted ψ (x′) = A cos[q0(z + δz)] and subtracting the undis-
torted free energy fs, one finds � fs = δ2αq4

0A2. Therefore
B = 2αq4

0A2. Similarly, by considering a transverse distortion
field u(x) = δcos(Qx) and u(x) = δ[cos(Qxx) + cos(Qyy)],
one can compute the change in free-energy density according
to Oseen-Frank and the phase-field model. In the limit of
small distortions, one finds that K = 1

2αq2
0A2 and K̄ = 0.

Even though it would be required to consider higher-order
distortions to find an expression connecting K̄ to the phase-
field model parameters, we note that the saddle-splay term
in Eq. (3) is a null Lagrangian, and from the Gauss-Bonnet
theorem it follows that the energy contribution of this term
depends only on the topology of the smectic domain and
boundary conditions [47].

III. LOCAL EQUILIBRIUM THERMODYNAMICS AND
KINETICS OF WEAKLY PERTURBED SMECTIC LAYERS

Before presenting a fully numerical study of the evolu-
tion of toroidal focal domains in Sec. IV, we discuss in
this section the equilibrium conditions at a weakly curved
smectic-isotropic front (the Gibbs-Thomson equation) and
the equation of motion for the front. Both can be derived
from an asymptotic expansion of Eqs. (1) and (2) about the
isotropic to smectic transition point. Our analysis serves to
both generalize the classical Gibbs-Thomson equation and to
verify the numerical calculations of Sec. IV for fronts that
have small curvature and are away from singularities. We also
seek to understand how the orientation of the smectic layers
with respect to the interface affects these equilibrium condi-
tions and how this is related to the experimentally observed
nonequilibrium structures [27]. We first use a multiple-scale
expansion to derive an amplitude equation for Eq. (2) near
two-phase coexistence, such that we can describe the interface
between the two phases without the oscillatory behavior of
the order parameter associated with the modulated phase. We
then obtain a particular solution of the amplitude equation
that corresponds to a planar and stationary front connecting
bulk regions of smectic and isotropic phases. Third, we extend
this calculation to curved fronts by projecting the amplitude
equation into a local frame on the curved front and derive both
the chemical potential and law of motion as a function of front
curvatures alone.
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A. Weakly nonlinear analysis

A weakly nonlinear expansion valid near the smectic-
isotropic transition is introduced to describe the slow relax-
ation of modulated configurations. We set ε to be a small
expansion parameter and conduct a standard multiple-scale
analysis [48,49]. Here ε > 0 since our study lies in the region
where both ψ = 0 and periodic ψ solutions are linearly
stable. The order parameter ψ is expanded in powers of ε

as ψ (x, t ) = ε1/4ψ1 + ε3/4ψ2 + ε5/4ψ3 . . ., and slow spatial
and temporal variables are introduced according to X = ε1/4x,
Y = ε1/4y, Z = ε1/2z, and T = ε t . The weakly nonlinear
analysis will capture smectic-isotropic fronts when the am-
plitude of the order parameter in the smectic phase is small.

Since we are interested in analytic results for the
front when the phases are close to coexistence, and εc =
27β2/160γ , one needs to account for the scaling of the
parameters β and γ . We follow Sakaguchi and Brand [39],
so that we fix γ = 1 and let β control the width of the
coexistence region. Therefore, β must scale as β ∼ O(ε1/2),
and numerically we will only vary ε and β in order to control
the structure of the triple well energy. The resulting expansion
of Eq. (2) is solved order by order in ε. Note that the powers of
ε in the expansion of ψ come from the fact that the amplitude
of the oscillatory phase is given by

√
3β/5γ and that we

collect terms coming from the expansion of a Laplacian and
a biharmonic operator. At O(ε1/4) we obtain the equation
defining the stationary and one-dimensional solution in the
bulk smectic phase, ψ1 = 1

2 [Aeiq0z + c.c.]. At order ε5/4 a
solvability condition appears that leads to an equation for
the amplitude A, which, when written in the original x and
t variables, reads (details are given in Appendix A)

∂t A = −εA + 4αq2
0∂

2
z A − 4 i αq0∂z∇2

xyA

−α∇4
xyA + 3

4β|A|2A − 5
8γ |A|4A, (4)

where ∇2
xy = ∂2

x + ∂2
y and ∇4

xy = ∇2
xy · ∇2

xy. This amplitude
equation is accurate up to terms of O(ε5/4). Even though
this equation was derived for small ε, we will later show
numerically that it remains accurate for finite values of this
parameter. In our simulations we use εc � 0.5 in order to
have a coexistence region of finite width, sufficient for stable
numerical computation [39], and also to have a sufficiently
large range of ε to perform thermal treatment studies.

The amplitude equation can be written in variational form
as ∂t A = −δFA/δA∗, where A∗ is the complex conjugate of A,
and the associated free energy is

FA [A, A∗] =
∫

dx
[

α
∣∣(2q0∂z − i∇2

xy

)
A
∣∣2 + ε|A|2

− 3

8
β|A|4 + 5

24
γ |A|6

]
. (5)

Equation (5) describes up to O(ε5/4) the relaxation of slowly
varying bulk smectic modulations. The relationship between
the parameters of the phase-field and Oseen-Frank free ener-
gies can be obtained from the energy FA as well. In terms
of a small displacement u, we can write A = 1

2 |A|e−iq0u

and similarly for the complex conjugate A∗. By substitut-
ing into Eq. (5), we obtain the compressibility term as

αq4
0|A|2|∂zu|2, which when compared to the Oseen-Frank free

energy leads to B = 2αq4
0|A|2. Also from this substitution

we obtain 1
4αq2

0|A|2|∂2
x u + ∂2

y u|2 for the splay part and hence
K = 1

2αq2
0|A|2.

B. Stationary, one-dimensional, smectic-isotropic front

The amplitude equation, Eq. (4), describes the relaxation of
weakly distorted smectic planes. Near coexistence, however,
it can also be used to describe a continuous front solution
connecting smectic and isotropic regions. In order to find
such a one-dimensional solution A = A(z) for a planar front
perpendicular to the z direction, we substitute A = |A|eiφ into
Eq. (4), where φ is the phase of the complex amplitude. The
stationary phase equation leads to

∂z(|A|2∂zφ) = 0, so that |A|2∂zφ = const.

Since |A| = 0 for the isotropic phase (at z → ∞) and |A|
has a constant value in the smectic phase (z → −∞), this
implies that ∂zφ = 0. The equation for the amplitude |A| (A
for simplicity) becomes independent of the phase and is given
by

−εA + 4αq2
0∂

2
z A + 3

4βA3 − 5
8γ A5 = 0. (6)

The constant amplitude A in the smectic phase is

A2 = 3β +
√

9β2 − 40εγ

5γ
. (7)

By denoting A = Ap(z), Eq. (6) can be solved to yield a planar
smectic-isotropic front exactly at ε = εc, given by

Ap(z) =
√

18β

5γ

[
4 + exp

(
± z − z0

2
√

αs/3

)]−1/2

. (8)

The front is centered around z0 (arbitrary) and has width
proportional to αs = 40αγ /9β2.

