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Influence of boundary conditions on the order and defects of biaxial nematic droplets
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We employ Monte Carlo simulations to study the defects occurring in a nematic droplet formed by biaxial
molecules. The simulations are carried out using a lattice model based on a dispersive orientational biaxial
potential previously employed to establish the rich phase diagram of the system. The focus of the present
investigation is on the molecular organization inside the droplet when bipolar and toroidal anchoring conditions
at the surface are considered. In both cases, we describe how the defect structure arises in the system, and
we analyze the behavior of the defect core region in connection with the elastic properties of the phase in a
continuum theory perspective.
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I. INTRODUCTION

Nematic droplets formed by biaxial molecules present a
rich variety of defects depending on the boundary conditions
[1]. To understand these systems is challenging, both from the
conceptual as well as the experimental point of view [1–19].
To accomplish the difficult task of describing the defect struc-
ture arising in these droplets demands hard theoretical work,
and some speculative arguments have continued to be raised
in this direction over a few decades [4,15]. In this scenario,
computer simulations provide a suitable framework to tackle a
whole class of problems in which the biaxiality of the building
blocks forming the phases is explicitly taken into account [20].
Recently, we have presented a detailed Monte Carlo study
of the effect of molecular biaxiality on the defect created at
the center of the nematic droplet in a radial (homeotropic)
alignment [21]. Some light has been shed on the important
question of the shape and size of the defect core region,
already studied in uniaxial nematics [7–13], by showing that
the dimensions of the core region may be connected with the
biaxiality parameter in the pair potential, at least in the limit
of small deformations and low temperature. This connection is
demonstrated in the framework of an elastic continuum theory
approach, in the limit of weak biaxiality.

In this work, we employ Monte Carlo simulations [22] to
perform a study of the formation of the defects in a nematic
droplet whose constituents are biaxial molecules, in particular
calculating the expected optical textures between cross polar-
izers. The simulations are carried out using a lattice version
[23,24] of the orientational potential for biaxial particles
interacting via dispersive forces developed in [20]. We have
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already analyzed [21] the case of radial boundary conditions
(RBCs), which will be briefly recalled here for completeness.
The focus of the present investigation is on the molecular
organization inside the droplet when two other important
types of planar anchoring at the droplet surface, i.e., bipolar
boundary conditions and toroidal boundary conditions, are
considered. In all these cases, we show how the defect struc-
ture arises in the system, and we analyze the behavior of the
defect core region in connection with the elastic properties of
the phase and the parameters of the pair potential.

II. MODEL AND SIMULATIONS

To go further, we consider a lattice version of the ori-
entational biaxial potential put forward many years ago by
Luckhurst et al. [20], and whose phase diagram has already
been studied in detail by computer simulations of bulk sys-
tems [23,24]. This lattice model, where particle positions are
fixed and discretized, only deals with orientational degrees
of freedom, thus removing the competition from smectics,
but it is able to reproduce the rich phase diagram of a biax-
ial nematic system in which isotropic, uniaxial, and biaxial
phases are present. In addition, it reduces to the well-known
Lebwohl-Lasher (LL) uniaxial lattice model for nematics
[25], when the molecular biaxiality vanishes. More explicitly,
the confined biaxial model Hamiltonian employed in the
simulations is written as

UN = 1

2

∑

i, j∈F
i �= j

�i j + J
∑

i∈F
j∈S

�i j, (1)

where F and S are the set of particles (let us call them “biaxial
spins”) in the bulk and at the surfaces, respectively, i and j are
nearest neighbors, while the parameter J models the strength
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of the coupling with the confining surface particles. In this
way, the biaxial Hamiltonian is composed of two terms, one
of which represents the interaction between the constituent
particles (the particles inside the droplet) whereas the other
one accounts for the interaction of the mesogenic particles
at the surface with those of the surrounding media, i.e., the
particles of the host matrix in which the droplet is embedded.
The particles interact through the second-rank attractive pair
potential:

�i j = −εi j
{
P2(cos βi j ) + 2λ

[
R2

02(ωi j ) + R2
20(ωi j )

]

+ 4λ2R2
22(ωi j )

}
, (2)

where εi j is a positive constant, ε, for nearest-neighbor
molecules i and j, and zero otherwise; ω = α, β, γ is a set of
Euler angles [26] and RL

mn are symmetrized combinations of
Wigner functions [23]. The biaxiality parameter λ takes into
account the deviation from cylindrical molecular symmetry,
and, when λ �= 0, the particles tend to align not only their
major axis, but also their short ones.

