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Orientational ordering and layering of hard plates in narrow slitlike pores
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We examine the ordering behavior of hard platelike particles in a very narrow, slitlike pore using the
Parsons-Lee density functional theory and the restricted orientation approximation. We observe that the plates
are orientationally ordered and align perpendicularly (face-on) to the walls at low densities, a first-order layering
transition occurs between uniaxial nematic structures having n and n + 1 layers at intermediate densities, and
even a phase transition between a monolayer with parallel (edge-on) orientational order and n layers with a
perpendicular one can be detected at high densities. In addition to this, the edge-on monolayer is usually biaxial
nematic, and a uniaxial-biaxial nematic phase transition can be also seen at very high densities.
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I. INTRODUCTION

It is still challenging to understand the role of shape, thick-
ness to width, charge distribution, and size polydispersity of
colloidal particles with regard to the stability of their different
mesophases [1]. Over the years, several hard-body models,
including oblate and prolate, have been devised and studied by
simulation and theory [2]. Some important models of oblate
(platelike) particles are the disk [3–5], oblate spherocylinder
[6,7], ring [8,9], cut sphere [10,11], sheet [12], lense [13],
board [14,15], and rhombic platelet [16]. From studies of
these models, it is now well understood that the key factor
is the anisotropic shape in the formation of liquid-crystalline
states such as the nematic and columnar. The thin platelike
particles exhibit isotropic, nematic, and columnar mesophases
with increasing density [2,10], while the thicker ones may
form a cubatic phase instead of a nematic one [17,18]. If
the platelike particle is biaxial in shape, such as the hard
boards, a very complicated phase sequence emerges due to the
stabilization of the biaxial nematic phase and the appearance
of the nematic-nematic phase transition [15]. Moreover, the
surface charges on the plates can stabilize the hexatic [19] and
smectic B [20,21] structures. Gravity and size polydispersity
are the other important factors affecting the stability of the
mesophases [22–26]. The phase behavior of platelike parti-
cles can be modified with addition of some depletion agents
such as polymers [27] or mixing them with other colloidal
particles having different sizes and shapes, such as spheres,
rods, and plates [28–30]. For example, isotropic-isotropic
and nematic-nematic demixing transitions can be observed in
rod-plate [31,32], plate-plate [33], and plate-sphere mixtures
[34,35].

The ordering of platelike particles in the presence of a
single wall and between two parallel walls has been studied
with both theory and simulation [36–43]. The results of these
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studies can be summarized as follows: (a) the plate particles
wet the wall in face-on order (homeotropic anchoring), where
the nematic director is perpendicular to the wall, (b) the
wall promotes the formation of nematic order, (c) the cap-
illary isotropic-nematic transition weakens with decreasing
pore width, and (d) this first-order transition terminates at a
critical pore width which is in the order of ∼4D (where D
is the diameter of the plate). However, the rods between two
parallel hard walls exhibit planar anchoring, a wall-induced
uniaxial-biaxial surface ordering transition occurs, and the
capillary isotropic-nematic transition terminates at width of
∼2L (where L is the length of the rod) [44–49]. Furthermore,
a layering transition between two smectic phases having n and
n + 1 layers exists in slitlike pores where the anchoring of
the rods is homeotropic [50–52]. Stiff ring polymers behave
differently in the vicinity of hard walls, because they are
adsorbed with edge-on order (planar anchoring) [53], and
even a concentration-induced planar-to-homeotropic anchor-
ing transition can be detected [54]. This can be attributed to
the penetrable nature of the rings, which can help to reduce the
surface tension in homeotropic order. It is common in these
confined studies that the pore is taken to be wide, which does
not allow study of how the nature of orientational ordering
changes between two- and three dimensions with widening
the pore. Only a few studies are devoted to examine the effect
of out-of-plane fluctuations on the positional and orientational
ordering transitions in very narrow pores [55–57]. In this
regard, Khadilkar and Escobedo [58] studied the ordering of
hard cubes in very narrow slitlike pore and observed layered
structures and intermediate phases such as the buckled and
rotator plastic phases. The effect of strong confinement was
investigated for rodlike shapes as well, where a wall-induced
nematic ordering of nonmesogenic particles was detected
[59]. To our best knowledge, the ordering properties of plate-
like particles has not been studied in narrow slitlike pores.