If the smectic-isotropic interface is not planar, then the
amplitude A will deviate from Eq. (8). We expect, however,
that for weakly curved interfaces, Eq. (8) will be a good
approximation when z is replaced by the coordinate along
the local normal to the interface. For example, Fig. 1 shows
Ap and the order parameter ψ found from direct numerical
solution of Eq. (2), plotted along the local normal direction
for the cyclide shown in Fig. 2 at time t = 2. Other than the
location of the front, z0, there are no adjustable parameters.
The agreement between the two is excellent despite the fact
that εc = 0.675 is of order one. We also observed numerically
that for values of ε up to 0.85 the front solution from Eq. (8)
still agrees with the interface obtained from the order param-
eter, even though it is no longer stationary.

Note that Ap is not symmetric around z0. In what follows,
we will refer to the “smectic-isotropic interface” as the locus
of points of constant Ap or, equivalently, of constant phase
of ψ in the front region. Appendix D discusses in detail how
the location of the interface is obtained numerically from the
order parameter ψ and how the curvatures on the interface are
computed.
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FIG. 1. Phase-field order parameter profile ψ along the normal
direction λ in a SmA-isotropic phase curved interface compared with
the amplitude solution Ap for t = 2. We have chosen εc = 0.675.
Further numerical details are given in Sec. IV. The function Ap

accurately captures the envelope of the field ψ .

C. Local equilibrium at curved front and kinetic law of motion

Consider an idealized surface that corresponds to the
smectic-isotropic interface, and let p = (s1, s2) be a point on
the surface parametrized by s1 and s2. If λ is the coordinate
along the local normal to the surface (λ = 0 on the surface),
then the coordinates of a point r near the surface can be
written as r(λ, s1, s2) = p(s1, s2) + λn (s1, s2), where n is the
local normal at p. The coordinates s1 and s2 are aligned
with the principal directions, associated with the principal
curvatures c1 and c2. We now seek solutions of Eq. (4) of the
form A(r) = Ap[λ(r, t )].

We first compute the difference in chemical potential be-
tween a planar SmA-isotropic interface and a configuration
with a weakly distorted interface, where the smectic layers
remain parallel to the interface (perpendicular to the λ direc-
tion). As previously noted, the phase φ of the amplitude is
a constant near εc, and the amplitude is a real quantity. The
chemical potential μ in terms of the slowly varying amplitude
A is given by μ = δFA/δA, and so

μ = εA − 4αq2
0∂

2
z A + α∇4

xyA − 3
4βA3 + 5

8γ A5. (9)

FIG. 2. (a) Clifford torus configuration as represented by the
phase field. (b) For reference, we show internal segments for a family
of Clifford tori.

The chemical potential μ f for flat interface perpendicular
to the z direction can be directly obtained for a front A
aligned with z. In order to obtain the chemical potential μc

associated with a curved interface, it is necessary to solve
the corresponding amplitude equation. The scaling in ε for
the coordinates transverse to the smectic-isotropic interface is
X = ε1/4x and Y = ε1/4y. We assume that the same scaling
applies to s1 and s2. The induced scaling of the principal
curvatures is c1, c2 ∼ O(ε1/2), which follows from the fact
that for small curvatures the mean curvature is half the trace of
the Hessian matrix. The second derivative in the z direction in
Eq. (9) generalizes to a second derivative in the normal direc-
tion λ. Additional contributions come from the curvatures and
are obtained by expanding the differential operators on local
interface coordinates (Appendix B details their expansion in
terms of mean H and Gaussian G curvatures). We find

μc = εA − 4αq2
0[ ∂λ − 2H − (4H2 − 2G) λ

+ 2H (3G − 4H2) λ2] ∂λA − 3
4βA3 + 5

8γ A5.

For consistency, we have retained curvature terms below
order ε7/4, the same order used in the derivation of Eq. (4).
Note that (4H2 − 2G) = c2

1 + c2
2 is known as the bending

curvature. By multiplying both sides by ∂λAp, integrating over
λ, and subtracting the chemical potential for a planar surface
(Appendix C) we find

δμ�A = 2Hσh + (4H2 − 2G)σb − 2H (3G − 4H2)σt . (10)

This equation is the condition of local equilibrium, or the gen-
eralized Gibbs-Thomson equation in our model. The chemical
potential difference between a curved and a planar surface
δμ is given as a function of the surface curvatures, the
discontinuity in amplitude between bulk smectic and isotropic
phases, �A, and three coefficients that depend explicitly on
the one-dimensional planar front solution Ap:

σh = 4αq2
0

∫ ∞

−∞
dλ (∂λAp)2

σb = 4αq2
0

∫ ∞

−∞
dλ (∂λAp)2λ (11)

σt = 4αq2
0

∫ ∞

−∞
dλ (∂λAp)2λ2.

The first coefficient, σh, is the standard surface tension coeffi-
cient that relates the change in chemical potential to the mean
curvature of the surface. For weakly curved surfaces, this is
the dominant term as it is inversely proportional to the radii of
curvature. The second and third terms are of second and third
order in the inverse radii of curvature and describe deviations
from the classical form of the Gibbs-Thomson equation. They
represent interface bending (σb) and torsion (σt ) contributions,
respectively, and are usually neglected. We retain all three
terms in the expansion of the chemical potential in what
follows because domains bounded by toroidal focal conics
include regions in which the mean curvature vanishes, as
well as regions of large curvature near the conic center. We
will investigate numerically the accuracy of Eq. (10) in those
regions. More generally, surface curvatures become large near
regions of morphological singularities, and our result may
extend the range of validity of the Gibbs-Thomson equation
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FIG. 3. Stationary values of the (a) mean and (b) Gaussian curvatures computed for the SmA surface from the phase field in Fig. 2. They
are plotted along the radial direction (r = 0 at the center of the torus) and compared with the analytic curvatures of a Clifford torus. We use
N = 5123 and coexistence parameters, with α = 1, β = 2, γ = 1, and ε = 0.675.

in the vicinity of the singularities. Finally, we stress that all
three coefficients can be obtained from Ap given in Eq. (8)
and therefore are completely determined by the parameters of
the model, Eq. (1). Note in particular that σb �= 0 because the
solution Ap is not symmetric around z0.

A generalized Gibbs-Thomson equation similar to Eq. (10)
has been previously given by Buff [50] and Murphy [51] in
the context of curved fluid interfaces, albeit using different
methods [52]. The curvature terms in Eq. (10) coincide with
theirs, except we have 2H (3G − 4H2) = −(c3

1 + c3
2) instead

of 2HG alongside the interface torsion. Also, their curvature
terms are associated with similarly defined coefficients σh,
σb, and σt (in fact, the terminology comes from the work of
Murphy [51]).

