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Scaling of wetting and prewetting transitions on nanopatterned walls
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We consider a nanopatterned planar wall consisting of a periodic array of stripes of width L, which are
completely wet by liquid (contact angle θ = 0), separated by regions of width D which are completely dry
(contact angle θ = π ). Using microscopic density functional theory, we show that, in the presence of long-ranged
dispersion forces, the wall-gas interface undergoes a first-order wetting transition, at bulk coexistence as the
separation D is reduced to a value Dw ∝ ln L, induced by the bridging between neighboring liquid droplets.
Associated with this is a line of prewetting transitions occurring off coexistence. By varying the stripe width L,
we show that the prewetting line shows universal scaling behavior and data collapse. This verifies predictions
based on mesoscopic models for the scaling properties associated with finite-size effects at complete wetting
including the logarithmic singular contribution to the surface free energy.
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I. INTRODUCTION: WETTING
AND BRIDGING TRANSITIONS

As first discussed by Cahn [1] and Ebner and Saam [2],
a wetting transition refers to the vanishing of the contact
angle θ of a liquid drop on a substrate (wall), say, as the
temperature T is increased to a wetting temperature Tw—for
reviews, see, for example, Refs. [3–5]. Equivalently, and more
microscopically, the transition refers to the divergence of the
thickness of the adsorbed layer of liquid at a planar wall-gas
interface as T approaches Tw at bulk liquid-gas coexistence
(chemical potential μ = μ−

sat). This can also be thought of as
the unbinding of the liquid-gas interface from the wall [6].
Wetting transitions can be continuous or first order depending
on the sensitive balance and competition between the strength
and the range of the wall-fluid and fluid-fluid intermolecular
forces. In most situations, wetting transitions are first order in
which case the thickness of the adsorbed liquid layer jumps
from a microscopic to macroscopic value at Tw, that is, the
liquid-gas interface unbinds discontinuously at Tw. Associated
with this is a line of prewetting corresponding to first-order
transitions between thin and thick adsorbed liquidlike layers
when the bulk gas is undersaturated μ < μsat. On the T -δμ
plane, where δμ = μsat − μ, the line of prewetting transitions
extends away tangentially from Tw and terminates at a prewet-
ting critical point when the thin and thick phases become
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indistinguishable [7]. First-order wetting transitions have been
extensively studied both theoretically and experimentally.

When the wall is geometrically sculpted or chemically
patterned the fluid adsorption can exhibit a zoo of new pos-
sibilities [8–17]. Attempts to understand this date back to
the empirical work of Wenzel [18] (for sculpted or rough
surfaces) and Cassie [19] for chemically patterned (planar)
walls. For example, Cassie’s “law” states that the effective
contact angle θeff on a composite substrate formed of two
different materials with different contact angles θ1 and θ2

satisfies cos θeff = f cos θ1 + (1 − f ) cos θ2 where f and
(1 − f ) are the fractions of the respective wall areas of the
different materials. However, more recent studies have shown
that the situation is considerably richer due to new phase
transitions, absent in this simple empirical picture, which are
induced by the nanopatterning of the substrate. For example,
when two semi-infinite materials meet at a line, a prewetting
transition on either side can induce the lateral growth of a
thick wetting layer which continuously spreads out across
the surface [20]. Transitions also occur when a partially wet
surface (θ > 0) is decorated with stripes of a material which
is completely wet (θ = 0). When the distance D between
the stripes is large separate liquid drops nucleate above each
stripe. Analysis based on mesoscopic interfacial Hamiltonian
models predict that, for systems with long-ranged dispersion
forces, the maximum (midpoint) height of the drop scales
at bulk coexistence as hm ∝ √

L where L is the strip width
[21]. However, as the interstrip distance D is reduced, a
single (larger) drop forms which spans both stripes and the
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FIG. 1. Schematic surface phase diagrams representing first-order wetting transition (a) on a homogenous wall at a temperature Tw and
(b) on a periodically nanopatterned wall of wet and dry stripes occurring when the distance D between the wet stripes is reduced to a value
of Dw . Also shown are the prewetting lines extending tangentially from the wetting transition off coexistence δμ > 0 which terminate at a
prewetting critical point. A schematic of the phases which coexist along the prewetting line is also shown.

area between them. For systems with long-ranged forces, this
bridging transition is predicted to occur when D ∝ ln L which
is always a molecularly short distance. The logarithmic de-
pendence here directly arises from the finite-size contribution
to the surface free energy of a drop above a completely wet
stripe.

