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The present work investigates paper-paper friction dynamics by pulling a slider over a substrate. It focuses on
the transition between stick-slip and inertial regimes. Although the device is classical, probing solid friction with
the fewest contact damage requires that the applied load should be small. This induces noise, mostly impulsive
in nature, on the recorded slider motion and force signals. To address the challenging issue of describing the
physics of such systems, we promote here the use of nonlinear filtering techniques relying on recent nonsmooth
optimization schemes. In contrast to linear filtering, nonlinear filtering captures the slider velocity asymmetry
and, thus, the creep motion before sliding. Precise estimates of the stick and slip phase durations can thus be
obtained. The transition between the stick-slip and inertial regimes is continuous. Here we propose a criterion
based on the probability of the system to be in the stick-slip regime to quantify this transition. A phase diagram
is obtained that characterizes the dynamics of this frictional system under low confinement pressure.
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I. INTRODUCTION

Since the first reports by Leonardo da Vinci in 1493
[1], frictional properties of solids are inferred from classical
experiments, where a slider of mass m, imposing a normal
load to the substrate, is pulled over a fixed substrate. Starting
from a slider at rest, the pulling force has to increase above
a threshold value to trigger the slider motion. The slider then
slips over a given distance, then stops. This dynamics, referred
to as “stick-slip”, has later been investigated by Amontons
(17th century) and Coulomb (18th century) [2]. In the last
decades, systematic studies have considered a slider pulled
at average constant driving velocity V by means of a spring
of stiffness k. Monitoring the force F applied to the slider in
time thus provides a direct access to the slider dynamics, and
to the frictional properties of the material. In the simplified
framework of Amontons-Coulomb [3], starting from a slider
initially at rest (stick phase), the force F increases linearly
with a slope proportional to kV [Fig. 1(a)]. Once a given
threshold is reached [Fig. 1(a), white dot], the load starts
sliding (slip phase). The duration of the stick, ty, and slip,
7y, phases are controlled by the experimental parameters
(m, k, V). In particular, the characteristic time of motion, 7, =
7y in this simplistic model, almost equals 7' = w/m/k, i.e.,
half the period of the spring-mass system (or inertial time).

However, the comparison of this simple model with exper-
iments reveals several limitations. First, the determination of
the time during which the slider is in motion is rather difficult.
Indeed, the start of the slip motion does not correspond to
the maximum of the force signal [Fig. 1(a), white dot], and
its stop does not correspond to the minimum [Fig. 1(a), gray
dot]. Moreover, the creep introduces an additional contribu-
tion, 7., to the total time during which the slider is indeed
in motion, 1, = t. + Ty [Fig. 1(b)]. Therefore, the accurate
determination of the start and stop times is challenging, es-
pecially when the experimental data are noisy. Second, the
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frictional properties have been shown to depend on the contact
time between the surfaces, and on the sliding velocity [3-8].
Although this so-called rate-and-state modeling is now widely
recognized, it fails to account for the variations in the friction
coefficients due to spatial heterogeneities of the material
[9,10], which may lead, for a given material, to distributed
values of (7, 75) rather than to single values. Third, it is of
particular interest to consider the limit of vanishing normal
load, in particular to avoid polishing, which damages surfaces
and alters the local frictional properties. We thus are interested
in the frictional properties of materials easily worn by shear
at loads far smaller than considered in previous studies [11],
which is still an open practical challenge. Indeed, the use of
very small normal loads induces a significant noise, often
impulsive in nature, in the recorded signals. Furthermore,
experimental data with low signal-to-noise ratio often imply
using sensitive recording devices, which may be subjected to
additional electronic noise.

The aforementioned problems yield significant issues in
the analysis of the empirical data recorded to characterize the
slider dynamics. For small k and V, the slider exhibits the
typical stick-slip motion previously described [Figs. 1(a) and
1(b)]. However, when V is increased, the system undergoes
a transition to an inertial regime, where the temporal force
variations remain periodic, but no longer show stick phases
[Fig. 1(c)] [11,12]. Other transitions to continuous sliding are
also reported for large V in the case of granular friction [13]
or for small V and large k in the case of dry solid friction,
the dynamics being dominated by the creep in this limit
[11,14]. Although a transition from stick-slip to continuous
sliding is easy to identify, thanks to the disappearance of
the periodicity, the transition between stick-slip and inertial
regimes remains far more difficult to detect, especially with
noisy experimental signals, wide distributions of (ty, 7y), and
the possible presence of creep.
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FIG. 1. Different solid friction dynamics. (a) Stick-slip motion
without creep. (b) Stick-slip motion with significant creep. (c) Iner-
tial motion [in (a), (b), and (c), F denotes the force applied to the
slider pulled at average constant driving velocity V by means of a
spring of stiffness k. We denote 7 and 7 the stick and slip phase
durations, t. the creep duration and t,, the total time during which
the slider is in motion (gray region)].

