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Hydrodynamic synchronization and collective dynamics of colloidal particles
driven along a circular path
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We study theoretically the collective dynamics of particles driven by an optical vortex along a circular path.
Phase equations of N particles are derived by taking into account both hydrodynamic and repulsive interactions
between them. For N = 2, the particles attract with each other and synchronize, forming a doublet that moves
faster than a singlet. For N = 3 and 5, we find periodic rearrangement of doublets and a singlet. For N = 4 and
6, the system exhibits either a periodic oscillating state or a stable synchronized state depending on the initial
conditions. These results reproduce main features of previous experimental findings. We quantitatively discuss
the mechanisms governing the nontrivial collective dynamics.
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I. INTRODUCTION

Hydrodynamic synchronization is considered to be a key
mechanism that controls the collective dynamics of flagella
and cilia. For example, bacteria such as Escherichia coli
shows run-and-tumble motion induced by dynamical bundling
and unbundling of their flagella, and ciliates such as Parame-
cium regulates the direction of motion using metachronal
waves [1]. Metachronal waves of cilia also play vital roles
in moving fluid in mammalian bodies (airways, embryo, ven-
tricles, etc.) phenomena suggest the importance of indirect
hydrodynamic interaction between flagella and cilia in their
coordinate motion. Complexity due to dynamical regulation
by molecular motors is removed by considering an artificial
model system. Experiments have been pushed forward using
colloidal particles driven by optical tweezers and verified
theoretical scenarios in the emergence of synchronization
[2–4]: dynamical switching of the driving potential (rower
model) [5,6], deformability of the trajectory [7], and periodic
modulation of the driving force [8–11]. The last mechanism
enables flexible control of the phase difference between two
rotors [2]. Fluid inertia may also induce synchronization in a
finite-Reynolds number system [12,13].

In this paper, we theoretically address the dynamics of
colloidal particles driven along a circular path. Nontrivial
collective motion have been found in experiments using
an optical vortex [14–19] or optical tweezers [20–25]. An
optical vortex can drive multiple particles simultaneously
along a single circular trajectory [26], while optical tweezers
manipulate the particles individually. For three particles, a
limit-cycle behavior predicted in Ref. [27] is confirmed and
effects of nonconstant force profiles have been discussed
[14,20]. Sokolov et al. [15] showed that a pair of particles
attract each other due to radial displacements from the guided
circular trajectory. Increasing the particle number N up to
N = 11, they also found that the collective mobility changes
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nonmonotonically: For odd N , one unpaired particle remains
and reduces the collective mobility. Sassa et al. [16] per-
formed experiments for up to N = 9 particles and observed
multiple collective states for even N : The particles either form
stable doublets (stable states) or exhibit periodic rearrange-
ment of doublets and (a) singlet(s) (oscillating states), and
switching between these states is observed. More complex
dynamics are observed for particles of different sizes [17]
and particles in confined geometry [28]. Theoretically, linear
stability analysis [16,27] and direct numerical simulations
[15,17] have been done to capture the essential mechanism
of the collective motion. In the present paper, we pursue
an analytical approach to gain more quantitative description
of the phenomena. Employing the phase reduction method,
which was successfully applied to hydrodynamic synchro-
nization in a system with deformable trajectories [2,7], we
obtain the dynamical equations in a compact form. Numerical
solutions of the phase equations for up to N = 6 reproduce
the main features of the experimental findings. Construction
of the paper is as follows: In Sec. II, we describe the model
and derive the phase equations. In Sec. III, numerical solution
of the phase equations are presented for N = 2–6 particles.
In Sec. IV, we discuss the results in comparison with the
experiments.

II. MODEL

A. Geometry and forces

We consider N colloidal particles of radius a that are driven
along a circular trajectory of radius R on the z = 0 plane. The
position of the ith particle (i = 1, 2, . . . , N) is given by

ri = Rier
i = (Ri cos φi, Ri sin φi, 0), (1)

where Ri = Ri(t ) is the instantaneous orbital radius of the ith
particle, which can deviate from the target radius R set by the
optical vortex, and φi = φi(t ) is the phase. Here and hereafter
we use the radial and tangential unit vectors

er
i = (cos φi, sin φi, 0) (2)
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and

eφ
i = (− sin φi, cos φi, 0). (3)

We label the particles along the counterclockwise direction so
that φ1 < φ2 < · · · < φN and define the phase difference

�i j = φ j − φi. (4)

The motion of the particles are governed by three types of
forces acting on them: the forces due to the optical vortex, the
hydrodynamic forces, and the repulsive interaction among the
particles.