There is, in fact, a close connection between bridging and
wetting transitions [22]. Consider, for example, a generaliza-
tion of the above scenario where N completely wet stripes
decorate a partially wet substrate in contact with a gas at
bulk coexistence. Again, when the distance D between the
stripes is long, each nucleates a separate liquid drop above
it. As D is reduced to a value close to ln L, there is a first-
order phase transition to a single droplet which spans all the
stripes and intervening (partially wet) spaces. For systems
with dispersion forces, the height of this single large drop
scales as hm ∝ √

NL. It follows that in the limit N → ∞,
corresponding to a periodic array of stripes, the bridging tran-
sition is equivalent to the unbinding of a liquid-gas interface
from the wall, i.e., a first-order wetting transition. There are
several aspects of this structurally induced wetting transition
which are of interest. First, it is driven by microscopic forces
and is not captured by the approximate Cassie equation which
predicts that θeff = 0 only occurs when f = 1 (i.e., when
the distance between the stripes regions vanishes). Second, if
there is a first-order wetting transition when D = Dw ∝ ln L,
then there should be a line of transitions analogous to prewet-
ting occurring off coexistence for D < Dw where a phase
consisting of isolated drops coexist with a liquid film of finite
thickness which covers the whole substrate. We illustrate this
in Fig. 1(b) for the extreme scenario when the regions between
the stripes are completely dry (θ = π ). In this case, the low
adsorption phase consists of isolated liquid drops covering the
wet stripes whereas the high adsorption phase has bubbles
over the dry regions and an additional liquid-gas interface
separating the liquid slab from the bulk gas. Now, if there
is a prewetting line, then we should expect that it terminates
at a prewetting critical point where the coexisting low and
high adsorption phases are indistinguishable. However, if this
is the case, we are left with the question as to how the
two phases as sketched in Fig. 1 become indistinguishable
since they appear to be structurally different. To understand
this, we must abandon mesoscopic approaches which rely on
simple pictures of interfacial configurations and apply fully
microscopic theory based on molecular density profiles. The

purpose of the present paper is to study such bridging induced
wetting and prewetting transitions using microscopic density
functional theory (DFT). In addition to demonstrating that
these transitions take place, we also show, by varying the
stripe width L, that the locations of the prewetting lines show
simple scaling data collapse associated with the presence of
dispersion forces.

II. DENSITY FUNCTIONAL MODEL

Within the framework of classical DFT [23], the equilib-
rium density profile ρeq(r), is obtained from the minimization
of a grand potential functional �[ρ]. This is exactly written

�[ρ] = F[ρ] +
∫

dr ρ(r)[V (r) − μ] , (1)

where V (r) is the external potential modeling the wall and
F[ρ] is the intrinsic Helmholtz free-energy functional which
contains all the information about the fluid-fluid intermolecu-
lar interaction. The formulation of DFT is exact, in principle,
and higher derivatives of the free-energy functional determine
direct correlation functions and, in turn, pairwise density-
density correlations from the solution of the inhomogeneous
Ornstein-Zernike equation. In most applications of DFT, ap-
proximations for F[ρ] must be performed. Varieties of these
have been developed extensively over the past few decades to
accurately model short-ranged intermolecular repulsive forces
and long-ranged intermolecular attractions. It is standard to
separate the Helmholtz free energy into an exact ideal gas
contribution and an excess part,

F[ρ] = β−1
∫

dr ρ(r)[ln (ρ(r)�3) − 1] + Fex[ρ], (2)

where � is the thermal de Broglie wavelength and β = 1/kBT
is the inverse temperature. Most modern DFT approaches
follow the spirit of van der Waals, and the excess part is
modeled as a sum of hard-sphere and attractive contributions
where the latter is treated in simple mean-field fashion:

Fex[ρ] = Fhs[ρ] + 1

2

∫∫
dr dr ′ρ(r)ρ(r′)ua(|r − r′|), (3)

where ua(r) is the attractive part of the fluid-fluid interaction
potential.

The fluid atoms are assumed to interact with one an-
other via the truncated (i.e., short-ranged) and nonshifted
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Lennard-Jones-like potential,

ua(r) =
⎧⎨
⎩

0, r < σ,

−4ε
(

σ
r

)6
, σ < r < rc,

0, r > rc.

(4)

which is cut off at rc = 2.5σ , where σ is the hard-sphere
diameter.