A kinetic equation for the smectic-isotropic surface can be
derived with a similar projection operation. The left-hand side
of Eq. (4) is given by by ∂t A = ∂λ(Ap)Vn, where Vn is the local
normal velocity of the surface of constant Ap. The expansion
of the right-hand side of Eq. (4) is the same as the right-hand
side of Eq. (9). Multiplication by ∂λAp and integration over
λ (see Appendix C) gives the kinetic law of motion for the
interface,

Vn = −4αq2
0

[
2H + (4H2 − 2G)

σb

σh
− 2H (3G − 4H2)

σt

σh

]
.

(12)

The lowest-order term is the classical law relating the normal
velocity to the local mean curvature, while the remaining
terms are the higher-order contributions (below ε7/4). As is
the case with Eq. (10), all coefficients are determined by the
parameters of the model.

The generalized Gibbs-Thomson equation (10), and the
kinetic law, Eq. (12), have been derived under the assumption
that the smectic layers are parallel to the smectic-isotropic
interface. However, some of the configurations observed out
of equilibrium in the experiments of Kim et al. [27] involve
pyramidal structures in which smectic layers are exposed, so

that they are aligned perpendicularly to the interface. In this
case, for a planar interface the smectic layers are perpendic-
ular to z, whereas the front normal is along x (or y). The
equation describing the planar front for this configuration is

−εA − α ∂4
x A + 3

4βA3 − 5
8γ A5 = 0. (13)

We cannot find an analytic solution for this front analogous
to Eq. (8), but it can be obtained numerically. For a weakly
curved interface, a similar analysis to the previous case can be
carried out, where the biharmonic from the amplitude equa-
tion (4) is expanded when perturbations off coexistence are
introduced in the weakly curved surface description (details
given in Appendix B). This calculation gives the change in
chemical potential at a curved interface relative to planarity as

δμ�A =
[

1

2
∇2

s H + 2H (H2 − G)

]
σh

q2
0

. (14)

The coefficient σh is again given by Eq. (11), although in this
case it must be computed approximately from the numerically
determined solution of Eq. (13). Importantly, however, the
coefficient σh/q2

0 is not a surface tension (energy per unit sur-
face) due to the fact that the smectic layers are perpendicular
to the interface in this configuration. In order to compute σh

for specific parameter values so as to carry out comparisons
with the numerical solutions of the full phase-field model
(in Sec. IV), we have obtained a numerical solution of A
in Eq. (13) through a finite-difference relaxation method.
For the parameter values of the model used (q0 = 1, α = 1,
β = 2, ε = 0.675, and γ = 1) we find that (σh)⊥/(σh)‖ ≈
2.28, which means that the effective tension for layers
perpendicular to the interface is more than 100% larger than
for layers parallel to the interface (see also Ref. [27]).

In analogy to the case with layers parallel to the interface,
we can derive a kinetic law for the perpendicular interface. We
find

Vn = −4α
[

1
2∇2

s H + 2H (H2 − G)
]
. (15)
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One remark about the derivation of Eqs. (14) and (15)
is that integrals across the interface of the form σh2 =
4αq2

0

∫
dλ (∂2

λAp)(∂λAp) and σh3 = 4αq2
0

∫
dλ (∂3

λAp)(∂λAp)
that appear in the derivation vanish in the limit of small ε since
σh2/σh and σh3/σh scale as ε1/4 and ε1/2, respectively. The
kinetic equation (15) that results has a form similar to that of
a Willmore flow [18], although it differs by a factor of 1/2 in
the surface Laplacian. Similar kinetic laws (also called fourth-
order flows) in which the biharmonic operator plays a role in
the dynamics [53,54] have been examined in connection with
the biharmonic heat equation and the Willmore flow [55].

IV. NUMERICAL STUDY OF TOROIDAL
FOCAL CONIC INSTABILITIES

We use the phase-field model given by Eqs. (1) and (2) to
study the evolution of a single focal conic domain of a smectic
phase in contact with an isotropic phase. The computational
cell is a three-dimensional cubic mesh of size 5123 or 10243.
Boundary conditions of the computational domain are zero
normal derivatives of ψ and zero normal derivative of the
Laplacian of ψ . Focal conic domains, when present, are
compatible with these boundary conditions, since they favor
parallel alignment of the molecules with respect to the bound-
aries. Unless otherwise noted, we use α = 1, β = 2, and γ =
1 in our calculations. These parameters yield a coexistence
value of εc = 0.675. We also use q0 = 1 as the reference
wave number. The focal conic configuration used for initial
conditions (e.g., Fig. 2) is defined by ψ (λ) = A cos(q0λ) in
the smectic, where λ is the normal direction, q0 = 1, and then
amplitude A is given by Eq. (6). This phase is in contact with
an isotropic phase ψ = 0.

Equation (2) is solved numerically by a pseudospectral
method, in which gradient terms are computed in Fourier
space and nonlinear terms in real space. Space discretization,
based on 16 points per wavelength, is �x = 2π/(16q0). In-
tegration in time is of second order with a Crank-Nicholson
algorithm for the linear part of the equation and a second-
order Adams-Bashforth method for the nonlinear terms. The
time step used is �t = 5 × 10−4. We have developed a custom
C++ code based on the parallel Fastest Fourier Transform in
the West (FFTW) library and the standard message passing
interface (MPI) for parallelization. In order to accommodate
the stated boundary conditions, we use the discrete cosine
transform. Further details on the computational method, track-
ing of the the smectic-isotropic surface, and calculation of the
interfacial curvatures can be found in Appendix D.

As discussed earlier, the value that we choose for εc

allows for a reasonably large region of coexistence. This
is advantageous from a numerical standpoint, as for small
εc it is a challenging task to maintain coexistence in three
dimensions. At the same time, since the interface equations
were derived for small values of ε, we had to perform a
numerical check to confirm that we were still within the
limit of validity of the asymptotic analysis. We observed that
while the solution Ap from Eq. (8) was derived for small
ε, it still accurately describes the envelope for εc = 0.675,
as observed along the curved interface of a focal conic in
Fig. 1. Even when displacing the system from coexistence,
the solution Ap remains an approximate description of the

interface to ε ∼ 0.85. The validity of the interface equations
for this value of εc is further confirmed by our numerical
results for the interface velocity, as will be presented in this
section.