The force by the optical vortex is decomposed into the
radial and tangential components as

Fi = F r
i er

i + Fφ
i eφ

i . (5)

We assume that the tangential driving force is constant,

Fφ
i = F = const, (6)

while the radial restoring force is linearly proportional to the
radial displacement:

F r
i = −krδRi, δRi = Ri − R. (7)

The spring constant kr is determined by the curvature of the
optical trapping potential along the radial direction. We will
use the dimensionless spring constant

κ = krR

F
(8)

to describe the relative strength of trapping. We assume strong
trapping (κ � 1) and regard κ−1 as a small perturbative
parameter.

The particles move in an incompressible fluid of shear
viscosity η. Since we consider a micrometer-sized system, the
Reynolds number is negligibly small (typically Re ∼ 10−5)
and the flow velocity field v(r) obeys the Stokes equation,

η∇2v − ∇p = 0, (9)

∇ · v = 0. (10)

The hydrodynamic drag force exerted on the ith particle is
given by

gi = γ [v(ri) − ṙi], (11)

where γ = 6πηa is the drag coefficient. The flow velocity is
determined by

v(ri ) � −
∑
j �=i

G(ri, r j ) · g j . (12)

Here G(ri − r j ) is the off-diagonal elements of the grand
mobility tensor and describes the hydrodynamic interaction
between the particles. We use the Rotne-Prager-Yamakawa
approximation [29,30],

G(r) = 1

8πηr

(
1 + rr

r2

)
+ a2

12πηr3

(
1 − 3rr

r2

)
. (13)

The first term on the right-hand side of (13) is the Oseen
tensor, which is the Green function of the Stokes equation,

and the second term is the correction due to finite volume of
the spheres. Introducing the dimensionless tensor

Ĝi j = γ G(ri − r j ), (14)

which scales as a/|ri − r j |, we find that

α = a

R
(15)

is the dimensionless parameter describing the relative strength
of the hydrodynamic interaction. Substituting (12) into (11)
and then back into (12), we get an expression of the velocity
field to the second order with respect to γ G. This can be
continued recursively to give a series expansion of the velocity
field in terms of α. Neglecting O(α2) terms, we get the linear
relation

v(ri ) �
∑
j �=i

Ĝi j · ṙ j . (16)

The intermolecular forces cause excluded volume interac-
tion between the particles. Assuming that the radial displace-
ments of the particles are small compared to their radii, we can
neglect the radial component of the repulsive force. Thus the
repulsive force exerted by the jth particle on the ith is written
in the form

Frep
ji = F rep

ji eφ
i , (17)

F rep
ji = 1

R

∂U (�i j )

∂�i j
, (18)

where U (�) is the potential as the function of the phase
difference.

We choose the function [27]

U (�) = U0

(
R|�|
2a

− 1

)−12

, (19)

where U0 is a positive constant and � is the phase difference
folded into [−π, π ]. Because this potential diverges when the
particles are in contact (� = 2a/R), we can avoid overlapping
of particles in numerical analysis. Since the force decays
rapidly as a function of the distance, we retain only the
interaction between the nearest neighbor pairs (i and i ± 1
mod N). The relative strength of the repulsive force compared
to the driving force is given by the dimensionless parameter

u = U0

Fa
. (20)

B. Phase equation

Now we derive the time evolution equation for the phase
φi(t ). The equation of force balance is

F r
i er

i + Fφ
i eφ

i +
∑
j∼i

F rep
ji eφ

i = γ
∑
j �=i

(ṙi − Ĝi j · ṙ j ), (21)

where
∑

j∼i means that the sum is taken over particles
next to the ith particle. On the right-hand side, we have
the hydrodynamic forces from (11) and (16), in which we
substitute the particle velocity ṙi = Ṙier

i + Riφ̇ie
φ
i . Taking the
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inner products of er
i , eφ

i and (21), we get

−krδRi = γ Ṙi − γ
∑
j �=i

er
i · Ĝi j · ṙ j (22)

and

γ Riφ̇i = F + eφ
i ·

∑
j∼i

Frep
ji + γ

∑
j �=i

eφ
i · Ĝi j · ṙ j, (23)

respectively, where we also used (6) and (7). In the absence
of hydrodynamic and repulsive interactions (α = u = 0) and
in the limit of strong trapping (κ−1 = 0), Eq. (23) gives the
intrinsic phase velocity