The hard-sphere part of the excess free energy is approxi-
mated using the fundamental measure theory functional [24],

Fhs[ρ] = 1

β

∫
dr �({nα}), (5)

which accurately takes into account the short-range corre-
lations between fluid particles allowing for an accurate de-
scription of layering arising from the volume exclusion when
a high density liquid is in contact with a wall. We have
adopted the original Rosenfeld theory where there are six
weighted densities nα which are themselves convolutions of
the density profile and fundamental measures of the hard
sphere of diameter σ .

The external potential V (r) is chosen to model a periodic
array of stripes of width L separated by regions of width D.
Here, r = (x, z) where x and z are the coordinates along and
perpendicular to the wall, respectively. Translational invari-
ance is assumed along the stripes, and the potential is infinite
for z < 0, i.e., a hard-wall repulsion. However, in the stripe
regions, we assume that there is a strong attraction between
the fluid particles and the substrate atoms which are assumed
to be uniformly distributed with density ρw. The potential
V (r) for z > 0 is then determined by integrating ρwφw(r) over
the volume of the whole array of stripes. Here, φw(r) is the
long-ranged attractive tail of the Lennard-Jones potential,

φw(r) = −4εw

(σ

r

)6
, (6)

which has a strength parameter εw chosen to emulate complete
wetting if the striped region covered the whole surface. Hence,
the attractive part of the wall potential can be written as

V (x, z) =
∞∑

n=−∞
VL(x + nL, z), (7)

where

VL(x, z) = αw

[
1

(x − L)3
− 1

x3
+ ψ6(x − L, z) − ψ6(x, z)

]
,

(8)

with

αw = − 1
3πεwσ 6ρw, (9)

and

ψ6(x, z) = −2x4 + x2z2 + 2z4

2z3x3
√

x2 + z2
. (10)

In our substrate model, the region in between the stripes is
modeled by a simple hard-wall potential meaning that these
parts of the substrate would be completely dry at any temper-
ature if they were of macroscopic extent. In our calculations,
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FIG. 2. Numerical DFT results showing the locations of the
wetting and prewetting transitions on a dry hard wall patterned with
completely wet stripes of width L = 30σ .

we have chosen εw = ε for which the wetting temperature of
the homogenous wall Tw = 0.8Tc where Tc is the bulk critical
temperature. By choosing T = 0.92Tc, we, therefore, ensure
that the stripes are completely wet by liquid.

Minimization of (1) leads to the Euler-Lagrange equation,

V (r) + δFhs

δρ(r)
+

∫
dr ′ρ(r′)ua(|r − r′|) = μ, (11)

which can be solved iteratively on an appropriately discretized
two dimensional (2D) grid (0, xm) × (0, zm) where xm = L +
D represents one period and zm = 50σ . Periodic boundary
conditions are assumed at the edges in the x direction, and
the density far from the wall at zm = 50σ is fixed to the
equilibrium bulk vapor.

III. RESULTS: SCALING OF THE PREWETTING LINES

Figure 2 shows the numerically determined phase diagram
for a patterned wall with stripes of width L = 30σ . As an-
ticipated, at bulk coexistence, the system shows a first-order
wetting transition at Dw = 4.27σ at which a low adsorption
phase consisting of isolated drops coexists with a completely
wet state where a macroscopic layer of liquid covers the
surface. The value of Dw is determined by balancing the grand
potentials of these configurations, equivalent to an application
of Antonoff’s rule γwg = γwl + γ which determines the con-
tact angle on the substrate θeff = 0. Here, γwg is the surface
tension of the wall-gas interface (with droplets of liquid
over the stripes), γwl is the surface tension of the wall-liquid
interface (with bubbles of gas over the dry interstitial gaps),
and γ is the usual liquid-gas surface tension of a planar in-
terface. A similar matching of grand potentials determines the
prewetting line extending away tangentially on the 1/D-δμ
plane. Representative coexisting densities are shown in Fig. 3.
Close to bulk coexistence, we can easily distinguish drop and
bubblelike structures which cover the wet or dry patches,
respectively [see Fig. 3(a)]. However, on approaching the
prewetting critical point, the value of the stripe separation D
is so small that one can no longer detect bubble configurations
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FIG. 3. Coexisting density profiles at three representative points along the prewetting for L = 30σ as highlighted in Fig. 2. Close to
bulk coexistence, the coexisting phases are structurally different, and droplets and bubbles over the wet and dry stripes can be distinguished.
However, on approaching the prewetting critical point, the interfacial structure very close to the wall near the dry regions becomes more diffuse,
and the phases become increasingly similar.

over the dry patches so that the density close to the wall
is similar for both thin and thick film phases. That is, they
become more and more structurally similar. At the prewetting
critical point, the total adsorption � = ∫

dx dz[ρ(r) − ρg] is
the same for both phases.