The contribution of this work is twofold. First, to ex-
tract information from the experimental data, we promote
the use of nonlinear filtering techniques, relying on recent
nonsmooth optimization schemes, and show their benefits
compared to classical linear filtering. Linear and nonlinear
filtering techniques are thus compared to denoise the temporal
variations of the force signal, collected on paper-paper friction
experiments under small normal loads (Sec. II). Contrary to
the classical linear filtering, nonlinear filtering is shown to
successfully capture creep motion before sliding and to filter
a large part of the impulsive noise, thus permitting a better
detection of the stick and slip phases (Sec. III). Second, the
proposed nonlinear analysis scheme is systematically applied
to 189 experiments, obtained by varying k and V (Sec. IV).
This nonlinear filtering permits us to precisely investigate
the transition between the stick-slip and inertial regimes, and
how the system undergoes this transition when varying the
experimental parameters. A phase diagram is finally devised
in the k-V plane describing the frictional properties of the
paper-paper system under study.

II. EXPERIMENT AND DATA ACQUISITION

A. Experimental setup

The experimental setup consists of a slider pulled over a
solid substrate via a cantilever spring (Fig. 2). The surface
area of the slider, 9 x 6 cm?, and its mass, m = 30.7 g, are
chosen to avoid excessive wear of the sliding surfaces by
working at small normal stress (about 56 Pa). We point out
that previous studies, although working with a similar setup,
used a larger slider mass (300 g) and an additional load of the
order of 1000 g, corresponding to far larger normal stresses of
about 1300 Pa [11]. The contact between the cantilever spring
(metallic blade, stiffness k) and the slider is ensured by a
steel sphere glued to the slider. This allows the free motion of
the contact point. The blade is translated at constant velocity

V
—_—
l g - Ax -
x > P s inductive sensor
spring

F >

paper sample

slider

FIG. 2. Experimental setup. A cantilever spring of stiffness k
is pulled at constant velocity V at one end, and entrains a slider
of mass m at the other end. The deflection Ax of the cantilever
spring, measured by an inductive sensor, provides simultaneously
the velocity of the slider in the frame of the laboratory, x =V — Ax,
and the force, F = k Ax, applied to it. We denote T the tangential
(friction) force and N the normal load.

V, and its deflection Ax is measured by an inductive sensor
(Baumer, IPRM 1219505/S14). The spring stiffness is varied
between k = 168 and 3337 N/m and the driving velocity V
between 42 and 7200 um/s.

The substrate and the bottom surface of the slider are
coated with Canson® sheets, a drawing paper characterized
by a rough surface. Even for the chosen small normal load, the
surfaces exhibit undesired wear after repeated experiments.
Note that in Heslot ez al. [11] the absence of wear at larger nor-
mal load was attributed to the properties of the Bristol board in
use. To ensure reproducibility, we perform three experimental
runs for a given set of parameters (k, V). We then change the
samples, check for the same (k, V') that the force signal has the
same characteristics, change the parameters (k, V'), perform
again three series of experiments, and so on.

B. Data acquisition

From the blade deflection Ax, after an appropriate cal-
ibration procedure, the force F applied to the slider is re-
constructed as F = k Ax (Fig. 2). For each set of parame-
ters (k, V), the force signal is recorded over a total slider
displacement of about 1.5 cm, with a sampling frequency
of 2 kHz. The signal size thus varies from about 7.5 x 10°
to 4.5 x 10° sample points. In the following, we use the
normalized force signal, F/mg, where g = 9.81 m.s~2 is the
gravitational acceleration.