A. Stationary Clifford torus

In order to verify the accuracy of the numerical scheme,
we first consider a toroidal configuration at coexistence ε = εc

and examine smectic planes bent in the shape of a focal conic.
Friedel [56] was the first to associate focal conic domains with
Dupin cyclides, arguing that smectic molecular layers would
bend in this geometrical fashion while remaining parallel
to the interface. Later, these cyclides were also shown to
be stable configurations of a SmA via energy minimization
of the Oseen-Frank energy given by Eq. (3) [44,57,58]. If
the layer spacing of the smectic in equilibrium is assumed
to remain approximately constant, and given that the term
proportional to the Gaussian curvature is a null Lagrangian,
then minimization of Eq. (3) reduces to the minimization of∫

dx(K/2)H2, where K is the splay elastic modulus. This
is the classical Willmore problem. Surfaces that minimize
this energy are Willmore surfaces, which include minimal
surfaces, spheres, and Dupin cyclides (in particular, the axially
symmetric Clifford torus), and are obtained by an evolution
that follows the Willmore flow [18].

We have verified that stationary solutions of the phase-field
model agree with this result. We consider an initial condition
with layers bent in a cyclide configuration, as a half-torus, in
which there is no self-intersection of layers; hence, we have a
disk of isotropic phase inside the torus and in contact with the
substrate. We then compute the evolution of this configuration
by integrating Eq. (2). The evolution leads to the stationary
Clifford torus shown in Fig. 2. Every cross section along the
radial direction will display two sections of the torus. We show
our numerical results in Fig. 3 for both mean and Gaussian
curvatures of a cross section of the surface. They agree very
well with the curvatures obtained from an analytic Clifford
torus of the same size.

The circular arrangement of the planes seen from a cross
section in the radial direction is known as a target pattern in
the phase-field literature [59], such that we can observe two
quarter circle targets in a cross section, one on each side of
the center hole. The target pattern is a stationary solution of
Eq. (2) in two dimensions. This can be seen by writing Eq. (4)
in polar coordinates, with r the radial coordinate and r = 0
at the center of the target. The solution for r � 1 is A(r) =√

1 − 1/r2 As, where As is the solution for the polynomial part
of the amplitude equation given by Eq. (7). Since the Clifford
torus is an axially symmetric cyclide, this observation about
the target patterns implies that such a torus should also be a
solution for Eq. (2), as verified in Fig. 2.

B. Evolution of focal conic domains at coexistence

We consider a focal conic at coexistence involving a
macroscopic cusp where smectic layers self-intersect. This
initial configuration is no longer stationary, and the evolu-
tion of the order parameter is shown in Fig. 4. Near the
cusp, where the mean curvature is negative, a small smectic
region nucleates, whereas in the outer region of positive
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FIG. 4. (a) Three-dimensional phase field and (b) cross section for a focal conic which is unstable at its core, extracted from time t = 150.
Parameters are set within the coexistence region (α = 1, β = 2, γ = 1, and ε = εc = 0.675).

mean curvature, smectic layers near the interface evaporate.
A stationary configuration is reached which is shown in the
figure. Smectic condensation at the cusplike depression is also
observed by experiments, where material transfers along the
interface owing to the variation of the local vapor pressure at
the interface [27].

Figure 5 shows results for a similar initial configuration but
with a larger number of smectic layers. This configuration is
closer to the focal conics observed in SmA films and illustrates
the instability of the layer cusps deep inside the smectic do-
main. Curvatures are smaller in magnitude when compared to
the previous case, in particular close to the singularity, which
slows down the dynamics. We still observe some condensation
at the core under coexistence, but no evaporation is seen near
the boundaries. This chevron pattern has also been observed
in phase-field models of low-angle grain boundaries [60].

C. Evolution of focal conic domains away from coexistence

We next study the evolution of a toroidal focal conic initial
condition away from coexistence. We take ε > εc, which
corresponds to a thermal treatment in which the isotropic
phase has lower free energy than the smectic. The initial con-
figuration is similar to one considered in Fig. 5 but with more
smectic layers. We observe that smectic layers in the outer
region evaporate, leading to a conical pyramid in the center, as
shown in Fig. 6. The evaporation of each layer stops once the
layer border aligns with the one above, creating an interface of
stacked layers. The pyramid has positive Gaussian curvature,
in contrast to the initial layers of negative Gaussian curvature.
Similar pyramidal morphologies are observed experimentally
[27].

During the evaporation of the smectic film, we compare
the numerically computed interface normal velocity, given by
Vn = ∂tψ/|∇ψ | with the asymptotic predictions of Eqs. (12)

FIG. 5. Cross section of the phase-field order parameter representation for a toroidal focal conic domain (TFCD) at coexistence (α = 1,
β = 2, γ = 1, and ε = 0.675). (a) Numerical solution for the starting stage. (b) Later stage, time t = 50, we see some deposition at the core
of the defect.
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FIG. 6. (a) Three-dimensional phase field and (b) cross section for a conical pyramid that appears due to the localized evaporation of
smectic layers around the edges, extracted from time t = 50. Parameters are set such that the isotropic phase is thermodynamically favored
(α = 1, β = 2.0, γ = 1.0, and ε = 0.8).

and (15). We consider first the case of smectic layers parallel
to the interface, with velocity described by Eq. (6). The
initial configuration adopted is the same as the one used to
generate Fig. 5. We take ε = 0.75, and all numerical data
shown corresponds to the initial stages of evolution (t = 5)
so that the SmA layers remain parallel to the interface across
the entire surface outside a small neighborhood around the
cusp. The values of the coefficients σh, σb, and σt used are
given in Eq. (11) with Ap defined in Eq. (8). Local mean and
Gaussian curvatures are directly obtained from the evolving
phase field as discussed in Appendix D. Figure 7 shows the
normal velocity computed from the full phase-field model,
the normal velocity predicted by Eq. (12), and the normal

FIG. 7. Local normal velocity of SmA-isotropic interface, ex-
tracted from a focal conic under sintering (ε = 0.75 > εc). The
numerically determined surface velocity is plotted against the gen-
eralized velocity prediction for planes parallel to the interface and
compared to the classical prediction of mean curvature-driven mo-
tion. N = 10243, defect core at x ≈ 200.

velocity that follows from mean curvature motion alone (i.e.,
with σb = σt = 0). The system size is N = 10243 so that 0 <

x < 401. The interface singularity is located at x ≈ 200 in the
figure. While there is good agreement among all three results
away from the center, differences appear in the high-curvature
region toward the center of the domain. Specifically, motion
driven by mean curvature alone near the focal conic center
deviates from the computed interface velocity, including its
sign. On the other hand, the normal velocity predicted by
the higher-order velocity equation agrees with the numerical
value until very close to the center of the focal conic. We note
that there are no adjustable parameters in the results shown in
Fig. 7, except for a uniform velocity shift owing to the lower
energy of the isotropic phase, as ε > εc. We observe that the
region in which mean curvature-driven growth deviates from
the full numerical calculation is rather small. We estimate that
the radius of this region would be on the order of 30 nm in
the experiments of Ref. [27] and hence below the resolution
of optical detectors. Nevertheless, our calculation is consistent
with the experimental observation that pyramids form due to
smectic layer evaporation away from the focal conic center,
not nucleation of new smectic layers at the center.