We have implemented the alignment at the droplet surface
akin to a certain experimental scenario by considering an
additional layer of particles kept fixed during the simulation,
and with orientation chosen to mimic the desired boundary
conditions.

In this framework, as mentioned before, we present a de-
tailed study of biaxial nematic droplets, for various values of
molecular biaxiality, with two different boundary conditions,
namely bipolar boundary conditions (BBCs)—the long axes
are oriented tangentially to the droplet surface and belong to
planes parallel to the z axis, and toroidal boundary conditions
(TBCs)—the long axes lie in planes perpendicular to the z axis
and are oriented tangentially to the droplet surface. In both
cases, the short axes of the particles belonging to the surface
have random orientations and, as the long axes of the same
particles, are frozen during the simulations.

Our model droplets are approximately spherical samples
carved from a 50 × 50 × 50 cubic lattice and containing
54 474 particles. We have already verified in previous works
that this size, albeit apparently small, is sufficient to simu-
late with a good resolution the polarized optical microscopy
(POM) images observed in experimental work, because a spin
can play the role of a packed cluster of tens of molecules
instead of a single particle [27]. In the present simulations,
the parameter J , denoting the surface coupling with the sur-
rounding environment, was taken equal to 1.

To simulate the optical texture between crossed polarizers,
we have employed the Stokes-Müller methodology, consid-
ering each spin on the pathway of the incoming photon as
a retarder, as in previous work [28,29] and using the fol-
lowing parameters, reported to real units: droplet diameter
d = 5.3 μm, ordinary and extraordinary refractive indices
no = 1.5 and ne = 1.66, respectively, for a light with wave-
length in the visible, and λ0 = 545 nm [28,30]. We have also
assumed that the refraction tensor can always be considered
as effectively uniaxial for the purpose of producing the POM
images. The temperature was set to the dimensionless value
T ∗ = kBT/ε = 0.1, deep in the ordered phase. The starting
configurations of the lattice were chosen to be completely
aligned along the z direction, and the evolution of the system

FIG. 1. Top views (from the z axis as shown in the first plate of
the first row) of the optical textures obtained from MC simulation
of a droplet with different boundary conditions (BBC and TBC) for
various values of the molecular biaxiality. The images are simulated
between crossed polarizers, and the outcoming light intensity is
represented with a false color scale.

was followed according to the classic Metropolis Monte Carlo
procedure [22]. The outcoming light intensity is represented
with a false color scale to make, at least in principle, compar-
ison with real experiments easier.

III. RESULTS

In Fig. 1, we report the results for the two boundary
conditions considered and the dependence of these results
on small deviations from the cylindrical symmetry of the
constituent molecules of the nematics. We have noticed in a
previous work [21] that the main effect for the RBC case is
the increasing of the radius of the defect core, placed at the
center of the system, which is biaxial itself, as the molecular
biaxiality increases. This result was reinforced by a continuum
theory analysis relating the biaxiality parameter of the pair
potential to the ratio between some elastic constants.
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FIG. 2. Plots of the Westin metric isosurfaces for the principal
and secondary director (red and blue, respectively) (first column) and
vertical cuts of the snapshots of the long (second column) and short
(third column) axes for a nematic droplet with BBC alignment and
three different values of the biaxiality parameter λ. The isosurface
thresholds are chosen in order to provide an optimal visualization of
areas where the directors are not well-defined. The color coding of
the snapshots varies from red for alignment along z to yellow for an
alignment on the xy plane.