In our present study, we investigate the effect of extreme
confinement on the ordering properties of hard plates by
placing the particles into very narrow slitlike pores. We focus
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FIG. 1. The three possible orientations of the hard plates between
two parallel hard walls. The plate is oriented along the x, y, and z axes
from left to right. The x and y orientations are edge-on, while the z
orientation is face-on to the walls. H is the pore width, and L and D
are the side lengths of the plate.

on the effect of pore width and the plate’s aspect ratio on
the orientational order and surface adsorption. To avoid the
relaxation to bulk properties in the middle of the pore and
to avoid the formation of several mixed structures, the pore
width is chosen such that the plates are allowed to form several
layers in face-on (homeotropic) alignment, while only one
layer can accommodate the pore in edge-on (planar) align-
ment. We show that the strong confinement induces layered
nematic structures and layering phase transitions between two
uniaxial nematic phases having n and n + 1 layers. More-
over, the surface anchoring changes from face-on to edge-on
alignment, and a biaxial nematic ordering becomes stable in
edge-on order.

II. MODEL AND THEORY

We place the rectangular plates with edge lengths L, D, and
D into a slitlike pore, where the confining walls are flat and
parallel. We use the so-called three-state restricted orientation
approximation, where the main symmetry axes of the particles
can orient only along the x, y, and z axes of the Cartesian
coordinate system [60]. The schematic representation of the

system, the molecular parameters, and the possible orienta-
tions of the plates are shown in Fig. 1. We examine the effect
of varying aspect ratio (L/D < 1) and the wall-to-wall distance
(H) on the phase behavior of the platelike particles. To do
this we use the Parsons-Lee modification of the second virial
density functional theory [61,62]. In this formalism the key
quantity is the grand potential (�), which is a functional of
the local density [ρ(1)]. In the three-state orientational model
the system corresponds to a ternary mixture, where x, y, and
z orientations correspond to the components of the ternary
mixture. Therefore the grand potential is a functional of the
local densities of three orientations [ρx(1), ρy(1), and ρz(1)]
as follows:

β�[ρ] =
∑

i=x,y,z

∫
d (1)ρi(1)

[
ln ρi(1) − 1 + βV ext

i (1) − βμ
]

− 1

2
c

∑
i, j=x,y,z

∫
d (1)ρi(1)

∫
d (2)ρ j (2)

∫
f M
i j (1, 2),

(1)

where β = 1/kBT is the inverse temperature, (1) = (x, y, z),
V ext

i is the external potential between the plate with orientation
i and the walls, μ is the chemical potential, c is the Parsons-
Lee prefactor [63], f M

i j = exp[−βui j (1, 2)] − 1 is the Mayer
function, and ui j (1, 2) is the pair potential between particles
with orientations i and j at positions 1 and 2, respectively. As
the interaction between the particles is hard repulsive, f M

i j is
−1 for overlapping particles and zero otherwise. The external
potential is infinite if the plate particle overlaps with the walls
or the particles are outside the pore, while it is zero if the
plate particle is inside the pore. This condition restricts the
positions of the particles to be between the two hard walls.
The functional minimization of Eq. (1) with respect to the
component densities [ρx(1), ρy(1) and ρz(1)] provides the
equations for the equilibrium density profiles between the two
parallel walls. As we do not intend to examine the crystalline
structures in the x − y plane, the local densities of the three
orientations depend on the z coordinate only. The resulting set
of equations for the local densities can be written as

ρk (z) = Hρ
exp

[−c
∑

i=x,y,z

∫
dz′ρi(z′)Aexc

ik (z, z′)
]

∑
j=x,y,z

∫
dz′′ exp

[−c
∑

i=x,y,z

∫
dz′ρi(z′)Aexc

i j (z′, z′′)
] , (2)

where k = x, y, and z, ρ = N/V is the number density, c =
(1 − 3η/4)(1 − η)−2, η = ρv0 is the packing fraction, v0 =
D2L is the volume of the plate particle, and Aexc

i j is the
excluded area between two hard plates with orientations i and
j. The intervals of the integrations in z coordinate is restricted
by the external potential. The details of the solution of the
above set of equations is presented in our previous study [62].
After substitution of the solutions of Eq. (2) into Eq. (1) we
get the equilibrium grand potential of the system. We also
calculate the free energy of the system by the omission of
the chemical potential term in Eq. (1). It is also possible to
calculate the fraction of particles pointing into the direction i