To quantify the system dynamics—and, therefore, the fric-
tional regime—we consider the slider velocity, x =V — Ax,
which can be rewritten as:

K=V - -, (1

Computing empirically a relevant derivative, and hence an
accurate estimate of the velocity, obviously requires an ef-
ficient denoising of the force signal. The velocity x will be
further used to detect slip events and estimate accurately, for
each event, the stick, creep, and slip time 7, 7., and ty.
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Here, the slip (or sliding) phase does not include creep. The
total time during which the slider is in motion is therefore
T, = T, + Ty, as displayed in Fig. 1(b). Considering the nine
driving velocities, seven spring stiffnesses, and three runs for
each set of parameters, the total amount of experiments and,
therefore, signals to analyze, is 189.

III. NONLINEAR DENOISING

The challenge in working at small normal loads is the poor
signal-to-noise ratio, which requires a careful signal analysis
to quantify the physical properties of the system. Solid friction
dynamics is classically studied by means of low-pass linear
filtering for denoising the force signal prior to computing the
velocity. The drawback of such linear filtering is not only to
remove the noise but also to alter a relevant high-frequency
part of the friction dynamics, especially during the stick-slip
regime. To overcome this limitations stemming from linear
filtering, we propose here to use nonlinear filtering techniques,
relying on nonsmooth optimization schemes. We devise cor-
responding iterative minimization algorithms that benefit both
from reasonable computational costs, thus permitting the anal-
ysis of large-size signals, and from theoretical recovery and
convergence guarantees [15,16].

A. Force denoising and event detection
1. Principle

Linear filtering. Let fops denote the normalized force signal
to analyze, fops = F/mg, of size N samples. Linear filtering
consists of a convolution with a filter 4 [17],

ﬁin =hx* fobs' (2)

Linear filtering can also be rewritten as a minimization
problem,

fun = arg min LIf = fosll3 + ANHFI3 3)
= (Id +20H "H) ™" fops, 4)

where || - ||% is the usual Euclidean norm and (Id + 2AH*H)™!
is the matrix of size N x N associated with the shape of filter
h. Parameter A > 0 essentially controls the width of the band
of the low-pass filter 4.

Nonlinear filtering. To remove high-frequency noise while
keeping sharp discontinuities in signals, it has been proposed
in the inverse problem literature to replace the £, norm with a
£y norm (J|lull; = >_, |u;]) in the filtering term [18]:

FNonLin = arg min HIf = fosl3 +AIHf 1. (5)

When using a finite difference (increment) filter h =
[—1, +1], such nonlinear filtering yields piecewise constant
estimates fnonLin [18]. However, in the context of friction data,
the force signal is better approximated with piecewise linear
estimates (notably in the stick-slip regime). Therefore, we
propose to use Laplacian filters (h = [—1, 2, —1]) that favor
such behaviors.

Algorithm 1. Proximal primal-dual algorithm.

Initialization : Choose 1y, oy > 0 with 1p009 < 1
e e —[0
Initialization: Choose f1 € RY, g% € RY, and f' = 1!
Fork=0,1,...
. —lk]
W= ¥ 4 o HT
k]
g[k+]] = — OkPIOX 4 ) (;7)
Tk
PR = (= TG 7 )

O = 1/NTH21, Tiqr = 6T, Ok = 0k /bk
— (k1]

P = g 4 g (R — pR)

2. Iterative algorithms

The main issue in practically implementing nonlinear
filtering as in Eq. (5) above lies in the absence of closed form
solution for fnonLin, thus implying the recourse to iterative
algorithms to minimize the corresponding functional, lead-
ing to potentially high computational costs. In addition, the
nondifferentiability of the functional to minimize induced
by the use of the ¢; norm precludes the use of gradient
descent algorithms. Instead, gradient operators need to be
replaced with proximity operators [16,20]. Finally, the large
data size (N ~ 10°) of friction signals requires the use of fast
algorithms. Therefore, we have devised Algorithm 1, which
relies on the use of the notion of strong convexity into primal-
dual proximal scheme to achieve fast minimization of Eq. (5),
via a sequence (f*1), . that converges to fyonLin With linear
convergence rate [19,20]. The proximity operator of the ¢;
norm consists of a soft-thresholding operation [16,21], with
y >0,

uj—y if up >y,
prOX)’H'lll(u) ={u+y if wu<-—y, (6)
0 otherwise.

3. Selection of the regularization parameter A

In linear filtering, parameter A essentially acts as the (in-
verse of the) width of the low-pass filter (Fig. 3). In nonlinear
filtering, parameter A also impacts the solution fyonLin: A
small A leads to fnonLin close to the input data f,,s while
a large A yields piecewise linear estimates, with only a few
segments (Fig. 3).