Similar observations can now be made also for the BBC
case for which two boojums [4] are present at the poles of the
droplet, along the z axis in our reference frame. Again, in this
case we can appreciate, although smaller with respect to the
RBC case, an increasing of the boojums radii as the molecular
biaxiality increases (see Fig. 2) by performing a geometric
measure for the visualization of second-rank tensor fields and
their defects (see, e.g., [31]), and plotting the Westin metric
isosurfaces [32] for the principal and secondary director (red
and blue, respectively) as reported in Fig. 2. Differently from
the RBC case, we have here no appearance of disclination
lines for the secondary director as the molecular biaxiality
increases. Moreover, we can notice that the area where the
principal director is not well-defined, i.e., the size of the
defects generated at the poles, seems to slightly increase with
the molecular biaxiality (see Fig. 2). These indications given
by calculating the Westin metric isosurface are supported by
looking carefully at the snapshots of the long axes (second
column of Fig. 2).

The case of toroidal boundary conditions (TBCs) seems to
be different for what concerns the shape of the defect because
there is a change when the deviation from the cylindrical
symmetry of the molecules is larger. We can observe the
simulated polarized optical textures (Fig. 1) and notice the
considerable difference between the results obtained for λ =
0.10 and those for the higher values of molecular biaxiality.
The optical textures are compatible with a point defect for λ =
0.10 while in the others cases we can observe the appearance

FIG. 3. As in Fig. 2, for the case of toroidal boundary conditions
(TBCs).

of two defects. This observation is supported by looking at
the calculated Westin isosurfaces reported in Fig. 3, where for
the higher values of the molecular biaxiality the shapes of the
defects change going from two point defects at the poles of the
droplet to a ring defect lying in the plane containing the z axis.
To confirm more quantitatively this result, we have calculated
the full set [5] of second-rank order parameters. The results
are reported in Figs. 4 and 5.

As pointed out by Mermin [4], a configuration that does
give a stable point defect in an ordinary nematic fails to do
so in the biaxial nematic. Indeed, as the biaxiality parameter
increases, this failure to produce a point defect is evident in
Figs. 2 and 3. Even for a small value such as λ = 0.10, in
Fig. 4 one notices the presence of a boojum whose “radius”
increases with λ, as illustrated by the conspicuous radius of
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FIG. 4. Second-rank order parameter 〈P2〉 (left column) and
〈R2

02〉 (right column) vs distance starting from the center of the
droplets for the BBC (top) and TBC (bottom) cases.
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FIG. 5. Second-rank order parameter 〈R2
20〉 (first column) and

〈R2
22〉 (second column) vs distance starting from the center of the

droplets for the BBC (top) and TBC (bottom) cases.

the defect for λ = 0.35. Similar behavior can be found in
Fig. 3 for larger values of λ, thus confirming that the attempt to
build a point singularity in a biaxial droplet of nematics gives
rise to a line singularity extending outward from the poles, as
explicitly shown by the MC simulations.

Furthermore, the fact that the radius of the singularity core
increases with the biaxiality parameter λ is expected; it was
found also in the case of the droplet under RBC [21] and
seems to be mainly connected with the elastic anisotropy, i.e.,
the rate of growth of the core radius seems to be independent
of the boundary conditions employed at least in the cases we
considered in the simulation.

To complete the MC investigation, we have calculated the
full set of second-rank order parameters across the sample
dividing the droplet in concentric shells and computing these
observables at every radial distance from the center. The
results are reported in Fig. 4, where we show the nematic order
parameter 〈P2〉 and the molecular biaxiality parameter 〈R2

02〉,
and in Fig. 5, which presents the phase biaxiality parameters
〈R2

20〉 and 〈R2
22〉 for the three different anchoring conditions.

Concerning 〈P2〉, we notice a great difference in the behavior
for the two cases. For the BBC case, we have a nematic region
across the whole system. In the TBC anchoring, we found an
inversion in the behavior as λ increases. For what concerns the
molecular biaxiality parameter 〈R2

02〉, we have also different
behavior for the two cases: for BBC, 〈R2

02〉 presents no signifi-
cant variations for the various λ, and, moreover, this parameter
is always very small in magnitude across the sample. For
TBC, instead, we notice an increasing maximum close to
the surfaces as the value of molecular biaxiality parameter
increases.

Regarding the phase biaxiality parameters, we notice that
〈R2

20〉 exhibits a behavior similar to 〈R2
02〉 (see the first row of

Fig. 5), and the values of these parameters are always very
small. The second phase biaxiality parameter 〈R2

22〉 presents
higher values than 〈R2

02〉, and, for this reason, we have sug-
gested many years ago to monitor this particular parameter to
determine the biaxiality [23]. As a matter of fact, also in the
present study we notice that we have an ordered biaxial core

at the center of the droplet for all three anchoring conditions,
which increases in size with λ.