(i = x, y, and z), which is defined by Xi = Ni/N , where Ni is
the number of plates in direction i. This can be obtained from
the density profiles as follows:

Xi =
∫

dzρi(z)∑
j=x,y,z

∫
dzρ j (z)

. (3)

In the case of first-order phase transitions we determine
the packing fractions of the coexisting phases α and β from
the equality of the pressures and chemical potentials, which
are P(α) = P(β ) and μ(α) = μ(β ). In the next section we
present our results in dimensionless units, where D is taken to
be the unit.
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III. RESULTS AND DISCUSSION

We study the orientational ordering and the layered struc-
tures of hard platelike particles, which are confined into a pore
by two parallel hard walls in such a way that L < H � L + D.
This condition allows the formation of a monolayer in edge-on
orientation (L side is parallel with the walls) only, while
several layers can accommodate the pore in face-on direction
(L side is perpendicular to the walls). The upper limit of the
number of layers is the integer of H/L, which cannot be more
than ten layers even for the lowest aspect ratio (L/D = 0.1)
we studied. If L < H < D the plates are always in face-on
direction to the walls and only a layering phenomenon occurs
between the two walls, because the particles cannot accom-
modate into the pore in edge-on direction. However, if D <

H < D + L both face-on and edge-on structures are feasible
and the layered face-on structure can compete with an edge-on
monolayer. This is due to the competition between different
entropy contributions to maximize the available space for the
particles in the pore. For example, the available volume of
a plate is A (H-D) and A (H-L) for the edge-on monolayer
and face-on layers, respectively, where A is the surface area.
Therefore, the available room (translational entropy) is always
higher in face-on order than in edge-on order. Contrary to this,
the particles exclude higher volumes from each other in face-
on order than in edge-on order, i.e., the packing (excluded
volume) entropy term supports the formation of edge-on
monolayers. In addition to this, even a competition between
two layered structures having n and n + 1 layers may occur
due to the interference between the wall-induced oscillatory
layered structures, which evolve from the opposite walls. In
the case of n layers, the translational entropy contribution is
high, while the excluded volume contribution is low as the
layers are wide. The opposite is true for n + 1 layers, because
the density peaks are sharper and the layers are thinner. In
summary, we show together the competing face-on and edge-
on structures in Fig. 2.

We can gain some information about the high-density
structure of the system by examining the highest value of
the packing fraction in different states. If the phase con-
sists of n layers in face-on order, the packing fraction (η =
N
V v0) can be factorized into two-dimensional (2D) and one-
dimensional (1D) packing fractions as follows: η = η2Dη1D,
where η2D = ND2

nA and η1D = nL
H . Since the squares placed

into the square lattice can cover the 2D surface (A) perfectly,
i.e., η 2D(max) = 1, we get that η(max) = nL/H for n layers.
Since the maximum number of layers which can fit into the
pore is the integer of H/L, we get that the close packing value
of the packing fraction can be written as ηcp = int( H

L ) L
H in

face-on order. In the case of edge-on order, we have only
one layer, where η2D = NDL

A and η1D = D
H . As the coverage

of the 2D surface can be done perfectly without gaps, i.e.,
η 2D(max) = 1, we get that ηcp = D

H . The comparison of the
above close packing values of the two structures inform us that
the stable phase is edge-on (face-on) in very dense phases,
if D/H is higher (lower) than int( H

L ) L
H . We show later that

the results of Eq. (2) for the stability of face-on and edge-on
structures at high densities are consistent with the ordering
direction of the close packing structure.