As for linear filtering, automatically tuning the regular-
ization parameter X in nonlinear filtering to achieve optimal
denoising is a complex task. Systematically inspecting the
denoised signals obtained from data collected over all 63 dif-
ferent experimental sets of parameters for several A, permitted
to select the optimal A as the one that better removes noise
while preserving the sharp and meaningful changes of the
force signals, a slow climb (stick) and a fast descent (slip).
For nonlinear filtering, A = 0.8 was found to be robust for all
sets of data, while for linear filtering, A needs to be adjusted
to each set of experimental parameters over a wide range,
typically between 10? to 10*. For automated selection of A,
we could consider either an empirical rule that consists in
setting A ~ N'/25 /4 where N is the signal size and o the
noise standard deviation estimated from the median value of
the absolute value of the wavelet coefficients [22], or the Stein
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FIG. 3. Examples of nonlinear (a), (c) and linear (b), (d) filtering
for small and large values of the parameter A. (a), (b) Stick-slip
regime (V = 42 um/s, k = 1002 N/m). (c), (d) Inertial regime (V =
4300 um/s, k = 1002 N/m).

unbiased risk estimator (SURE), which provides an unbiased
estimator of the mean-square error [23-25]. However, both
techniques fail to provide us with a reliable estimate of X, the
results being too noisy. Note that the empirical rule gives a
good order of magnitude of A for the nonlinear filtering, and
could serve as a first estimation of this parameter before its
final tuning.
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FIG. 4. Normalized force F/mg (a), (b) and slider velocity x (c),
(d) obtained from nonlinear (a), (c) and linear (b), (d) filtering in the
stick-slip regime (V = 70 um/s). The dots in (a) and (b) indicate the
start (white dots) and stop (gray dots) of the slider motion [black
segments in (c) and (d)]. (c), (d) The dashed line indicates the
velocity threshold for event detection, and the dotted line the noise
level (see text) [k = 1002 N/m].

4. Event detection

Figure 4 displays the normalized force F/mg and slider
velocity x obtained from nonlinear and linear denoising tech-
niques. The automated detection of events, corresponding to
a slider motion, is conducted as follows. First, the standard
deviation of the base line of the slider velocity is computed
and used as a proxy for the noise level on the velocity signal
[dotted line, Figs. 4(c) and 4(d)]. This analysis can be per-
formed only for experiments where the slider exhibits a stick-
slip motion. In such experiments, the noise level in the slider
velocity is of about 40 wm/s. Second, slip events are detected
by thresholding the velocity signal above ten times the noise
level [dashed line, Figs. 4(c) and 4(d)]. Third, motion events
(including slip and possible creep motion) are reconstructed
by complementing detection on the velocity signal down to
the noise level [Figs. 4(c) and 4(d), dark segments]. Note that
we systematically complemented the velocity signal down to
the first point below the noise level, not to miss any abrupt
velocity rise or drop that may occur in the vicinity. Due to
the signal discretization, the events start and stop may thus
appear either very close, or clearly below to the noise level,
depending on the local velocity variations [see dark segments
in Figs. 4(c), for instance]. This procedure ensures a relevant
detection of the slider motion, its start times fg, [White dots,
Fig. 4(a)] and stop times tyop [gray dots, Fig. 4(a)], thus
yielding an accurate quantification, for each event i, of its
duration, 7,,() = tsx0op(7) — tsart (i), and of the preceding stick
phase, Tot () = fsran () — tstop(i - 1.

B. Nonlinear vs. linear denoising

This section compares the efficiency of the nonlinear
versus the linear filtering techniques in analyzing the force
signals, with focus (i) on the relevance of denoising, (ii) on
the accuracy in measuring short time scales in slip phases,
(iii) on detecting creep motion, (iv) on detecting whether the
slider experiences motion or not (hereafter called “event”) and
whether the motion is sustained over more than one period
of the force signal. This latter quantification will be further
necessary to define an accurate criterion for the transition
between stick-slip and inertial motion.

1. Denoising

Figures 3 and 5 clearly illustrate that, while linear filtering
can be tuned to filter correctly the experimental impulsive
noise, it also significantly smooths out sharp changes in the
force signals, hence precluding a relevant analysis of the
temporal dynamics in frictional motion, notably a correct esti-
mation of the slip duration. To the contrary, nonlinear filtering
as defined in Eq. (5), both removes noise and preserves the
features of the force signal that are meaningful for friction
temporal dynamics.