As mentioned previously, the results shown in Fig. 7 were
taken early in the evolution, so that the pyramidal structure
was just beginning to form. As the pyramidal structure grows
to macroscopic size, as in Fig. 6, the smectic planes in the
pyramid are perpendicular, not parallel, to the smectic-air
interface. This agrees with the observed morphological recon-
struction of smectic films during thermal sintering [27]. As
a consequence, the local normal velocity in this case should
be given by Eq. (15). Consider a large pyramidal structure,
shown in Fig. 8, taken from a calculation with N = 5123,
ε = 0.8 and after a fairly long time of t = 200. As observed,
the pyramidal surface is smooth enough for the curvatures to
be computed without issues, and the corresponding interfacial
velocity is shown in Fig. 9 (left). We find that the normal ve-
locity is approximately constant and slightly negative over the
entire pyramid, meaning that the structure shown is uniformly
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FIG. 8. (a) Cross section and (b) interface location for a pyramidal morphology obtained from a focal conic under thermal sintering,
extracted from time t = 200. Coloring of the interface location indicates the height z. Initial condition was composed of a focal conic with layers
reaching almost the top (z = 200) of the domain, using N = 5123. Parameters are such such that the isotropic phase is thermodynamically
favored (α = 1, β = 2.0, γ = 1.0, and ε = 0.8).

evaporating, albeit slowly. The curvatures of the moving inter-
face are shown in Fig. 9 (right). The mean curvature squared
H2 is almost identical to the Gaussian curvature G, which,
given the interfacial kinetic equation Eq. (15), accounts for
the small and almost constant normal velocity over the entire
pyramid interface. The constant rate of evaporation is due to
the difference in bulk energy between the two phases when
ε > εc and does not depend on local curvatures.

We conclude by presenting numerical results for a larger
system (N = 10243), with ε = 0.8, so that we can examine
the different interface orientations within a single numerical
solution. The initial configuration is a focal conic domain. As
the configuration evolves, smectic layers away from the mid-
dle (and parallel to the interface) evaporate while a pyramid
(with layers perpendicular to the interface) forms at the center.

The transient morphology obtained at t = 50 is shown in
Fig. 10. The local normal velocity in the outer region is given
by Eq. (12), whereas the inner region local normal velocity
is given by Eq. (15). As was the case in the experiments of
Ref. [27], the conical pyramid forms due to curvature-induced
evaporation of layers in the outer region, whereas evaporation
is essentially negligible in the pyramidal region owing to the
balance of mean and Gaussian curvatures. Our numerically
obtained normal velocities for this interface are shown in
Fig. 11 (left). As before, there is a constant background
shift of both curves arising from the the constant energy
difference between the bulk phases, but there are otherwise no
adjustable parameters. The agreement between the numerical
solution and the predictions of the asymptotic analysis is
excellent.

FIG. 9. Interface velocity and curvature comparison for the pyramid with ε = 0.8 shown in Fig. 8. (a) The numerically determined surface
velocity is plotted against the generalized kinetic law for planes perpendicular to the interface. (b) Mean curvature squared, H2, approximately
matches the Gaussian curvature G for this morphology.
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FIG. 10. (a) Expanded cross-section blow up and (b) interface location right for a focal conic during thermal sintering, showing a pyramid
of appreciable size, extracted from time t = 50. We used N = 10243, for which the numerical solution reveals the pyramidal structure being
formed at the core around layers that remain parallel to the interface. Parameters are such such that the isotropic phase is thermodynamically
favored (α = 1, β = 2.0, γ = 1.0, and ε = 0.8).

Finally, we show in Fig. 11 (right) the interfacial normal
velocity that would result from mean curvature-driven growth
alone. The agreement with the numerical result is quite good
in the outer region of small curvature, where the effects of
bending and torsion are negligible. Near the center, however,
mean curvature-driven growth fails to describe the numerical
results.

V. CONCLUSIONS AND DISCUSSION

In this work we have introduced a model for a smectic-
isotropic system from which we have derived a generalized
Gibbs-Thomson and interfacial motion equations, revealing
the role of the Gaussian curvature and the orientation of
a modulated phase on local equilibrium thermodynamics
and kinetics of the interface. The computational challenges

of tracking a complex and moving smectic-isotropic phase
boundary have been addressed by using a phase-field model.
We have presented an asymptotic analysis of the solutions of
the model, valid near smectic-isotropic coexistence, and for
weakly curved interfaces. Through this analysis we obtain
a dynamical equation for the amplitude that modulates the
periodic smectic layering. This procedure allows us to obtain
physical insights about local equilibrium thermodynamics and
evaporation-condensation dynamics of the smectic-isotropic
interface without dealing with the oscillatory nature of the
layering description.

The work is directly motivated by recent experiments in
the sintering of toroidal focal conic domains in thin films of
smectic liquid crystals [27,61], which show novel morpholo-
gies, including conical pyramids and concentric rings. By both
simulating the sintering of focal conics and comparing the

FIG. 11. Interface velocity for a middle cross section. (a) The numerically determined surface velocity is plotted against the two generalized
kinetic laws, one for each region. (b) The evolution by mean curvature velocity prediction strongly diverges in the central pyramidal region.
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results to an asympotic analysis of the governing equations,
we reproduce the evaporation process that takes place in the
experiments, while clarifying the limitations of classical in-
terface equations. Our results portray how focal conics evolve
to conical pyramids through evaporation and condensation
of the smectic layers, as observed in the experiments. The
analysis also shows that when smectic planes are parallel to
the interface, three surface-energy coefficients are necessary
to describe local equilibrium thermodynamics and kinetics to
the order of approximation considered. These coefficients can
be computed analytically within the model, from Eq. (11). For
the case of planes perpendicular to the interface, the chemical
potential at a curved interface is not proportional to the local
mean curvature but rather a Willmore-type problem emerges.

Our findings expand the range of understanding and con-
trol of micropatterning of smectic films, as templates for
superhydrophobic surfaces [30], guides for colloidal disper-
sion [31,32], and soft lithography [28,29]. More broadly, the
present results can guide future experiments in other modu-
lated phases such as block copolymers. Our generalized the-
ory should also benefit research in biomembranes, which have
already reported connections between the Gaussian curvature
and protein binding [62], as well as work on nucleation and
growth on curved surfaces [15].