ω = F

γ R
. (24)

We also see from (22) that the radial displacement is an
O(κ−1α) quantity. Then we can use ṙi � Rφ̇ie

φ
i � Rωeφ

i in the
last term on the right-hand side of (22) to obtain

δRi

R
≈ κ−1

∑
j �=i

er
i · Ĝi j · eφ

j . (25)

For Eq. (23), we use the same approximation on the right-hand
side and divide by γωRi = γωR(1 + δRi/R), in which (25)
is substituted. Neglecting terms of O(κ−2α2, κ−1u, αu), we
arrive at the phase equation

φ̇i

ω
= 1 +

∑
j �=i

eφ
i · Ĝi j · eφ

j − κ−1
∑
j �=i

er
i · Ĝi j · eφ

j

− [ f rep(�i,(i+1)modN ) − f rep(�(i−1)modN,i )]. (26)

Here Ĝi j is evaluated by setting δRi = δRj = 0 and becomes
a function of the phases φi and φ j , and

f rep(�) = 6u

( |�|
2α

− 1

)−13

(27)

is the dimensionless repulsive force. The hydrodynamic cou-
pling is represented by the second and third terms on the
right-hand side of (26). Their physical meanings are illustrated
in Fig. 1 and are understood as follows. If two particles are
moving in tandem, then the particle in the rear pushes the front
particle via the fluid and the front one pulls the rear. This effect
is shown by the second term (tangential-tangential coupling)
and increases the phase velocity of the pair. However, because
the particles are moving on a circle, the hydrodynamic force
exerted by the rear causes a radial displacement of the front
particle. The increased orbital radius means decrease of the
phase velocity as the driving force is constant. This effect is
shown by the third term (tangential-radial coupling). The two
terms are explicitly given by

er
i · Ĝi j · eφ

j = − 9α sin �i j

16
∣∣∣sin

(
�i j

2

)∣∣∣ + α3 sin �i j

32
∣∣∣sin

(
�i j

2

)∣∣∣3 (28)

and

eφ
i · Ĝi j · eφ

j = α(3 + 9 cos �i j )

16
∣∣∣sin

(
�i j

2

)∣∣∣ − α3(3 + cos �i j )

32
∣∣∣sin

(
�i j

2

)∣∣∣3 . (29)

hydrodynamic force
by particle j

tangential-radial
coupling

tangential-tangential
coupling

flow by particle j

i

jRi
Rj

FIG. 1. Schematic picture of the hydrodynamic interaction. The
jth particle moving with the speed v j � Rω je

φ

j generates the flow

velocity v(ri ) ∝ Ĝi j · eφ

j at the position of the ith particle. The
resultant hydrodynamic force is decomposed into the tangential com-
ponent ∝ eφ

i · Ĝi j · eφ

j and the radial component ∝ er
i · Ĝi j · eφ

j . The
tangential-tangential coupling accelerates the front particle, while the
tangential-radial coupling pushes it outward from the targeted circle
(solid line) and decreases the angular velocity.

Note that the right-hand side of the phase equation (26) are
functions of the phase difference only and written in the form

φ̇i

ω
= 1 +

∑
k �=i

�(�ik ). (30)

Therefore we can get a closed set of equations in terms of the
phase difference as

�̇i j

ω
=

∑
k �= j

�(� jk ) −
∑
k �=i

�(�ik ). (31)

In particular, for N = 2, the phase difference �12 obeys

�̇12

ω
= 2κ−1er

1 · Ĝ12 · eφ

2 + 2 f rep(�12)

≡ −dV (�12)

d�12
. (32)

The latter equality defines the effective potential V (�), which
is a useful tool to visualize the stability of the synchronized
states [8]. It is calculated by integrating the right-hand side of
(32) as

V (�) = 9κ−1α

2
sin

(
�

2

)
+ κ−1α3

4 sin
(

�
2

) + 2u(
�
2α

− 1
)12 .