2. Creep and slip phases

Figure 5 further focuses on a single event, for an exper-
iment at small driving velocity (V =42 pum/s). As often
encountered experimentally [see Fig. 1(b)], the slider ex-
hibits a slow motion (creep) before the slip phase. Classical
techniques of event detection by picking the maximum and
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FIG. 5. Example of creep motion before slip. (a), (b) Normalized
force signal associated with (c), (d) slider velocity for (a), (c) nonlin-
ear and (b), (d) linear filtering. Dashed line in (a), (b) is the slope
associated with slip on raw experimental data. Dashed and dotted
lines in (c), (d) indicate the velocity threshold for event detection and
the noise level (k = 1002N/m, V =42 um/s).

minimum of the force signal find here their limit. Indeed, the
creep motion can have a duration comparable to or even larger
than that of the slip phase [Figs. 5(a) and 5(c)]. Not detecting
this slow motion would lead to an incorrect estimate of the
stick duration, as well as of the duration of the slider motion
(creep + slip). Although the nonlinear filtering provides by
definition a stepped velocity signal [Fig. 5(c)], it captures
successfully both the slope of the force drop and the creep
motion previous to the slip, visible via a strong asymmetry
in X when the slider moves. Conversely, the linear filtering
provides a smoother signal, but smooths the force drop too
much [Fig. 5(b)]. Hence, it captures neither the correct slope
nor the velocity asymmetry [Fig. 5(d)]. Not only can no creep
motion be detected here, but the duration of the slider motion
is overestimated because of the decrease in the slope of the
force drop associated with the slip event [gray dashed line,
Fig. 5(c)].

Figures 6(a) and 6(b) show further examples of nonlinear
[Fig. 6(a)] and linear [Fig. 6(b)] filtering applied to the force
signals in the stick-slip regime. As in previous figures, the
white and gray dots indicate the detection of the start and stop
of motion events (including possible creep). The creep and
slip phases can be measured as:

Tc = (tstnp - tstart) =T (7)

T = 2(l‘stop — Imax) (8)

with £ the time at which velocity is maximum and (f0p —
tstart) the total duration of the slider motion during one event.
Creep motion is estimated with the theoretical sliding dura-
tion T (Sec. I) to avoid that errors made on 7, estimate
impact the corresponding values of 7. for the same event.
Figures 6(c) and 6(d) display the empirical probability density
function (PDF) of 7y /T for the nonlinear and linear filtering.
Although slightly shifted toward lower values due to the sharp

Nonlinear Linear
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FIG. 6. Nonlinear vs. linear filtering in the stick-slip regime. (a),
(b) Normalized force signal for the nonlinear [(a), . = 0.8] and linear
[(b), A = 10] filtering. (c), (d) Probability density function (PDF) of
the slip time 7, normalized by the theoretical slip time 7. The vertical
dashed line indicates 7y = T (k = 1002N/m, V = 42 um/s).

end of the sliding motion after filtering, data obtained with
the nonlinear denoising exhibit a peak close to tqy/7 ~ 1,
as expected in the stick-slip regime. Conversely, the linear
filtering overestimates ty /7T by a factor of about 2, because
of the smoothing effect of the short time-scale force drop, not
accurately captured by this technique.

3. Number of events

The dynamics of the slider can be further characterized
by comparing the number of sliding events, N, against the
number of oscillations in the force signal, N, (defined here
as a rise followed by a drop). In the stick-slip regime, at low
driving velocity V, N, equals N, (N./N, = 1), as the slider
experiences a rest phase in-between two force drops. When
the driving velocity is increased, the slider may experience
two or more force rises and drops without coming to rest.
In these situations, N, > N,. Consequently, upon increase of
the velocity V, N,./Ny decreases until reaching O for inertial
motion.

Figure 7 displays N,/N,, measured after nonlinear and
linear filtering, as a function of the driving velocity V. For
the same number of oscillations in the force signal, the linear
filtering yields a much larger number of detections of sliding
events. Indeed, the smoothing of the force signal induced by
the linear filtering not only artificially decreases the sliding
velocity (Sec. III B2) but also tends to decrease the rising
slopes of the force signal. As a consequence, the estimated
velocity decreases and, in some cases, can go below the
threshold for motion detection: a stop phase is attributed to the
slider, while it only experiences deceleration and slow motion.