We mention finally that our analysis focuses on the
smectic-isotropic interface, whereas the experiments in thin
films concern a smectic-air interface instead. Therefore our
analysis does not contain any hydrodynamic stresses at the
smectic-air boundary or any resulting flows. Although ve-
locity fields were not measured in the experiments, and the
results were interpreted in terms of the same evaporation-
condensation mechanisms that we have examined here, the ex-
cess energies that introduce corrections to the Gibbs-Thomson
equation will also lead to normal stresses at the boundary.
Work that includes these stresses is currently in progress.
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APPENDIX A: AMPLITUDE EQUATION

The phase-field order parameter introduced in Sec. II is
driven by energy minimization, with the following dynamical
equation:

∂tψ = −ε ψ − α
(
q2

0 + ∇2
)2

ψ + β ψ3 − γ ψ5. (A1)

Our goal is to derive an amplitude equation [42,48,49] de-
scribing the motion of the envelope that describes the SmA-
isotropic front without the oscillatory behavior of the phase
field. We perform this analysis for small positive values of ε,

ε � 1 such that the amplitude of the order parameter is also
small. Assuming the SmA layers are perpendicular to the z di-
rection, the solution representing this phase is approximately
ψ (x, t ) ≈ 1

2 (Aeiq0z + c.c.). Space and time can be separated
in fast and slow scales, where the fast variables are {x, y, z, t},
and the slow variables are {X,Y, Z, T }. If we consider this
amplitude to be slowly modulated along the perpendicular
direction to the layers, then we can set a distinction between
the fast varying carrier exp(iq0z) and the slowly varying the
amplitude A(X,Y, Z, T ).

The slow variables scaling can be obtained by introducing
small perturbations in the different directions. Although the
energy is rotationally invariant, perturbations in x, y and z will
scale differently. For instance, take perturbations in z, ψ =
ψ (x, y, z + δz, t ), and linearize Eq. (A1),

∂tψ = [−ε − α
(
2q0δz + δ2

z

)2]
ψ

= [−ε − α
(
4q2

0δ
2
z + 4q0δ

3
z + δ4

z

)]
ψ. (A2)

Now compare it to perturbations along x (or y), ψ = ψ (x +
δx, y, z, t ):

∂tψ = ( − ε − α δ4
x

)
ψ. (A3)

From Eqs. (A2) and (A3), we observe that the consistency
condition between the lowest-order terms acting on the slowly
modulated envelope should be

∂t A ∼ εA ∼ ∂2
z A ∼ ∂4

x A ∼ ∂4
y A.

Hence, the slow variables scale as

X = ε1/4x, Y = ε1/4y, Z = ε1/2z, T = εt . (A4)

Note that β ∼ ε1/2, since at the coexistence point εc =
27β2/160γ . Also, one can show that both ψ = 0 and the
nontrivial solution are stable for ε > 0 up to the turning point
εt p = 9β2/40. For larger ε only the trivial solutions exists and
is stable. For small values of ε these two points become very
close, and they are also within the range of small perturbations
from the bifurcation point ε = 0.

From the proposed scaling and the chain rule, the deriva-
tives from Eq. (A1) can be recast as

∂z → ∂z + ε1/2∂Z , ∂x → ε1/4∂X , ∂y → ε1/4∂Y , ∂t → ε∂T .

The dynamical equation for the order parameter can then
be expanded in terms of these fast and slow variables. By
writing its linear part as the operator L, we have that

L − ∂t = −ε − α
(∇2 + q2

0

)2 − ∂t

= −ε − α
(
(∂z + ε1/2∂Z )(∂z + ε1/2∂Z )

+ ε1/2∂2
X + ε1/2∂2

Y + q2
0

)2 − ε∂T

= Lc + ε1/2L1 + εL2 + ε3/2L3 + ε2L4.

The phase-field order parameter ψ can be expanded in
terms of ε about the zero solution as

ψ = ε1/4ψ1 + ε3/4ψ2 + ε5/4ψ3 + · · ·
By substituting these expansions back into the phase-field
dynamical equation, we collect the different terms according
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to their order in ε. Starting with order ε1/4, we have

Lcψ1 = 0 ⇒ ψ1(x, t ) = 1
2 [A11 e iq0z + c.c.].

For order ε3/4, the following is satisfied:

Lcψ2 + L1ψ1 = 0 ⇒ ψ2(x, t ) = 1
2 [A21 e iq0z + c.c.].

Finally, for order ε5/4 we find extra contributions owing to
the nonlinear terms in Eq. (A1),

Lcψ3 = −L1ψ2 − L2ψ1 − βψ3
1 |±iq0 + γψ5

1 |±iq0

= −[−ε + 4αq2
0∂

2
Z − i4αq0∂Z

(
∂2

X + ∂2
Y

)
−α

(
∂4

X + 2∂2
X ∂2

Y + ∂4
Y

)
+ 3

4β|A11|2 − 5
8γ |A11|4 − ∂T

]
(A11 e iq0z + c.c.).

From the solvability condition (Fredholm’s alternative),
this equation has a solution if

∂T A11 = −εA11 + 4αq2
0∂

2
ZA11 − i4αq0∂Z

(
∂2

X + ∂2
Y

)
A11

+ 3

4
β|A11|2A11 − α

(
∂4

X + 2∂2
X ∂2

Y + ∂4
Y

)
A11

− 5

8
γ |A11|4A11.

Since the fast-varying carrier is now removed from this
equation, we can rescale it back to the original variables
{x, y, z, , t}. Expanding A as

A = ε1/4A11 + ε3/4A21 + · · ·
and going back to the original variables, we find the amplitude
equation for A in complex form,

∂t A = −εA + 4αq2
0∂

2
z A − 4 i αq0∂z∇2

x;yA − α∇4
x,yA

+ 3
4β|A|2A − 5

8γ |A|4A.

Although the current analysis was performed around small
positive values of ε, we observe numerically that this am-
plitude equation and its stationary solutions (discussed in
Sec. III) accurately describe the two phases and the front
between them at least up to εc ≈ 1.

APPENDIX B: THE LAPLACE-BELTRAMI OPERATOR
FOR A CURVED SURFACE

Let S ⊂ IR3 be a regular orientable surface, where Tp(S) is
the tangent plane to S at p ∈ S. Define the following sets of
orthogonal frames:

{t1, n, b1}, t1 ∈ Tp(S)

{t2, n, b2}, t2 �= t1, t2 ∈ Tp(S).

The differential dNp : Tp(S) → Tp(S) of the Gauss map N :
S → S2 of S, where n ∈ N (S) is a self-adjoint linear map.
Therefore, for each p ∈ S there exists an orthonormal basis
{t1, t2} of Tp(S) such that

dNp(t1) = −c1t1, dNp(t2) = −c2t2.

See Do Carmo [64] for a proof of this theorem. Hence, t1

and t2 in our frames are defined as the eigenvectors at p,
with eigenvalues (principal curvatures) c1 and c2. Since t1 and

t2 are orthonormal, we can simply set an orthonormal frame
aligned with the principal directions

{t1(p), t2(p), n(p)}, p ∈ S.

Writing the surface coordinates as s1 and s2, we have p =
(s1, s2) ∈ S. For a point near the surface S, we write the
position vector as

r(λ, s1, s2) = p(s1, s2) + λn(s1, s2),

where λ is the normal coordinate. Therefore, we obtain the
following set of derivatives:

dr
ds1

= dp
ds1

+ λ
dn
ds1

= (1 − λc1)t1

dr
ds2

= dp
ds2

+ λ
dn
ds2

= (1 − λc2)t2

dr
dλ

= n.