(33)

C. Settings for numerical analysis

The model contains three small parameters, κ−1 =
F/(krR), α = a/R, and u = U0/(Fa). In numerical analysis,
we used κ = 30, α = 0.1, and u = 10−12 unless stated oth-
erwise. The first two parameters are in the same order of
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FIG. 2. The effective potential for κ = 30, α = 0.1, u = 10−12.
It diverges at �c = 2α = 0.2. Inset: Enlarged view around the mini-
mum �m � 0.22.

magnitude as the experimental values κ = 30 and α � 0.24
or 0.16 [15]. The value of u is chosen so that the repulsive
force balances with the driving force [U (�) � Fa] at the min-
imum of the effective potential � = �m � 0.22. The effective
potential is plotted in Fig. 2 with these parameters. The
repulsive potential for � < �m is very steep and prevents the
particles from contacting each other, while the hydrodynamic
coupling causes a long-range attraction.

In the following, we take ω−1 as the unit of time so that the
intrinsic phase velocity ω is unity. We used Mathematica to
numerically integrate the phase equations.

III. NUMERICAL RESULTS

A. The case N = 2

For an N = 2 system, we show the time evolution of �12

in Fig. 3 with κ varied and the initial condition �12 = π/2.
The phase difference monotonically decrease to the minimum
of the effective potential, where a doublet is formed. As the
radial confinement by the optical vortex becomes stronger, it
takes more time to form a doublet. The master plot with the
scaled time κ−1t in the inset of Fig. 3 shows that the timescale

FIG. 3. Time evolution of the phase difference �12 for N = 2
and for different values of κ . Inset: Master plot with the scaled time
κ−1t .

FIG. 4. Time evolution of (a) the radial displacements, (b) phase
velocities, and (c) the difference of the phase velocities for an N =
2 system. The two particles form doublet and synchronized at the
time indicated by the dotted line. Particle configurations at the time
indicated by the arrows are shown schematically.

of doublet formation is proportional to κ . This is understood
from Eq. (32) and the fact that the repulsive force is negligibly
small except near contact.

The time evolution of the radial displacement and phase
velocity are shown in Fig. 4. As we see from the figure, the
radial displacement of the front particle (particle 2) increases
as the two particles approach each other and shows a small
drop before it converges to a constant. The displacement of
the rear particle (particle 1) is δR1 = −δR2 as seen from (25).
As the radial displacements are much smaller than the par-
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ticle radius (|δRi/R| � 0.004 
 α = 0.1), we can justify the
assumption that the repulsive force acts only in the tangential
direction.

The phase velocities of the two particles monotonically
increase and converge to a constant

vd � 1.58, (34)

which is the velocity of the doublet. Because the velocity of a
singlet in the N = 1 case is set to unity (vs = 1) by assump-
tion, the ratio between the doublet and singlet velocities is
vd/vs � 1.58.

A doublet is stable because the rear particle pushes the
front particle out from the target trajectory by hydrodynamic
interaction, which makes the driving torque smaller for the
front particle [15].

B. The case N = 3

The solution of the phase equation (26) for an N = 3 sys-
tem becomes a periodic function of time, as shown in Fig. 5.
At the time indicated by the left arrow, the particles form a
triplet (labeled 1-2-3) as we have �12 = �23 � 2�m. At the
time indicated by the right arrow, the particles are separated
into a doublet and a singlet as we have �12 � �23 � �m. The
doublet is faster than a singlet and goes one more cycle than
the singlet to form a triplet again. Three collisions take place
in a period T to shuffle the triplets, 1-2-3, 3-1-2, and 2-3-1.
The period is found to be

TN=3 � 30.6. (35)

Time evolution of the reduced radial displacements δRi/R
are shown in Fig. 5(b). In a triplet, the front (rear) particle
has positive (negative) radial displacement, respectively, while
the center particle is located on targeted trajectory, as shown
schematically in the figure.

The phase velocity of each particle is plotted in Fig. 5(c). It
has three peaks and one deep valley in one cycle. Let us focus
on the particle 1 in the plot. The first peak is obtained when the
particle is collided at its rear end (by the particle 3) and form
a doublet. The second and the highest peak is reached when
the doublet collides with a singlet and the particle 1 becomes
the center of the triplet 3-1-2. The triplet is split into the
doublet 1-2 and the singlet 3 and the phase velocities decrease.
The third and the lowest peak is attained when the doublet
1-2 approaches the singlet 3. The minimal phase velocity is
marked by a singlet when it is separated from the doublet and
is on the opposite side of the circle.

The doublet phase velocity vd is calculated by averaging
over the time window during which the particle 1 forms a
doublet with the particle 3, as

vd � 1.57. (36)

The period (35) is estimated as the time for a doublet to go one
more cycle than a singlet, multiplied by 3 to account for the
three shuffles, as TN=3 � 2π/(vd − vs) × 3 � 33.1, which is
only 10% larger than the value (35).