To quantify the ability of the nonlinear filtering to capture
the dynamics of the slider, we introduce a parameter & charac-
terizing the asymmetry of the velocity signal, computed as the
ratio of the time during which the slider velocity is above its
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FIG. 7. Number of sliding events normalized by the total number
of oscillations N, /N, for the nonlinear (solid black line and dots) and
the linear (dashed black line and empty dots) filtering as functions
of the driving velocity V. The shape of the asymmetry parameter, &
(gray line and triangles) evidences the relevance of nonlinear filtering
(see text). A potentially relevant criterion to quantify the transition
between stick-slip and inertial regime is given by N,/N, = 1/2 (k =
1002 N/m).

average (i.e., the driving velocity V) to the time during which
the slider velocity is smaller than V:

_ JHG—V)dr
- [HV —X%dt’

where H denotes the Heaviside function and the integral is
performed over the total signal duration. For small V, the
slider exhibits a stick-slip motion and is at rest most of the
time, hence £ ~ 0. Increasing V induces an increase in &.
At large V, the slider is continuously in motion, and spends
half the time above and half the time below V, which leads
to & = 1. Figure 7 displays & as a function of V (gray curve
and triangles). When computed after the nonlinear filtering,
& shows an excellent agreement in shape with the expected
anticorrelation with the ratio N, /N,. This is far less the case
with the linear filtering. In addition, both & and N, /N, show no
strong discontinuities as functions of V, indicating the absence
of a sharp transition between the stick-slip and inertial regimes
in the paper-paper friction. To characterize the evolution from
stick-slip to inertial motion, a potentially relevant criterion is
N./Ny < 1/2 or & > 1/2. Both criteria are observed to reach
the 50% threshold at about the same critical velocity V., a
very satisfactory outcome of using the nonlinear filtering to
characterize the slider dynamics.

3 €))

IV. FRICTIONAL REGIMES CHARACTERISTICS
AND PHASE DIAGRAM

The previous section clearly established both qualitatively
and quantitatively the benefits of the nonlinear filtering com-
pared to the linear filtering in capturing features of the
force signal relevant for the analysis of friction dynamics.
The nonlinear filtering is thus now systematically applied
to the analysis of all 189 recordings, with the aim to char-
acterize the different frictional regimes encountered in the
proposed solid friction experiment.

A. Different regimes

Figure 8 displays the dimensionless force F'/mg as a func-
tion of time for different values of the spring stiffness k and
driving velocity V. For k = 1002 N/m (middle column), at
small velocity, the system exhibits a clear stick-slip regime
[Fig. 8(d)]. When the driving velocity is increased, the slider
has less and less stick phases [several oscillations without
any stop, Figs. 8(e) and 8(f)]. The force signal oscillations
become more and more symmetric, a characteristic of the
inertial regime. For smaller k (left column, Fig. 8), the driving
velocity has to be larger to trigger the inertial regime, while for
large k (right column, Fig. 8), a clear inertial behavior without
any stick phase is reported [Fig. 8(1)].

For large k and small V, the signal-to-noise ratio is very
small [Fig. 8(g)]. This type of signal is characteristic of
continuous sliding in which no more oscillations are reported,
often associated with a steady creep of the slider [11,14,27].
The nonlinear filtering successfully removes impulsive noise
from the normalized force signal [Fig. 8(g)]. This regime can
be easily recognized either by eye or by a spectral analysis
(not performed here). The slider is always in motion, and no
further analysis is performed.

B. Creep motion statistics

Creep motion in the stick-slip regime (typically for V <
70 um/s) is analyzed. Figure 9 displays the empirical prob-
ability density function of the creep duration, ., for dif-
ferent values of the control parameters (k, V). The dashed
line indicates, as a reference, the theoretical sliding time, T,
independent of V, which decreases as k is increased (Sec. I).
Interestingly, the average duration of the creep motion, 7, ~
0.01-0.02 s, does not exhibit any significant dependence on
the parameters (k, V). Due to the slow motion of the slider in
the creep regime, this characteristic time probably depends on
the properties of the material and on the tangential stress only.