The covariant metric tensor (first fundamental form) can
now be computed by

gi j = 〈ri, r j〉 =
⎡
⎣1 0 0

0 (1 − λ c1)2 0
0 0 (1 − λ c2)2

⎤
⎦.

From the orthogonality of the covariant and contravariant
metric tensors, the contravariant form is

gi jg
i j = δi

j ⇒ gi j =
⎡
⎣1 0 0

0 (1 − λ c1)−2 0
0 0 (1 − λ c2)−2

⎤
⎦.

For this principal coordinate system (λ, s1, s2), the in-
finitesimal distance with respect to a point on the surface is

dr = ∂r
∂λ

dλ + ∂r
∂s1

ds1 + ∂r
∂s2

ds2

= n dλ + (1 − λc1)t1ds1 + (1 − λc2)t2ds2.

With the metric tensor at our disposal, it is possible to obtain
the Laplace-Beltrami operator for the Riemannian manifold
associated with the coordinate system (λ, s1, s2). The operator
has the following form:

∇2 = 1

g1/2
∂i(g

1/2gi j∂ j ),

where g = det(g) = (1 − λ c1)2(1 − λ c2)2. We expand fur-
ther as

∇2 = gi j∂i j + ∂i(g
i j )∂ j + 1

g1/2
∂i(g

1/2)gi j∂ j

gi j∂i j = ∂2
λ + (1 − λ c1)−2∂2

s1
+ (1 − λ c2)−2∂2

s2

∂i(g
i j )∂ j = 2λ∂s1 c1

(1 − λ c1)3
∂s1 + 2λ∂s2 c2

(1 − λ c2)3
∂s2

1

g1/2
∂i(g

1/2)gi j∂ j

= 1

g1/2

{
[−(c1 + c2) + 2λ c1c2]∂λ

+ [−λ∂s1(c1 + c2) + λ2∂s1(c1c2)](1 − λc1)−2 ∂s1

+ [−λ∂s2(c1 + c2) + λ2∂s2(c1c2)](1 − λc2)−2 ∂s2

}
.
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For a weakly distorted interface, derivatives in the normal
and the tangential direction scale differently in terms of curva-
tures: ∂λ ∼ 1, ∂s1 ∼ c1, and ∂s2 ∼ c2. Hence, by neglecting the
higher-order curvature contributions for tangential derivatives,
the Laplace-Beltrami operator can be reduced to

∇2 ≈ ∂2
λ + ∂2

s1
+ ∂2

s2
+ −(c1 + c2) + 2λ c1c2

1 − λ(c1 + c2) + λ2c1c2
∂λ

= ∂2
λ + ∂2

s1
+ ∂2

s2
+ ∂λ[ln(1 − λ(c1 + c2) + λ2c1c2)]∂λ.

By expanding ln(1 + x) = x − (1/2)x2 + (1/3)x3 + · · · with
x = (−2λH + λ2G), where H = 1

2 (c1 + c2) is the mean cur-
vature and G = c1c2 the Gaussian curvature, the previous
equation becomes

∇2 = ∂2
λ + ∂2

s1
+ ∂2

s2
+ ∂λ

[ − 2λH + λ2G

− 1
2 (4λ2H2 − 4λ3GH + λ4G2)

+ 1
3 (−8λ3H3 + ...)

]
∂λ + h.o.t. (B1)

By rearranging the terms, Eq. (B1) may be cast with respect
to its leading-order terms as

∇2 ≈ ∂2
λ + ∇2

s + (−2H − (4H2 − 2G)λ + 2H (G − B)λ2)∂λ,

where ∇2
s = ∂2

s1
+ ∂2

s2
. Note that B = 4H2 − 2G = (c2

1 + c2
2 )

is known as the bending curvature and that 2H (3G − 4H2) =
−(c3

1 + c3
2). We do not substitute B for second-order curvature

term to leave the Gaussian curvature explicit in it.
The biharmonic ∇4 can similarly be expanded in curved

coordinates from the Laplace-Beltrami operator in Eq. (B1).
This operator is needed to derive the Gibbs-Thomson equation
for the case of layers perpendicular to the interface. We collect
all terms up to third order in curvatures. We find the term
(∂2

λ + ∂2
s1

+ ∂2
s2

)2 as well as additional terms associated with
the first, second, and third derivatives with respect to λ. As we
are unable to say anything about the possible order and role of
derivatives in λ, we keep all of these terms; however, we keep
only the lowest-order term in curvature associated with each
of them. This yields

∇4 ≈ (
∂2
λ + ∂2

s1 + ∂2
s2

)2 − [
2∇2

s H + 4H
(
2H2 − 2G

)]
∂λ

− 4(H2 − G)∂2
λ − 4H

(
∂3
λ + ∂2

s1
∂λ + ∂2

s2
∂λ

)
− 4(∂s1 H∂s1∂λ + ∂s2 H∂s2∂λ).

APPENDIX C: GENERALIZED GIBBS-THOMSON

In this section, we derive a generalized Gibbs-Thomson
relation for the case where smectic layers are parallel to the
interface. The case where layers are perpendicular to the
interface is analogous, as described in Sec. III. The amplitude
equation is described by Eq. (4) and has an analytical station-
ary solution given by Eq. (8) in coexistence. Our procedure
for deriving a generalized Gibbs-Thomson relation is based
on the analysis by Langer for the Cahn-Hilliard model [65].

The chemical potential is derived from the variational
derivative of Eq. (5) with respect to the amplitude A and with
ε = εc. Consider flat SmA planes with normal aligned to the
z direction, and take the front solution to be A = Ap(z), as
in Eq. (8). From the discussion in Sec. III, the phase of the
amplitude is a constant, and the amplitude reduces to real

values. Then the chemical potential associated with a flat
interface is

−μ f = −εA + 4αq2
0∂

2
z A + 3

4βA3 − 5
8γ A5.

For a curved interface situated at λ0 = 0, the chemical po-
tential is derived from the amplitude equation describing the
evolution of a weakly curved front, in the {λ, s1, s2} coordinate
system, as detailed in Sec. III. As the interface in the normal
direction conserves the shape of the solution Ap when the SmA
layers are curved (see Fig. 1), we consider the front to be
described by A = Ap(λ). Hence, the amplitude is aligned with
the normal direction λ to the interface. The chemical potential
for the curved interface is

−μc = −εA + 4αq2
0[ ∂λ − 2H − (4H2 − 2G) λ

+ 2H (3G − 4H2) λ2] ∂λA + 3
4βA3 − 5

8γ A5.

By multiplying both sides by the derivative of the ampli-
tude A with respect to λ and integrating the result from a point
before the transition zone (say, the smectic region) to another
one after the transition zone (say, the isotropic region), we
obtain

−
∫ ∞

−∞
dλ μc ∂λA =

∫ ∞

−∞
dλ

{
− εA + 3

4
βA3 − 5

8
γ A5

+ 4αq2
0[ ∂λ − 2H − (4H2 − 2G) λ

+ 2H (3G − 4H2) λ2] ∂λA

}
∂λA.