Now let us consider the reason why a triplet is unstable and
split [16,27]. In Figs. 5(d) and 5(e), we show the contributions
to �̇i j from the tangential-tangential coupling [the second
term on the right-hand side of Eq. (26)] and the repulsive

FIG. 5. Time evolution of an N = 3 system: (a) phase differ-
ences, (b) radial displacements, and (c) phase velocities. Contribu-
tions to �̇12 and �̇23 from (d) the tangential-tangential coupling term
and (e) the repulsive term in the phase equation (26) are shown by
the solid and dashed lines, respectively. Particle configurations at the
time indicated by the arrows are shown schematically.
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FIG. 6. Phase portrait in the �12-�23 plane for an N = 3 system.

force, respectively. Compared to them, the contribution of the
tangential-radial coupling [the third term on the right-hand
side of Eq. (26)] is negligibly small (not shown). Thus the
splitting of a triplet is caused by the tangential-tangential
coupling, which is the dominant contribution to �̇i j . As seen
from Fig. 5(d), the phase differences satisfy �̇12 ∼ −�̇23 > 0
when the triplet 1-2-3 is formed. This is because the center
particle 2 is hydrodynamically screened and receives a drag
force weaker than those on the other particles [27]. Thus the
triplet is split into a doublet and a singlet. On the other hand,
the repulsive force shows a sharp peak when the particles
forming a doublet get closest. However, its contribution to �̇i j

is an order of magnitude smaller than the tangential-tangential
coupling, as we see from Fig. 5(e).

The phase portrait of the dynamics is given in terms of
the trajectory in the �12-�23 plane, which is shown in Fig. 6.
In the long-time limit, the trajectory converges to a triangle-
shaped limit cycle. In other words, the system exhibits the
same rhythmic motion regardless of the initial conditions.

C. The case N = 4

The time evolution of an N = 4 system is shown in Fig. 7.
Depending on the initial configurations, we obtained either
(i) a periodically oscillating state consisting of a doublet and
two singlets that are shuffled with each other or (ii) a stable
synchronized state consisting of two doublets.

The period for the oscillating state is found to be

TN=4 � 17.1, (37)

which is much smaller than the period for N = 3. This is
because two singlets are positioned in the opposite side of
the circle when a doublet moves between the two. Therefore,
the distance traveled by a doublet in an N = 4 system be-
tween two collisions is roughly half of the one for N = 3.

FIG. 7. Time evolution of the phase differences in an N = 4
system for (a) the oscillating state and (b) the stable state. Parti-
cle configurations at the time indicated by the arrows are shown
schematically.

Taking into account the four shuffles per period, and using
the doublet velocity vd = 1.63, we get the estimate TN=4 �
π/(vd − vs) × 4 � 19.9.

For the stable synchronized states, the phase difference
between two doublets is �23 = �41 � 0.92π , which means
that the doublets are placed in the opposite side of the circle.

In Fig. 8, we show the state diagram in terms of the initial
conditions. The initial conditions are varied by setting φi’s
(i = 1, 2, 3, 4) as integer multiples of ε = 0.1π . The state
diagram is drawn in the (�12,�23,�34) space with �i j’s
ranging in [ε, 16ε]. It shows that the system reaches the stable
state if two of the particles are close to each other in the
initial state. For example, the corner points of the state di-
agram, (�12,�23,�34) = (16ε, ε, ε), (ε, 16ε, ε), (ε, ε, 16ε),
give the stable state. The oscillating state is obtained if the
particles are equally spaced or form a triplet and a singlet in
the initial state. The number fraction of the initial configura-
tions that give rise to the oscillating state was 54%. Therefore,
it is slightly more probable to get the oscillating state if we
randomly choose the initial configuration.

032607-6



HYDRODYNAMIC SYNCHRONIZATION AND COLLECTIVE … PHYSICAL REVIEW E 100, 032607 (2019)

FIG. 8. State diagram for N = 4, showing dependence on the
initial conditions in terms of the phase differences. The stable state
is obtained from relatively symmetric initial configurations. The
oscillating state is obtained if two particles are close in the initial
state.