First we show the density profiles of the plates at three dif-
ferent densities in Fig. 3, where L/D = 0.6 and H/D = 1.1. It

Wall

Wall

Wall

Wall

Wall

Wall

FIG. 2. Two-dimensional representation of the possible struc-
tures of hard plates: a face-on ordering of the plates with the walls
in three layers (upper panel), an edge-on ordering of the plates with
the walls in one layer (middle panel), and a face-on ordering of the
plates with the walls in four layers (lower panel). Here we use the
following values: L/D = 0.3 and H/D = 1.3.

can be seen that the local densities do not depend on z, because
only one fluid layer is allowed to form in both face-on and
edge-on orientations. At low densities the favored structure is
face-on order [Fig. 3(a)], because the available distance along
the z direction is 0.5D in this state, while it is only 0.1D in
edge-on order. At a vanishing packing fraction (ideal gas limit
ρ → 0) we get from Eqs. (2) and (3) that ρx = ρy = ρz =

Hρ

2(H−D)+H−L , Xx = Xy = H−D
2(H−D)+H−L , and Xz = H−L

2(H−D)+H−L .
These equations show that the majority of the particles are
aligned along the z axis as H goes to D (Xz → 1). In our
special case these equations give that about 71% of the par-
ticles are in face-on order while 29% of them are in edge-on
order, which means that the phase is nematic even at vanishing
density. Therefore the hard walls act like an external orientat-
ing field on the plate particles, where the nematic director is
perpendicular to the walls (homeotropic ordering). However,
the wall does not fix the direction of the nematic director,
because more and more particles are ordered along the x and
y directions with increasing density to minimize the excluded
area between the plates. As a result, an edge-on nematic
order (Xz < 0.5) is obtained which is uniaxial at η = 0.6
[Fig. 3(b)] and biaxial at η = 0.8 [Fig. 3(c)]. In the uniaxial
phase we can see that ρx = ρy � ρz, while ρx > ρy � ρz
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FIG. 3. Density profiles of the plates for the three possible orien-
tations for L/D = 0.6 and H/D = 1.1: (a) face-on order at η = 0.1
as the majority of the particles are face-on to the walls, (b) uniaxial
edge-on order at η = 0.6 as ρx = ρy and Xz < 1/2, and (c) biaxial
edge-on order at η = 0.8 as ρx �= ρy and Xz < 1/2. The quantities
are dimensionless, i.e., z∗ = z/Dρ∗

i = ρiD3.

in the biaxial nematic phase. These two phases can be also
considered as being in planar order since the nematic director
is in the x-y plane. From these results, three different one-layer
(1L) structures can be identified: (a) one-layer face-on order

FIG. 4. Phase diagram of confined hard plates with L/D = 0.6.
(a) Mole fractions of the plates in the three possible orientations
as a function of packing fraction. (b) Borders of the observed
phases in packing fraction-pore width plane. The following phases
are observed: one-layer face-on (1LFO), one-layer edge-on uniaxial
(1LEO), and one-layer edge-on biaxial order (1LBO). The vertical
dashed lines delimit the structures from each other in (a), while
the lower and upper dashed curves represent the maximal packing
fraction of face-on and edge-on monolayers in (b), respectively.

(1LFO) if Xz � 0.5 and Xx = Xy, (b) one-layer edge-on order
(1LEO) if Xz < 0.5 and Xx = Xy, and (c) one-layer biaxial
order (1LBO) if Xx > Xy > Xz. The results of Eqs. (2) and
(3) for the mole fractions are shown together in Fig. 4(a)
at L/D = 0.6 and H/D = 1.1, where the borders of differ-
ent structures have been separated by vertical dashed lines.
We show the stability regions of 1LFO, 1LEO, and 1LBO
structures in Fig. 4(b) in the η-H/D plane for L/D = 0.6. It
is obvious that the 1LFO structure can be destabilized with
respect to 1LEO with increasing H/D, because the particles
have more free volume (lower excluded area) in 1LEO order.
The density of the uniaxial-biaxial transition (1LEO-1LBO)
is only weakly affected by varying the pore width, as this
transition is an in-plane isotropic-nematic transition that de-
pends only on the number of particles being in the edge-on
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FIG. 5. Density profiles of hard plates with L/D = 0.3: (a, b) two- and three-layer structures in face-on order at η = 0.42 and H/D = 1.04,
(c, d) three-layer structure in face-on and one-layer biaxial in edge-on order at η = 0.51 and H/D = 1.3, and (e, f) one-layer edge-on biaxial
and four-layer structure in face-on order at η = 0.62 and H/D = 1.3. The quantities are dimensionless, i.e., z∗ = z/D ρ∗

i = ρiD3.