Hence the difference between the chemical potentials of a
curved and flat interface is given by

−
∫ ∞

−∞
dλ ∂λ(μcA − μ f A)

= 4αq2
0

[
−2H

∫ ∞

−∞
dλ (∂λA)2 − (4H2 − 2G)

×
∫ ∞

−∞
dλ (∂λA)2 λ + 2H (3G − 4H2)

∫ ∞

−∞
dλ (∂λA)2 λ2

]
.

The integrals on the right-hand side have been defined
in Sec. III, Eq. (11), see also [51]. They are the interfacial
tension σh, the bending stress σb, and the torsion stress σt ,
respectively. We now write the generalized Gibbs-Thomson
equation as

δμ�A = 2Hσh + (4H2 − 2G)σb − 2H (3G − 4H2)σt .

In a similar fashion, we can derive the interface velocity
equation. For this, we assume that the kinetic equation of the
envelope Eq. (4) describes a motion predominantly aligned
with the normal direction n. Recall that the interface in the
normal direction conserves the shape of the solution Ap for
curved SmA layers (with a constant phase φ), so, by the chain
rule,

∂λA ∂t r · n = εA + 3
4βA3 − 5

8γ A5

+ 4αq2
0[ ∂λ − 2H − (4H2 − 2G) λ

+ 2H (3G − 4H2) λ2] ∂λA.
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Since A ≈ Ap, the right-hand side of the previous equation
reduces to

∂λA ∂t r · n = 4αq2
0[ −2H − (4H2 − 2G) λ

+ 2H (3G − 4H2) λ2] ∂λA. (C1)

Since the interface velocity Vn is taken as positive when
the SmA surface moves in the direction of the isotropic phase
(and negative otherwise), Vn = ∂t r · n. Then, multiplying both
sides of Eq. (C1) by ∂λA and integrating, we obtain∫ ∞

−∞
dλ (∂λA)2 Vn

= 4αq2
0

[
− 2H

∫ ∞

−∞
dλ (∂λA)2 − (4H2 − 2G)

×
∫ ∞

−∞
dλ (∂λA)2 λ + 2H (3G − 4H2)

∫ ∞

−∞
dλ (∂λA)2 λ2

]
.

Recalling the definitions for σh, σb, and σt , the interfacial
velocity is

Vn = 4αq2
0

[
− 2H − (4H2 − 2G)

σb

σh
+ 2H (3G − 4H2)

σt

σh

]
.

APPENDIX D: COMPUTATIONAL METHODOLOGY

We employ a hybrid spectral–finite-difference scheme in
space owing to the fourth-order spatial derivatives in Eq. (2).
All gradient terms are computed in Fourier space. Unstable
or nonlinearly active modes in this model are contained in
a finite band around q0, which is an input parameter for
the model. Therefore it is possible to use controlled Fourier
filtering to ensure stability of the high-q Fourier modes in the
decomposition and thus avoid subharmonic instability arising
from modes that are strongly damped in the physical model.

All nonlinear terms are computed in real space. By using
real-space operations we avoid having to compute Fourier
mode convolutions. We employ a second-order accurate
scheme in time. Because both characteristic spatial and tem-
poral scales derive from model parameters, it is relatively easy
to maintain accuracy and stability. This is in marked contrast
with the difficulties inherent in evolving macroscopic singular
distributions.

Our fast Fourier transform (FFT)-based code solves the
evolution equation for the order parameter through an in-
house developed C++ code (PFSmA) which relies on the
FFTW library [66,67] and standard MPI libraries for paral-
lelization. Each core receives one to several two-dimensional
slabs of real three-dimensional data sets when computing
forward and inverse FFTs. The main performance bottleneck
in FFT computation is communication, so the global transpo-
sition of postprocessed data is a downside that compromises
the parallel performance.

The PFSmA code computes the order parameter after
each time step using a combination of Crank-Nicolson and

Adams-Bashforth schemes in Fourier space. For such task, we
define the linear operator Lq and the Fourier transform Nq of
the nonlinear terms as

Lq = ωψq = −[
ε + (

q2 − q2
0

)2)]
ψq

Nq = (βψ3 − γψ5)q.

We then use a combination of the implicit Crank-Nicolson
scheme for the linear terms with an explicit, second-order
Adams-Bashforth scheme for the nonlinear terms in Fourier
space to integrate Eq. (2) and obtain ψ for the new time,

ψq(t + �t )=
[
1+ �t

2 ω(t )
]
ψq(t )+ �t

2 {3Nq[t − Nq(t − �t )]}
1 − �t

2 ω(t + �t )
.

For all numerical solutions shown in this work, we use
Neumann and zero normal third-order derivatives as boundary
conditions for the order parameter field in order to make
contact with the focal conic domains of Ref. [27]. In this
case we use the cosine Fourier transform for the even order
derivatives of the order parameter. Our computational domain
is � = [0, L]3, where L is the domain length. We fix q0 = 1
in all simulations, such that the grid spacing is h = 2π/16q0,
N is the number of nodes (generally 5123 or 10243), and
L = (N1/3 − 1)h.

Surface tracking and curvatures computation

The surface is tracked by searching for points where
ψ (x) = const and |∇ψ (x)| �= 0 in the transition region. Since
we acquire the curvatures from this rapidly varying phase
field, we need to implement an algorithm to smoothly and
accurately compute them. Here, based on Megrabov’s work
[68], we use the following implicit expressions:

H = 1

2
∇ ·

( ∇ψ

|∇ψ |
)

G = −1

2
∇ ·

[
∇(ln|ψ |) − ∇2ψ

∇ψ

|∇ψ |2
]
.

Since at each node on the mesh we are able to compute the
order parameter derivatives, we rework the previous expres-
sions to better accommodate them in the algorithm. By writing
first and second derivatives of ψ as ψi and ψi j , respectively,
where i, j = {x, y, z}, we can numerically obtain the mean and
Gaussian curvatures through

H = (2|∇ψ |3)−1
[(

ψ2
y + ψ2

z

)
ψxx + (

ψ2
x + ψ2

z

)
ψyy

+ (
ψ2

x + ψ2
y

)
ψzz − 2(ψxψyψxy + ψxψzψxz+ ψyψzψyz )

]
(D1)

and

G = |∇ψ |−4
{
ψ2

z

(
ψxxψyy − ψ2

xy

) + ψ2
y

(
ψxxψzz − ψ2

xz

) + ψ2
x

(
ψyyψzz − ψ2

yz

) + 2[ψyψxy(ψzψxz − ψxψzz )

+ψxψxz(ψyψyz − ψzψyy) + ψzψyz(ψxψxy − ψyψxx )]
}
. (D2)
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