C. Transition to the inertial regime

Further, creep and slip motions are combined, and phases
during which the slider is at rest (duration 7g) or in motion
(duration t,,, including possible creep) are characterized, thus
making possible the definition of a criterion that quantifies
the transition between the stick-slip and inertial regimes. The
signals shown in Fig. 8 suggest a dispersion of the frictional
properties of the material, for which a visual proxy may
consist of the variations in the maximum and minimum values
of the normalized force F/mg. Such variations are hence
directly reflected in the variations of the times associated with
the stick and motion phases, ty and 7, (Fig. 1). To account
for this variability and to further investigate the transition
between the stick-slip and inertial regimes, Fig. 10 displays
the distributions of 74/7T and t,,/T for several driving ve-
locities V. At small velocity [Figs. 10(a) and 10(b)], t,,/T
exhibits a clear peak around 1. The peak is, however, not
exactly located at 1, as the motion includes creep, thus shifting
T,/ T towards larger values [inset, Fig. 10(a)]. The distribution
of ty/T displays larger variations: It is broadly extended to
small velocities. When V is increased, the distributions get
narrower and their average tends to 1, i.e., the duration of
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FIG. 8. Dimensionless force F'/mg as a function of time, for different spring stiffness (a)—(c) k = 168 N/m, (d)—(f) k = 1002 N/m, (g)-(i)
k = 2254 N/m and three different driving velocities (a), (d), (g) V =42 um/s, (b), (e), (h) V = 1100 um/s, (c), (f), (i) V = 4300 pm/s.
The white and gray dots indicate the beginning and end of sliding events, detected automatically after nonlinear filtering. The signal at large
k and small V (g) is characteristic of continuous sliding (see text). All panels in this figure can be reproduced using the toolbox provided in

Supplemental Material [26].

the stick phase becomes of the order of the duration of the
slip phase, without any creep. Above a threshold velocity
(between 70 and 450 um/s), the slider can remain in motion
during several characteristic times 7', and experiences succes-
sive accelerations and decelerations before coming again to
rest. We observe that the distribution of t,, broadens whereas
the average of the stick time 7ty gets smaller and smaller.
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FIG. 9. Histograms of 7. for different driving velocities and
stiffness. The vertical dashed lines point the theoretical sliding time,
T, as a reference. The vertical dotted lines correspond to the average
value of 7. for each distribution.

These changes in the distributions point out that the slider is
no longer in the regular stick-slip regime.

D. Phase diagram

To quantify the different regimes, based on the determi-
nation of 7y and t,, we compute P,, the fraction of time
during which the slider is in motion over the experimental
run. For some sets of control parameters (k, V'), as discussed
previously, the slider experiences a continuous sliding and
the denoising technique presented here fails in recovering the
signal characteristics, although it captures well its variations
[Fig. 8(g)]. Indeed, in these cases, impulsive noise dominates,
leading to wrong determination of 7, and ty. For these
regimes, which are easily identified by eye, P, is set to 100%.

We report in Fig. 11 a phase diagram that summarizes the
different dynamics revealed by the analysis of the present
paper-paper friction experiment under small normal load. In
this diagram, CS denotes the continuous sliding regime, SS
the stick-slip regime in which the slider is in the stick phase at
least 50% of the time, IR the inertial regime in which the slider
experiences motion at least 50% of the time, and IR the pure
inertial regime in which the slider is never at rest and exhibits
a steady oscillatory motion. Although this phase diagram
attempts to assess boundaries between regimes, transitions
found from experimental data are smooth. Except for the
continuous sliding regime, the symbols displayed in Fig. 11
may depend on the definition of the stick-slip and inertial
regimes (SS and IR are defined based on an arbitrary 50%
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FIG. 10. Histograms of 7y /T (light gray) and t,,/T (dark gray)
(with T the theoretical sliding time in stick-slip regime, see text)
for different driving velocities (a) V =42 um/s, (b) V =70 um/s,
(¢) V =450 pum/s. The inset in (a) is a zoom on the peak of t,,/T
distribution. The dashed line indicates 7,,/T = 1 (k = 1002 N/m).

time criterion). Only the region denoted IR™ exhibits a pure
inertial regime as shown in Fig. 1(c), without any rest phase
of the slider (P,, = 100%).