order. Here we note that 1LFO-1LEO structural change is not
a true phase transition, because the thermodynamic quanti-
ties and the mole fractions are changing continuously with
the density. In contrast to this, a 1LEO-1LBO structural
change is a second-order phase transition. The 1LFO-1LEO
change occurs in the density range of normal fluids, while the
1LEO-1LBO transition is probably preempted by freezing as
η1LEO−1LBO ≈ 0.8. Even though our 1LBO phase is fluid, our
prediction is right in the sense that the plate particles must
order in edge-on direction and biaxial order to reach the close
packing structure with increasing density. It is interesting that
η1LFO−1LEO and η1LEO−1LBO do not exceed the maximum value
of the packing fraction of face-on and edge-on structures,
which are L/H and D/H , respectively.

The structure of the plates changes substantially for
L/D < 0.5 because more than one layer can form between the
two walls in face-on order. As a result, the density profiles
are inhomogeneous, the particles can adsorb to the walls in

face-on order, the layered structures compete with each other,
and even face-on-to-edge-on orientational phase transition can
occur. We show that this happens with plates if L/D = 0.3.
The density profiles of different structures are shown in Fig. 5.
We have obtained a two-layer face-on (2L) structure with
some particles in the middle of the pore and a three-layer
face-on (3L) at η = 0.42 and H/D = 1.04 [Figs. 5(a) and
5(b)]. The main difference between these two structures is
that the layers are thicker in the 2L face-on structure than
in the 3L one. Since there are two solutions of Eq. (2) at
the same inputs, where the free energy of the 3L structure is
lower than that of the 2L one, there must be a phase transition
between 2L and 3L face-on structures. Similarly, we have
found two solutions of Eq. (2) at higher packing fractions: 3L
face-on and one-layer (1L) edge-on solutions [see Figs. 5(c)
and 5(d)] at η = 0.51 and 1L edge-on and four-layer (4L)
face-on solutions [see Figs. 5(e) and 5(f)] at η = 0.62, where
H/D = 1.2. The observed 3L and 4L face-on structures are
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FIG. 6. Phase diagram of confined hard plates with L/D = 0.3
in packing fraction-pore width plane. The following structures are
observed: face-on bilayer (2L), three-layer (3L) face-on, four-layer
(4L) face-on, and biaxial edge-on monolayer (1LBO). The biphasic
regions are shaded. The dashed curve shows the maximal packing
fraction of 2L structure.

uniaxial as ρx = ρy, while the 1L edge-on structure is biaxial
as ρx > ρy � ρz. Using the phase equilibrium conditions,
we have determined the transition densities of the coexisting
phases, which is presented in Fig. 6 for L/D = 0.3. Note that
phase transition cannot occur below H/D = 0.9, because the

formation of the 2L face-on structure can develop continu-
ously from a 1L edge-on structure as the particles can adsorb
easily to the walls. Since only 2L and 3L ordering is allowed
to form for 0.9 < H/D < 1 and the maximal packing fraction
can be achieved with 3L structure, we find that a first-order
phase transition occurs between 2L and 3L structures for
H/D < 1.05. However, the 3L order can develop continuously
from the 2L order for H/D > 1.05. This is due to the fact that it
is easier to accommodate three layers into the pore if the pore
is wide enough. It can be also seen that the 3L phase becomes
stable before we reach the maximum packing fraction of the
2L phase (see the dashed curve in Fig. 6). According to the
close packing argument the plates should be in edge-on order
at very high densities if 1 < H/D < 1.2. In this region we
observe a first-order transition between a uniaxial 3L phase
and a biaxial one-layer (1LBO) phase with increasing density,
where the orientational ordering changes from face-on to the
edge-on direction. The high-density stable phase is a 4L struc-
ture for 1.2 < H/D < 1.3, because ηmax(4L) > ηmax(1LBO).
Therefore an additional phase transition between 1LBO and
4L occurs at high densities. It is interesting that a face-
on–edge-on–face-on ordering sequence can be observed with
increasing density for H/D = 1.2, i.e., the nematic director
changes direction two times. One can see that more and
more layers can accommodate into the pore with decreasing
thickness of the plate particles because the maximum of the
number of layers is int(L/H). We show two examples in Fig. 7,
where five-layer (5L) face-on structures change to six-layer