D. The case N = 5

In Fig. 9, we show the time evolution of the phase differ-
ence, radial displacements and phase velocities for an N = 5
system. As in the case N = 3, the system converges to a
periodic oscillating state independent of initial conditions.
The value of the period is almost the same as in the case
N = 3:

TN=5 � 31.4. (38)

The phase difference exhibit double peaks in a period, which
is a feature not found in the cases N = 3, 4. This is understood
as follows. At the first peak marked by the arrow a in the
figure, the triplet 4-5-1 and the doublet 2-3 are formed. Then
the triplet moves faster than the doublet as seen in Fig. 9
(middle), because the center particle is hydrodynamically
screened [16,27]. The triplet is decomposed into a doublet and
a singlet at the time indicated by the arrow b. The new doublet
(5-1) is slower than the other doublet (2-3) because it has a
larger radial displacement, as seen from Fig. 9 (bottom). This
causes the slight decrease of the phase difference �12 and the
dip between the two peaks. Then the triplet 2-3-4 is formed at
the time indicated by the arrow c, and �12 increases again to
second peak.

E. The case N = 6

Time evolution of the phase differences for an N = 6
system is shown in Fig. 10. As in the case N = 4, the system
converges to either an oscillating or a stable synchronized
states, depending on the initial conditions. The oscillating
state consists of two doublets and two singlets. The period
is almost the same as in the case N = 4:

TN=6 � 16.4. (39)

(a)

(b)(a) (c)

(b)

(c)

FIG. 9. Time evolution of an N = 5 system. Top: Phase dif-
ferences. Middle: Radial displacements. Bottom: Phase velocities.
Particle configurations at the time indicated by the arrows (a)–(c) are
shown schematically in (a)–(c), respectively.

The stable state consists of three doublets that are equally
spaced.

IV. DISCUSSION

Now let us discuss the results in comparison with the previ-
ous studies and consider their physical meanings. A quantity
of interest is the ratio between the phase velocities of a doublet
and a singlet, vd/vs. It is always larger than unity because the
hydrodynamic resistance is reduced as two particles get close.
For an N = 2 system, we can estimate the ratio analytically
by considering two spheres that are in contact with each
other and moving in tandem along a straight line. The Rotne-
Prager-Yamakawa approximation (12) gives vd/vs = 8/5 =
1.6, which is close to our numerical result vd/vs � 1.58.
The small discrepancy is resulting from the nonvanishing
radial displacement and tangential separation in the numerical
analysis. The Oseen tensor, which is obtained by neglecting
the correction terms in the Rotne-Prager-Yamakawa tensor
due to finite particle radius, gives the much smaller value
vd/vs = 4/3 � 1.33. A more exact value is obtained from the
lubrication theory [31] as vd/vs � 1.578. This is fairly close
to the value from the Rotne-Prager-Yamakawa approximation
as well as to our numerical result. The finite temperature
simulations by Sokolov et al. [15] gave vd/vs = 1.57 ± 0.05,
which is also close to our result. Experimentally, the ratio
vd/vs is reported as 1.10 ± 0.02 in Ref. [15] and 1.32 by Sassa
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FIG. 10. Time evolution of the phase differences in an N = 6
system for (a) the oscillating state and (b) the stable state. Parti-
cle configurations at the time indicated by the arrows are shown
schematically.

et al. [16]. The reason the experimental values are smaller than
the theoretical ones is not clear at this stage. However, it is
reported in Ref. [16] that fluctuations in the singlet velocity
is as large as 27%, which is attributed to nonuniformity of
the optical driving force along the circular path. In an earlier
experiment [14], the fluctuations of the optical intensity along
the trajectory is also about 20% from the mean. If fluctuations
in the radial displacement is large, they would cause a larger
viscous drag force on a doublet because the hydrodynamic
screening by the front particle is weakened.

For N � 3, we confirmed the existence of oscillating
modes with mutually exchanging doublets and singlets. The
limit cycle is robust and obtained from any initial conditions.
This is in tune with the experimental finding that a triplet
collapses in some occasions but is soon recovered [16].

For N = 3, the oscillating state is described by a limit cycle
in the phase portrait. Similar phase portraits are obtained in
the experiment [18] and in the direct numerical simulation
[17]. However, the trajectories in the experiment show noisy
fluctuations, which are probably due to the fluctuations of the
driving force. The trajectories obtained from the simulation
also show oscillations, which should be due to periodic varia-
tion of the driving force assumed in the model.