It is of particular interest to compare this diagram to the
previous results by Heslot et al., obtained with a similar
system, but at much larger normal load [11]. Note first that
the phase diagram is qualitatively the same, with a stick-slip
regime at both small stiffness k£ and velocity V. Their analysis
of the system is based on the fact that the friction coefficient
depends logarithmically on the slider velocity x [28]. They
suggest to write, at small slider velocity x, as long as the
dynamics is primarily governed by slow contact relaxation
and creep phenomena, the friction coefficient in the form

Ug=a-+bln (%) (10)
where Dy is a microscopic length that characterizes the sur-
faces in frictional contact. This small velocity approximation
of gy holds true as long as the typical contact time Dgy/x
is large compared to the inertial time /m/k. The associated
boundary corresponds to the transition from CS to IR in
which the slider is continuously in motion with x ~ V. From
the thick black line in Fig. 11, we get Dy = (2.0 £0.2) um
(extreme values are indicated by the dotted lines on both
sides). Note that the same transition line could be used to

P [%]
100

10° 10° 10*
V [um/s]

FIG. 11. Phase diagram (k,V) summarizing the different
regimes for the dynamics of paper-paper friction (CS = continuous
sliding, SS = stick-slip, IR = inertial regime, IR* = 100% inertial).
The background color represents P, the percentage of time the
slider spends in motion (red squares indicate continuous sliding, blue
triangles P,, < 50%, yellow disks including blue triangle P,, > 50%
and yellow disks P,, = 100%, the black lines are from the heuristic
model, and gray lines only guides to the eye).

distinguish two regimes in the SS region as done in Ref. [11].
We observe that, on the left of the boundary (small V), that the
system spends a majority of the time in the stick-slip regime
whereas, on the right (large V') it spends a majority of the time
in the inertial regime. However the transition is continuous
and poorly marked (thin black line). It is rather characterized
by the probability map. Let us comment that the length scale
Dy is of the order of the micrometer, as found by Heslot et al.
for another type of paper. Moreover, Dy is of the order of
the typical diameter of the paper fiber, in agreement with its
physical origin.

Equation (10) can be used at small V to determine the
critical stiffness k. at the transition between SS and CS
regimes [11]

ke = —2b. (11)

From the experimental diagram, we infer k. = (1250 £
250) N/m (horizontal dashed black line) from which we get
b~ 8.3 x 1073, This value, which is of the same order of the
value in Ref. [11], corresponds to a reasonable decrease of the
friction coefficient by 0.06 (~20%) from rest to 1 mm/s. Note
that experimentally k, is not constant and decreases when V' is
increased (thick gray curve): this trend is due to higher-order
terms in the dependence of 1, on x and could be, in principle,
determined theoretically provided the knowledge of 14 (x).

Finally, the phase diagram must be complemented by the
boundary between the SS and the IR regime (thick gray
line) for which we do not have any theoretical background.
The behavior of the system around this transition is rather
complex, the system exhibiting hysteresis and being sensitive
to noise [11]. In addition, we can also add to this diagram
a guide to the eye around the region, IR+, of pure inertial
regime.
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V. CONCLUSION

A nonlinear filtering technique relying on recent nons-
mooth optimization formulation was shown to permit to rele-
vantly characterize force signals and solid (paper-paper) fric-
tion dynamics. It makes it possible, in the stick-slip regime,
to capture the slider velocity asymmetry and, thus, the creep
motion before sliding. Creep is therefore correctly accounted
for as motion. This makes it possible to estimate accurately the
time spent by the slider in the stick regime () or in motion
(T). Large size statistics on the signals show that (i) the
creep motion duration is constant in average, independently
of (k,V); (ii) although peaked, the distributions of ty and
T, are broad, indicating important variations of the frictional
properties of the paper in space (heterogeneities) and time
(possible sample wear due to shear). Using the fraction of
time spent in motion, P, a tentative phase diagram for the
dynamics of solid paper-paper friction was proposed. Based
on the qualitative similarities with the phase diagram for
paper-paper friction under larger normal load [11], we can

conclude that even at low confinement pressure, the macro-
scopic friction is driven by microscopic contacts. In addition,
this complete phase diagram makes it possible, for the first
time, to quantify the continuous transition between the stick-
slip and inertial regime. Further work will be required to
assess the universality of such diagram.

The Matlab® toolbox developed in the framework of this
study for nonlinear and linear filtering is available as Sup-
plemental Material [26], and can be downloaded and used
by readers interested in denoising raw experimental data on
friction (or other) experiments.
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