FIG. 7. Density profiles of hard plates with L/D = 0.1: (a) five-layer face-on structure at H/D = 0.775 and η = 0.3, (b) six-layer face-on
structure at H/D = 0.775 and η = 0.34, (c) five-layer face-on structure at H/D = 0.73 and η = 0.455, and (d) six-layer face-on structure
at H/D = 0.73 and η = 0.455. The quantities are dimensionless, i.e., z∗ = z/D and ρ∗

z = ρz D3. At these molecular parameters ρ∗
x (z∗) =

ρ∗
y (z∗) = 0 and ρ∗

z (z) = ρ∗(z∗).
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FIG. 8. Phase diagram of confined hard plates with L/D = 0.2 (a), 0.15 (b), and 0.1 (c) in packing fraction-pore width plane. Layered
structures in face-on order with the walls are observed, where the number of layers is between 2 and 9 (2L, . . . , 9L). The layering transition
occurs between structures having n and n + 1 layers. The biphasic regions of the layering transitions are shaded. The dashed curves show the
maximal packing fraction of 2L, 3L, and 4L structures from left to right. The dotted curve represents the continuous structural change from
n-to-n + 1 layers, where n = 2, 3, . . . 7.

(6L) face-on structures for L/D = 0.1. One can see that the
formation of an extra layer in the middle of the pore can
be achieved easily at H/D = 0.775 [Figs. 7(a) and 7(b)], as
the middle thick layer in the 5L structure can split into two
layers. This is not the case in a narrower pore [Figs. 7(c)
and 7(d)], where the accommodation with six layers is harder
as the layers are already thin in the 5L structure. As the
sharpening peaks increase the loss in the translational entropy
substantially and the packing entropy contribution increases
from the lower excluded areas with the formation of an extra
layer, we encounter the competition of these two entropies and
a first-order layering transition between n and n + 1 layers
takes place. We show the resulting layering phase diagrams
for different aspect ratios in Fig. 8. Since a maximum of five
layers can accommodate into the widest pore (H/D = 1.2) for
L/D = 0.2, the following layering transitions may emerge in
face-on order: 2L-3L and 3L-4L and 4L-5L. This is shown in
Fig. 8(a), where the curves of maximal packing fractions of
2L and 3L structures can also be seen. Note that the maximal
packing fraction of n layers is always above the n − n + 1 lay-
ering transition. We have not observed 1LBO order because
the close packing structure is degenerate, i.e., both the face-on
and the edge-on orders produce the same maximal packing

fraction. In addition to this, it is favorable to stay in layered
structure, because the particles can access larger parts of the
space. Similar phase diagrams are obtained for L/D = 0.15
and L/D = 0.1, where the maximum of the number of layers
are seven and ten, respectively. We can see that the number
of layers increases with widening the pore. It is interesting
that only one layering transition occurs at a given H/D, and all
first-order layering transitions terminate at almost the same
value of packing fraction (η ≈ 0.41). At lower packing frac-
tions, the n-to-n + 1 layering shows a continuous structural
change, and the layered structures can develop continuously
from the adsorbed layers of the walls. Our results show that
even if there are more phase transitions with decreasing L/D,
the phase diagram is less complicated, because the 1LBO
order is destabilized and only the competition between n and
n + 1 layered structures survives. In order to make the phase
diagram more complex, the pore should be wider in such an
amount that mixed structures with both edge-on and face-on
orders can also form.