IV. ELASTIC THEORY

Let us now analyze the role of the molecular biaxiality
parameter in an elastic continuum perspective. As we have
shown recently [21], the energy of the biaxial nematic, ex-
pressed in terms of 12 elastic constants, may be reduced,
with a kind of generalized one-elastic constant approximation
similar to assuming a one-elastic constant for each axis, to the
simplified form [15]

f = 1
2 KaR2

a + 1
2 KbR2

b + 1
2 KcR2

c , (3)

where

R2
a = (�a · ∇�b · �c)2 + (�b · ∇�b · �c)2 + (�c · ∇�c · �b)2,

R2
b = (�b · ∇�c · �a)2 + (�c · ∇�c · �a)2 + (�a · ∇�a · �c)2,

R2
c = (�c · ∇�a · �b)2 + (�a · ∇�a · �b)2 + (�b · ∇�b · �a)2, (4)

in which �a, �b, and �c denote the unit vectors specifying the
orientation of the biaxial director, with �c being associated
with the longest axis direction. The elastic constants Ka,
Kb, and Kc are associated with the deformations in these
directions.

In the weak biaxiality approximation, Ka ≈ Kb, in such
a way that kac = Kc/Ka represents an elastic anisotropy of
the nematic phase. On the other hand, λ is the parameter
of the potential, Eq. (2), connected with the deviation from
uniaxiality of the building blocks, i.e., the bricks representing
the molecules. In a pseudomolecular perspective, it is possible
to connect the elastic constants characterizing the macro-
scopic ordering with the anisometric shape of the constituent
molecules [33]. By using these well-established features of the
elastic parameters and of the molecular ordering, valid in the
limit of small deformations and low temperature, it is possible
to assume that the relation

kac ∝ λ2 (5)

holds in general for a biaxial droplet subjected to RBC [21].
Indeed, this can be assumed as an indication that Eq. (5) is a
relation connecting the elastic anisotropy with the deviation
from uniaxiality of the constituents in a very general way,
i.e., it does not depend on the specific surface alignment of
the sample because it is also valid in the cases of BBC and
TBC. Consequently, since the radius of the defect is surely
connected with the elastic anisotropy characteristic of the
biaxial phase, the connection stated in Eq. (5) may explain
why the radius of the boojum in Fig. 4 and the dimensions
of the ring in Fig. 5 also increase with the increasing of the
biaxiality parameter. In uniaxial achiral droplets subject to
boundary conditions such as those we are dealing with here,
such structural changes are induced by parameters such as
anchoring energy and elastic constants, in particular the splay
and bend ones, as discussed by several authors [34–36]. We
can conjecture that such elastic constants can also modify
the configurations of defects in biaxial nematic droplets, even
if confirming that is in itself a long-term program beyond
the scope of this work. Here, even in the case in which the
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elastic anisotropy can be negligible, it is remarkable that the
molecular organization in these biaxial droplets can also be
affected by the intrinsic biaxiality, highlighting the important
role of the potential parameter λ and, in particular, its relation
with kac suggested from the elastic theory.

V. CONCLUSIONS

In conclusion, we have explored here how the deviation
from the cylindrical symmetry of the constituent molecules
influences the formation of the defects in biaxial nematic
droplets. In particular, we have analyzed the modification of
the defect cores and shapes induced by the different types of
boundary conditions for the longest axis of biaxial molecules
constituting a nematic liquid crystal droplet. We have focused
on two special boundary conditions represented by a bipolar
(BBC) and a toroidal (TBC) alignment of the longest axis at
the surfaces. The simulations have been carried out by means
of a lattice model based on a dispersive potential suitable
to tackle biaxial mesogens, which depends on a biaxiality

parameter. The results for bipolar and toroidal boundary
conditions reinforce the behavior already found in the case
of radial boundary conditions, namely that the core radius
increases with the biaxiality parameter, which, in turn, may
be connected with the elastic anisotropy of the nematic phase.
These results are established in the limit of weak biaxiality
and small distortions, keeping the temperature low enough to
ensure the applicability of the elastic continuum approach.
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