For N = 4 and N = 6, both oscillating and stable states
were observed in the experiment [16] and in the simulation

[15], in agreement with our results. According to our analysis,
one of the two states is finally chosen depending on the initial
conditions. However, in the experiment, transition between
the two states in a time course was observed, and, finally,
only the stable states remained. This transition may be also
attributed to fluctuations of the optical driving force [16].
There are not only quenched heterogeneities but also temporal
fluctuations of the optical force. In the simulation with thermal
noise [15], the oscillating mode for N = 4 disappeared at tem-
perature higher than the experimental temperature. Temporal
fluctuations of the optical force may be described by high
effective temperature and explain the transition to the stable
mode.

For N = 5, we found an oscillating state with two doublets
and a singlet, in accordance with experiments [16]. In the
experiment, another oscillating mode with one stable doublet
and three singlets is also observed sometimes and in a short
time period. An oscillating mode with one doublet is also
observed for N = 6. These modes containing one doublet
is not reproduced in our analysis and is possibly due to
fluctuations of the optical driving force.

In Table I, we show the maximal, minimal, and time-
averaged phase velocities as well as the periods of the os-
cillating modes, all obtained in the dynamical steady states.
The phase velocities for the stable modes [N = 2, 4 (stable),
6 (stable) in Table I] are those of a doublet. For oscillating
modes for N = 3, 4 (osc.), 5, 6 (osc.), the maximal phase
velocity is realized by the front particle of a doublet when
the doublet collides with a singlet and a triplet is formed.
The minimal phase velocity is realized by a singlet when it
is separated from other particles. For example, for N = 3,
the singlet is slowest when the doublet is in the opposite
side of the circle, because the doublet causes a hydrodynamic
drag force that is antiparallel to the moving direction of the
singlet. Therefore the deviation of the minimal velocity from
the reference value (unity) is in the order of α.

The mean phase velocity can be compared with those
reported in the preceding studies [15,16]. The mean phase
velocity for an N = 2n system in the stable mode is larger
than that for N = 2n − 1 (n = 1, 2, 3). This even-odd effect
is reported in the experiments [15,16] and is interpreted by
the number of doublets: For N = 2n, the mean phase velocity
for N = 2 is larger than that for N = 4 (stable). This also
agrees with the experimental results [15,16]. We interpret it
as effect of the hydrodynamic drag force between the doublet
and the two singlets that are moving in the opposite side of the
circle, just as in the above explanation of the minimal singlet
velocity. On the other hand, the mean phase velocity for an
N = 4 system in the oscillating mode is smaller than that
for N = 3, which is consistent with the previous simulation
result [15]. As a function of N , the mean phase velocity
took minimum value at N = 3 in the experiments [15,16].
However, we found that the minimum is achieved by an N = 4
system in the oscillating mode, which is not stable in the
experiments as mentioned above.

In conclusion, we analyzed theoretically the collective
dynamics of colloidal particles driven by an optical vortex.
We derived the phase equation for N particles and quantita-
tively investigated the mechanisms behind the rich dynamical
behaviors, such as: (i) the radial degree of freedom for doublet
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TABLE I. The maximum, minimum and time-averaged phase velocities vmax, vmin, vave and period of oscillation T . For N = 4 and 6, we
show the values for both stable and oscillating (osc.) modes.

N = 2 N = 3 N = 4(osc.) N = 4(stable) N = 5 N = 6(osc.) N = 6(stable)

vmax 1.58 1.67 1.68 1.46 1.65 1.64 1.54
vmin 1.58 0.93 0.89 1.46 1.03 1.07 1.54
vave 1.58 1.42 1.36 1.46 1.46 1.45 1.54
T – 31.6 18.1 – 31.4 16.4 –

formation, (ii) hydrodynamic screening for triplet splitting,
and (iii) symmetry of particle configurations determining the
basin of attractors. The results are in good agreement with
the experimental findings, including the even-odd effects in
the phase velocity. A remaining problem is an understanding
of the transitions between the oscillating and stable modes
observed in the experiments, which might be related to
spatiotemporal fluctuations of the driving force. In future
experiments, a more precise control of the fluctuations of
the optical force will be useful in unveiling the mechanism

of the transitions and also in quantitative assessment of the
phase velocities. Theoretically, both spatial and temporal fluc-
tuations of the driving force will be incorporated using the
existing framework [2,8]. The effects of confining walls [28]
and polydispersity of the particle size [17] also remain to be
analyzed in future work.
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