IV. CONCLUSIONS

We have studied the effect of the pore width and aspect
ratio on the ordering properties of hard platelike particles
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which are placed between two parallel hard walls. Using the
Parsons-Lee density functional theory in restricted orienta-
tion approximation, we have observed that the wall-particle
hard interaction induces a uniaxial nematic order with strong
adsorption at the walls. The nematic director is perpendic-
ular to the walls (face-on order), i.e., the ordering can be
considered as homeotropic. This kind of ordering maximizes
the available room for the plates between the walls, and the
strong surface adsorption reduces the excluded volume cost
between the particles. The adsorbed layers at the surfaces
are uniaxial, i.e., only tetratic and solid phases can emerge
in the adsorption layer if the surface density exceeds the
transition densities of two-dimensional hard squares [64,65].
These possible in-plane orderings are not taken into account
in our formalism. The number of layers between two parallel
walls is an integer of H/L in face-on (homeotropic) order,
while only one layer is allowed to form in edge-on (planar)
order as L < H < L + D. As the walls are very close to
each other (quasi-two-dimensional system), the wall-induced
face-on nematic fluid is inhomogeneous even in the middle of
the pore, because the system cannot relax to the bulk values.
Therefore continuous and first-order layering transitions can
occur between layered nematic fluids, where the two fluids
have n and n + 1 layers. If the pore is enough wide, the
formation of a new layer can be realized continuously, with
a split of a wide fluid layer into two layers or with formation
of a new peak in the middle of the pore. However, the
formation of a new layer in face-on order is accompanied
by a high translational entropy cost in several cases, which
results in a first-order layering phase transition. The edge-on
nematic structure corresponds practically to a 2D fluid of
hard rectangles, where there are only few plates in face-on
order. This phase is homogeneous, and a 2D isotropic-nemtic
phase transition may occur with increasing density, which
corresponds to a uniaxial nematic-biaxial nematic phase tran-
sition. The biaxial nematic ordering is observed only in fluids
of weakly anisotropic particles, where the uniaxial-biaxial
transition density is very high, while it is not observed in fluids
of strongly anisotropic particles. This is due to the fact that the
face-on order becomes more stable than edge-on order at a
given pore width, because the available distance between the
two walls is increasing in face-on order (H-L) while it does
not change in edge-on order (H-D) as L goes to zero. As a
result the biaxial ordering is suppressed with L/D→0, and
several layering transitions can be detected in face-on order.
The first layering transition occurs between fluids having two
and three layers, while the last layering transition takes place
between two fluids with n-1 and n layers with increasing
pore width, where n = int(Hmax/L) and Hmax = L + D. In the
special case of infinitely thin plates (platelet), the number of
layering transitions diverges with the pore width as n goes
to infinity. The observed layering transitions are not affected
by a first-order capillary nematization transition because a

capillary critical point emerges at the pore width of ∼4D,
which is higher than Hmax.

It is worth comparing the ordering properties of confined
platelike and rodlike particles as they behave differently. Even
though the rods also exhibit strong adsorption at the walls, the
rod’s long axis tends to be parallel with the walls and form a
planar layer. If the surface density of the adsorbed particles at
the walls exceeds a certain density, a surface-induced uniaxial
nematic-biaxial nematic transition emerges in the vicinity of
walls, which corresponds to isotropic-nematic transition of
2D hard rods [44]. The layering transition happens mostly
between two biaxial nematic fluids with n and n + 1 layers
where the transition densities are above the density of the ori-
entational ordering transition [66]. These results differ sharply
from the plates, where the ordering is homeotropic, the uniax-
ial layering transition happens at intermediate densities, and
the biaxial nematic ordering may occur at very high densities.
In addition to this, the period of the layered structure is in the
order of D for rods while it is proportional to L for plates.

Our results should be considered with some reservation at
high densities, because the in-plane positional and orientation
orderings are not taken into account. In addition to this, our
mean-field-type theory has the property that it exaggerates
slightly the order of the phase transitions and overestimates
the stability of the ordered phases. Therefore new simulation
studies and experiments would be useful to justify our find-
ings. However, our theory correctly predicts that the layering
must occur with increasing density, and it also produces the
right ordering direction at very high density. In accordance
with our findings, a recent Monte Carlo simulation study
found that the system of confined hard squares exhibits a weak
layering transition [67]. In order to improve the reliability of
the present theory for confined platelike particles, the dimen-
sional crossover between two- and three-dimensional systems
should be incorporated correctly. Along this line, the funda-
mental measure density functional theory can be a step ahead
[68–73], which proved accurate for infinitely thin plates [74].

Finally, we mention that attractive interactions can also
play a crucial role in the stability of the different structures.
For example, adding the special square-well pair potentials
to the hard-body interactions, even the vapor-liquid transition
of the laponite platelike particles can be described correctly
[75,76].
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