Finally, in Fig. 4(a), we show the phase diagrams obtained
for five different stripe widths L = 10σ, 20σ, 30σ, 40σ , and
50σ expressed simply on the D-δμ plane. All the prewetting
lines have a similar shape, and it is apparent that, as L
increases, the value of Dw increases. In fact, we should antic-
ipate that there is some data collapse which encapsulates uni-
versal features. Recall that for dispersion forces, the Clausius-
Clapeyron equation determines that, close to bulk coexistence,
the prewetting line Tpw(δμ) behaves as Tw − Tpw ∝ (δμ)2/3

[3]. Here, the power-law dependence reflects the singular con-
tribution to the excess surface free energy associated with the
complete wetting transition. The constant of proportionality
missing here is nonuniversal, system dependent, and related to
the value of the Hamaker constant. A similar result applies to
the present heterogeneous system, and all the prewetting lines
Dpw(δμ) behave, close to bulk coexistence, as Dpw − Dw ∝
(δμ)2/3. In fact, the only difference between prewetting curves
shown in Fig. 4(a) is due to the stripe width L—otherwise, the
systems are chemically identical. It follows that, if we rescale
D and δμ allowing for their dependence on the stripe width
L, there should be some data collapse. Figure 4(b) shows the
data collapse obtained when D is rescaled with ln L/σ (as
predicted for the value of Dw) and δμ by L1/2 (representing
the height of the droplets equivalent to their volume per unit
area). Apart from the very smallest system L = 10σ , there is
excellent data collapse for the shape of the prewetting line
particularly close to bulk coexistence. This, therefore, verifies
the predictions that the wetting transition occurs at Dw ∝ ln L
and that the droplet height scales as hm ∝ √

L. This is the main
finding of our paper.

−20

−16

−12

−8

−4

 0

 1  2  3  4  5

(a)

δμ
 / 

ε
⋅ 1

03

D / σ

L = 10σ
L = 20σ
L = 30σ
L = 40σ
L = 50σ

−0.10

−0.08

−0.06

−0.04

−0.02

 0.00

0.5 1.0

(b)

(δ
μ /

ε )
 (L

/σ
)1/

2

D / [σ ln (L/σ)]

L = 10σ
L = 20σ
L = 30σ
L = 40σ
L = 50σ

FIG. 4. Numerical DFT results showing (a) the wetting and
prewetting lines for five different stripe widths and (b) the data
collapse when the separation distance D and chemical potential field
δμ are rescaled by ln L/σ and

√
L/σ , respectively.
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IV. CONCLUDING REMARKS

Our paper has been based on a microscopic but mean-
field DFT model which misses some fluctuation effects.
However, unlike the bridging transition between two (or any
finite number) of stripes, which beyond mean-field would be
rounded by fluctuations, the wetting and prewetting transi-
tions considered here remain genuine first order as predicted
by mean-field theory. The present analysis should, therefore,
accurately predict the value of the stripe spacing Dw where
the wetting transition occurs. Second, the scaling dependence
seen in the data collapse for the different prewetting lines is
unchanged by interfacial fluctuations since they arise from
critical singularities associated with complete wetting, the
upper critical dimension for which is less than three for
dispersion forces [6]. The only inaccuracy in the DFT analysis
concerns predictions for the prewetting critical point which,
beyond mean field, should belong to the true 2D Ising bulk
universality class [25]. An interesting extension of the present
paper would be to consider arrays of stripes with different
widths which could lead to additional bridging transitions and
the sequential coalescence of drops which precede a wetting
transition. It would also be interesting to consider the effect of

disorder by randomizing the stripe widths, which would more
realistically model experimental situations. Finally, it might
be worth investigating the effect of the model fluid potential,
e.g., by considering a long-ranged fluid-fluid potential, we
expect much stronger interaction between the neighboring
droplets facilitating their coalescence.

To summarize, we have used a microscopic DFT to
demonstrate that bridging induced wetting transitions occur
on nanopatterned walls comprising wet and dry stripes. The
associated prewetting lines occurring in systems with different
stripe widths show a simple data collapse which confirms
scaling predictions for the height and finite-size surface free
energy for complete wetting drops.
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